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Summary 

To unravel the functional properties of the brain, we need to untangle how neurons interact with 
each other and coordinate in large-scale recurrent networks. One way to address this question 
is to measure the functional influence of individual neurons on each other by perturbing them in 
vivo. Application of such single-neuron perturbations in mouse visual cortex has recently 

revealed feature-specific suppression between excitatory neurons, despite the presence of 
highly specific excitatory connectivity, which was deemed to underlie feature-specific 
amplification. Here, we studied which connectivity profiles are consistent with these seemingly 
contradictory observations, by modelling the effect of single-neuron perturbations in large-scale 
neuronal networks. Our numerical simulations and mathematical analysis revealed that, contrary 
to the prima facie assumption, neither inhibition-dominance nor broad inhibition alone were 
sufficient to explain the experimental findings; instead, strong and functionally specific 
excitatory-inhibitory connectivity was necessary, consistent with recent findings in the primary 
visual cortex of rodents. Such networks had a higher capacity to encode and decode natural 
images in turn, which was accompanied by the emergence of response gain nonlinearities at the 
population level. Our study provides a general computational framework to investigate how 
single-neuron perturbations are linked to cortical connectivity and sensory coding, and paves 

the road to map the perturbome of neuronal networks in future studies.  
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Introduction 

Perturbative approaches to study neuronal dynamics are becoming pivotal in our understanding 
of the brain's function and dysfunction (Fenno, Yizhar and Deisseroth, 2011; Yizhar et al., 2011; 

Boyden, 2015). They however often involve perturbation of a large number of neurons, which 
renders the analysis of the underlying circuitry challenging. A more simplified approach which 
has been pursued recently is to map the functional influence of individual neurons by perturbing 
a single neuron at a time. Such single-neuron perturbations have recently revealed feature-
specific suppression between excitatory neurons in mouse visual cortex (Chettih and Harvey, 
2019). But we still lack a mechanistic account of how these single-neuron functional influences 
are connected to cortical connectivity and dynamics, and how they can shed light on functional 
processing of realistic stimuli in large-scale cortical networks.  
 
Specifically, how different motifs of excitatory (E) and inhibitory (I) connectivity interact with each 
other to give rise to functional properties of neuronal networks, and how this is manifested in 
single-neuron perturbations, remains unclear. For instance, several experimental studies have 
recently reported a highly specific pattern of connectivity in mouse primary visual cortex (V1), 
where excitatory neurons with similar functional properties (e.g. orientation-selectivity) are 
connected together with higher probability and with stronger weights (Ko et al., 2011, 2013; 
Cossell et al., 2015; Lee et al., 2016). This was suggested to give rise to feature-specific 

amplification of the feedforward input by the recurrent network (Li et al., 2013; Lien and 
Scanziani, 2013). The results of single-neuron perturbations, on the other hand, suggest that 
feature-specific suppression, rather than amplification, is the dominant mode of functional 
interaction between excitatory neurons (Chettih and Harvey, 2019). It has, therefore, remained 
puzzling how these seemingly paradoxical results should be interpreted and reconciled. 
 
Here, we developed a theory of single-neuron perturbations and used computational modelling 
to shed light on these questions. We built and analyzed large-scale models of neuronal networks 
constrained with realistic receptive fields and experimentally reported motifs of recurrent 
connectivity and studied the effect of single-neuron perturbations in these networks. Specifically, 
we asked which cortical connectivity regimes are consistent with the experimental results of 
single-neuron perturbations. Our results highlighted the crucial role of inhibitory connectivity 
patterns, and how they interact with excitatory motifs to give rise to feature-specific effects (e.g. 
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amplification and suppression). We found that to obtain feature-specific suppression, strong and 
functionally-specific subnetworks of E and I were necessary. That is, both E and I neurons with 
similar receptive fields (RFs) should be connected together more strongly than their non-similar 
counterparts, which was consistent with recent results in visual cortex (Znamenskiy et al., 2018).  
 
Our modelling results shed light on the above mentioned controversy by showing that feature-
specific amplification and suppression could both exist in the cortex, depending on the regime 

of functional similarity between the influencers and the influencees. Our model suggests specific 
predictions on how to observe this in the cortex. Computational modelling also helped us to 
formulate further predictions that experiments could not directly assess, for instance regarding 
the temporal evolution of functional influence. We linked the result of single-neuron perturbations 
to sensory processing, by studying how our model networks in different regimes encode and 
decode natural images. More generally, we show that our theory can be extended to study 
multiple-cell perturbations to map the perturbome of neuronal networks in future. 

Results 

Single-Neuron Perturbations in Large-scale Networks of Visual Cortex 

We studied the effect of single-neuron perturbations on functional properties of neurons in large-

scale network models of visual cortex (Figure 1A). Individual excitatory and inhibitory neurons 

were modelled by two-dimensional visual receptive fields (RF) with randomly assigned initial 

parameters (e.g. preferred orientations and spatial frequencies) (Figure 1B; Methods). In 

accordance with experimental findings (Cossell et al., 2015), the connectivity of neurons in the 

network was governed by a RF-similarity based rule, where neurons with more similar RFs had 

stronger connection weights (Figures 1C,D). We first simulated the responses of the network in 

the baseline state (i.e., before perturbation) (Figure 1A, upper), in response to gratings of 

different orientations and spatial frequencies (Figure 1E). We then simulated the response of the 

network with an extra perturbation of a single excitatory neuron (“influencer”) (Figure 1A, lower) 

and measured the change in the activity of other excitatory neurons in the network (“influencees”) 

(Figure 1F). The average response change of each influencee as a result of perturbation 

normalized by the strength of perturbation was taken as a measure of the functional “influence” 

of the single-neuron perturbation (Figure 1G and Figure S1).  
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To investigate how the interaction between neurons depends on their similarity, we plotted the 
influence for each pair of neurons (influencers and influencees) against their signal correlation 

(Figure 1H; see Methods). For moderate correlations, the net influence was negative, consistent 

with the average negative effect of single-neuron perturbations in experiments (Chettih and 
Harvey, 2019). Moreover, we observed “feature-specific suppression” in this regime, that is the 
negative influence was stronger for pairs with more similar response properties, on average 

(Figure 1H, inset). These results are consistent with feature-specific suppression observed in 

single-neuron perturbations in vivo (Chettih and Harvey, 2019).  
 
However, this behavior changed for pairs with very strong response correlations, where we 

observed a positive influence, on average (Figure 1H). A similar trend had been observed for 

high “trace correlations” in the experiments (c.f. Fig. 5b in Chettih and Harvey, 2019). Based on 
our results, this regime of amplification is linked to RF similarity of neuronal pairs and hence can 
be assumed as “feature-specific amplification”. At the population level, these positive influences 
were stronger but less frequent, while the main bulk of influence between neuronal pairs was 

negative and small (Figure S1). These results therefore suggest different regimes of influence in 

the networks, whereby pairs of neurons with moderate response similarity (most pairs) show 
feature-specific suppression on average, while feature-specific amplification is dominant for 

highly similar RFs (rare examples). 
 

 
Figure 1. Influence of Single-Neuron Perturbations in Large-Scale Neuronal Networks. 
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(A) Large-scale networks composed of excitatory (triangles) or inhibitory (circles) neurons are 

simulated in the baseline state (above) or after perturbing a single neuron (lower). 
(B) Example visual receptive fields (RFs) of excitatory neurons. Sample neurons with positive and 

negative RF correlations (CC) with the RF in the center are shown on the upper and lower rows (in 
red and blue squares), respectively. The thickness of lines around each RF is proportional to the 

absolute value of RF CC (indicated on the bottom). Examples RFs are 9 samples from 20 neurons 
(from the total of 400 excitatory units), which are shown throughout the figure. IDs of example 

neurons (indicated on top of each RF here) are the same in the rest of the figure, for comparison. 

(C) Distribution of RF correlations for all excitatory pairs in the network (upper), and the relationship 
between connection weights and RF correlations for the respective pairs (lower).  

(D) Sample weight matrix for 20 example excitatory neurons. Neurons are sorted according to their 
similarity (RF CC) to RF #1. 

(E) Firing rate response of example neurons to example static gratings (shown on the bottom). 
(F) Change in the response of neurons after perturbing neuron #1. 

(G) Influence (average response change normalized by the perturbation size) for all pairs of example 
excitatory neurons as influencers (different rows) or influencees (different columns). 

(H) Influence as a function of signal correlation for all excitatory pairs (gray dots) in the network. The 

average influence at different levels of signal correlation is plotted on the right (bin size: 0.05). 
Shading denotes ±sem. Inset: Zoom into the intermediate range of RF similarity.   

Cortical Connectivity and Single-Neuron Influence 

To better understand how these feature-specific effects emerge, and how they are related to 
cortical connectivity, we developed a theoretical framework for the analysis of single-neuron 

perturbations in neuronal networks (Figure 2; see Methods). For linear networks, the theory can 

predict the impact of single-neuron perturbations on other neurons as a function of the weight 

matrix (Methods). We can, therefore, evaluate the average influence of neuronal pairs in the 

same networks as a function of their similarity. The theoretical prediction from the weight matrix 

shows the same non-monotonic behavior as our previous numerical simulations (Figure 1H), 

with feature-specific suppression for moderate response correlation and feature-specific 

amplification for highly similar RFs (Figure 2A). We therefore conclude that the main properties 

of feature-specific suppression/amplification arising from single-neuron perturbations can be 
deduced from neuronal interactions resulting from functional connectivity.  
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While our analysis so far highlighted the key role of connectivity in feature-specific interactions, 
it does not reveal how different components of connectivity would give rise to suppressive or 
amplifying interactions. To shed light on this, we extended our mathematical framework to 
calculate the functional influence in terms of different pathways through which neurons can 

interact (“influence motifs”) (c.f. Pernice et al., 2011) (Figure 2B; see Methods). The 

monosynaptic motif describes the direct pathway through which an excitatory neuron can 
influence another excitatory neuron. While the monosynaptic motif can only be excitatory, the 

di-synaptic motif confers positive as well as negative net influences (Figure 2B). Inhibition 

dominance (namely stronger inhibitory connections compared to E→E) can make the overall 
effect suppressive. However, too strong inhibition-dominance leads to a net positive influence 
as a result of disinhibition in the tri-synaptic motif, which can potentially counteract its 
suppressive effect in the di-synaptic motif. In strongly connected excitatory-inhibitory networks, 
the net effect of single-neuron perturbations can only be evaluated by accounting for all such 

higher-order motifs (Figure 2B). 

 
We analytically calculated the net influence between two excitatory neurons by considering all 

possible excitatory and inhibitory motifs in between (Methods). The theory allowed us to 

evaluate the prima facie intuition that increasing the strength of inhibition alone is enough to 

mediate suppressive effects between excitatory neurons. Counterintuitively, our analysis 
revealed that inhibition-dominance alone cannot confer a net suppressive influence. Instead, 
increasing the weight of all inhibitory connections scales the positive influence of E neurons in a 

divisive manner (hence leading to a divisive inhibition; see Methods, Section 3.1.2). The direct 

weight of influence between two E neurons (J) would be scaled according to J/k (see Methods, 

Eq. 35), where the divisive term k increases with the overall strength of connectivity in the 

network, but also depends on inhibition-dominance (g). For g < 1, namely when inhibition is 
weaker than EE connections on average, k < 1, meaning that recurrent interactions in fact amplify 
the influence between a pair of EE neurons. For  g > 1, that is when I connections are stronger 
than the EE weights, k > 1, hence the divisive scaling. The more the inhibition dominance (g), the 

larger the divisive term (k), and hence the smaller the influence of excitatory neurons on each 
other. However, the overall influence remains positive, which suggest that no net “negative” 
influence can result from single-neuron perturbations.  
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Our numerical simulation of functional influence in fact corroborated the above results: 
increasing the relative strength of inhibitory connections (parameterized by g) in networks with 

feature-specific connectivity did not introduce any feature-specific suppression (Figure 2C). 

However, when this was combined with strong E→I connections (parameterized by ⍺), feature-
specific suppression emerged. Feature-specific amplification for highly similar RFs was present 

for moderate values of g and ⍺, but became less prominent for large values (Figure 2C). Our 

analytical results also suggested that broad inhibition alone does not confer feature-specific 

suppression (Methods), a finding which was further confirmed in simulations with broader 

inhibitory connectivity (parameterized by 𝜂, controlling the specificity of inhibitory connections) 

(Figure 2D). Simulation of neuronal networks with similar connection weights led to similar 

results, for both inhibition-dominance and broad inhibition scenarios (Figure S2). 

 
To systematically characterize the functional properties of our networks, we developed an index 
which quantifies the simultaneous presence of feature-specific suppressions at intermediate 

regimes and feature-specific amplification for highly similar regimes (Figure 2E), as we described 

before (Feature S/A index; see Methods). Higher values of this index correspond to stronger 

feature-specific suppression at moderate levels of RF similarity and feature-specific amplification 

for highly similar RFs (Figures 2F,G). Consistent with our qualitative observation before (Figures 

2C,D), neither inhibition-dominance nor broad connectivity of inhibition did result in high values 

of this index, in the absence of strong E→I connectivity (Figure 2H). Quantifying the functional 

behavior of rate-based networks with different parameters (Figure S2) led to very similar results 

(Figure 2H). Strong and specific E→I condition for the emergence of feature-specific 

suppression was in fact inferred from our analytical calculations (Methods), where 𝛼 > 1 (i.e. 

stronger E→I connections compared to E→E weights) was necessary for a negative influence 

(Eq. 80 in Methods). Our analysis thus captures the main functional behavior of neuronal 

networks as a result of single-neuron perturbations. These results suggest that strong and 
specific inhibition and E→I connectivity are necessary and sufficient conditions to obtain 
patterns of functional influence similar to the experimental results. 
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Figure 2. Connectivity Regimes and Feature-Specific Influence. 

(A) Average influence as a function of signal correlation in neuronal networks (as reported in Figure 

1H) and the theoretical prediction of this influence from the weight matrix of the network. 

(B) Illustration of different motifs of influence (of different orders) mediating the influence of a 

perturbed excitatory neuron (influencer) on a postsynaptic excitatory target (influencee). The sign 

of the net influence at each branch is determined by considering the interaction of the signs of all 
synapses in the respective pathway. 

(C) The average influence as a functional of signal correlations inferred from the weight matrices of 
networks with different parameters of E→I connectivity and inhibition dominance. 

(D) Same as (C) for different strength of E→I connectivity and specificity of I→{E,I} connections. 
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(E) Each pattern of influence was quantified by analyzing the degree of feature-specific amplification 

in the intermediate regime, quantified by the slope of the linear fit to the curve (upper) and the 
average amount of feature-specific amplification in the highly similar regime (lower).  

(F) Feature-specific influence for intermediate (upper; as described in Figure 2E, upper) and highly-

similar regime (lower; as described in Figure 2E, lower) of neuronal similarity for different 

combination of inhibition-dominance (g) and strength of E→I connectivity in the network. 

(G) Same as (F) for different strength of E→I connectivity and specificity of I→{E,I} connections. 

(H) Feature-specific suppression/amplification (S/A) index, combining both aspects of suppression 
and amplification at different regimes, for different combination of parameters. Thicker lines show 

the values inferred from the weight matrix, and the thinner lines correspond to simulations of the 

neuronal networks (details of the results of rate-based simulations are shown in Figure S2). 

Influence as a Function of Individual Features of Receptive Fields 

We presented the results of single-neuron perturbations in terms of similarity of neuronal 
responses, as we had access to actual RFs of neurons in our model networks. However, 
mapping the full RF of neurons in experiments is not always feasible, and experimental results 
are often expressed in terms of marginal feature selectivity of neurons (e.g. their tuning to 

individual features of RFs like preferred orientation or spatial frequency). To relate better our 
results to such experiments (e.g. as in Chettih and Harvey, 2019), we analyzed the influence as 

a function of individual features of neurons (Figure 3).  

 

Preferred Orientation  

Characterization of the influence as a function of the difference between the preferred orientation 
(PO) of the influencers and influencees revealed feature-specific suppression for intermediate 
PO differences (dPOs), where more suppression was observed between pairs with more similar 

POs (Figure 3A), in keeping with experimental results (c.f. Fig. 3i Chettih and Harvey, 2019). 

However, our analysis revealed an opposite trend of feature-specific amplification (i.e. less 

suppression for pairs with more similar POs) for very small differences (Figure 3A). That is a 

consequence of feature-specific amplification for the regime of highly similar RFs as we 

described before (Figure 1H and Figure 2), when that similarity is projected over an individual 

feature of RFs, namely their PO. Our results thus suggest that mapping the dPO of neuronal pairs 
with more resolution and/or larger sample size should reveal another regime of amplification, in 
addition to feature-specific suppression for the intermediate range. 
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Spatial Phase  

Among the individual features of the RFs, we found that the preferred spatial phase of neuronal 
pairs revealed the strongest feature-specific suppression. Plotting the influence as a function of 
the difference in preferred spatial phase (dPH) of neuronal pairs revealed a monotonic increase 
with dPH, indicating that neuronal pairs with the closest preferred spatial phase show the most 

feature-specific suppression, on average (Figure 3B). Based on these results, we predict that 

analysis of influence as a function of phase difference could be the most significant predictor of 
the influence among the individual features of neuronal tuning. 

 

Spatial Frequency 

We also analyzed the dependence of influence on the difference in the preferred spatial 

frequency (dSF) of neuronal pairs (Figure 3C). Here, the relationship was less obvious and more 

noisy, especially for small to moderate dSFs (<0.1, Figure 3C). This is consistent with the 

experimental results, which did not reveal a significant dependence of feature-specific 
suppression on dSF. However, we found a significant bandpass dependence of influence, when 
we calculated the average influence for each neuron, either as an influencer (i.e., the average 
influence resulting from the neuron to all influencees) or as an influencee (i.e., the average 
influence experienced by the neuron from all influencers), as a function of the neuron’s preferred 

SF (Figure 3C). 

 

Interaction of Individual Features 

We next analyzed how the interaction of above mentioned features is related to the influence. 
That is, instead of analyzing the influence as a function of a single feature, we studied its changes 

in the space of multiple features (Figure S3). We analyzed the influence as a function of the 

conjoint distribution of differences in PO and phase (Figure S3A) or spatial frequency (Figure 

S3B). The bandpass dependence of influence on dPO that we observed before (Figure 3A) was 

exacerbated for small differences in both cases (small dPH and dSF regimes), and vanished for 

the regimes with large differences (Figures S3A,B). This suggests that controlling for the 

difference in other properties of the cells (individual features of their RFs here, e.g. SF or spatial 
phase), can amplify the effect of feature-specific influence for unique individual features. Analysis 
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of the dependence of the influence on dPO, when controlling for dSF and dPH at the same time, 

revealed similar results (Figure S3C). 

 

 
Figure 3. Influence as a Function of Individual Features. 

(A) Influence (inferred from perturbing neuronal networks similar to Figure 1) as a function of the 

difference in the preferred orientation (dPO) of neuronal pairs. Left: Distribution of all pairs. Middle: 

Average influence as a function of dPO (in bins of 4.5 degrees). Right: Zoom in (x-axis) of the 

average influence to highlight the nonmonotonic pattern. 
(B) Same as (A) for the difference in preferred spatial phase (dPhase). Bin size: 9°. 

(C) Influence as a function of the difference in the preferred spatial frequency (dSF) of neuronal pairs. 
Left: Distribution of all pairs (black) and the average influence (red). Middle: Average influence as 

a function of dSF (in bins of 4.5°). Right: Average influence per neuron (resulting from perturbing 
the neuron as an influencer (black) or observed by the neuron as an influencee (red)), as a function 

of its preferred SF. Dots show the result for all neurons in the network, and lines denote the 

average at each SF. Bin width: 0.01.  
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Influence Resulting from Multiple-Neuron Perturbations 

Our results in the previous section revealed how interaction of multiple features can shed light 
on additional properties of functional influence which could be masked when looking at single 
features individually. In this section, we asked how such interaction can be studied if, instead of 
single-neuron perturbations, the interactome of the network is mapped by multiple-neuron 
perturbations. To this end, we investigated the effect of double-neuron perturbations, in which 
two neurons are perturbed simultaneously to assay their combined influence on postsynaptic 

targets (Figure 4A). We repeated similar experiments as outlined before (e.g. in Figure 1) for 

such double-cell perturbations, and analyzed the influence as a function of the similarity of each 

influencee to both influencers (Figure 4B). Feature-specific suppression was evident for the 

moderate regime of RF similarity, especially for the region with moderate RF similarity to both 
influencers. Regions with the least RF similarity to one influencer, in contrast, revealed the most 

amplification when the RF similarity was high with regard to the other influencer (Figure 4B). 

Projecting the influence over a single dimension composed of both influencers revealed a 
stronger feature-specific suppression profile, when assayed as a function of RF similarity or an 

individual feature (preferred spatial phase) (Figure 4C).  

 
The interaction of influencers thus confers more feature-specific suppression on average. This 
interaction can be more systematically studied, by analyzing if the conjoint influence of two 
influencers is synergistic or antagonistic, namely whether the perturbation of neuron B in addition 

to neuron A increases or decreases their influence in isolation (Figure S4A). To analyze this we 

developed a “synergy index”, which quantifies if the change in double-neuron influences is 

amplifying or suppressing the single-neuron effects (see Methods). The synergy index is 

computed for each A-B-C triplet, where A is the first influencer neuron, B is the second neuron 
that is additionally perturbed, and C is the target influencee of single- and double-neuron 
perturbations. The average synergy over all target influencees (Cs) for a sample influencer A and 

all other second influencers (Bs) is shown in Figure S4B, as a function of the response correlation 

of A and Bs. The average synergy reveals a net positive synergy for all A-B pairs, but this effect 
is more prominent for A-B pairs with high response correlations. Similar trends were observed 
when we calculated such average synergy curves for other example influencers (As) in the 

network (Figure S4C). These results suggest that double-neuron (and, more generally, multiple-
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neuron) perturbations can be employed in future experiments to map the perturbome of neuronal 
networks, by analyzing the synergy of their interactions.  
 

 
Figure 4: Mapping the Interaction of Influence in Double-Cell Perturbations. 

(A) Double-cell influence is assayed in neuronal networks by perturbing two excitatory neurons and 
quantifying the result of this dual perturbations on other neurons in the network. 

(B) Average influence as a function of the average response correlation of the two influencers with all 
the influencees.  

(C) Left: Average influence as a function of the average response correlation of the two influencers 
with influencees in double-neuron perturbations (red). CC1=CC2 for single-neuron perturbations 

(black). Right: Average influence as a function of the average difference in the spatial phases of 

the influencers with the influencees. Cosine of dPHs is used to obtain a normalized measure 
between -1 (most dissimilar) to 1 (most similar).  

Temporal Evolution of Influence 

In our previous results, we discarded the transient activity and evaluated the influence from 
neuronal responses in the stationary state. But transient responses can reveal important insights 
about the operation of neuronal networks, especially how neuronal interactions evolve over time 
to shape the influence. We therefore analyzed the influence as inferred from the average activity 

at different time intervals after single-cell perturbations (Figure 5). Analyzing the pattern of 
average influence revealed that feature-specific amplification for very high response correlations 
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was evident from very early responses, which is consistent with their excitatory monosynaptic 

nature (Figure 2B). However, feature-specific suppression emerged and strengthened over time, 

arguing for the polysynaptic nature of this component of influence (Figure 5A). We did not 

observe such dynamics in networks with weak E→I connectivity (Figure 5B). Our numerical 

results thus shed light on the evolution of the influence over time and is consistent with our 
analytical results on the significance of higher-order motifs of interaction in the emergence of 
feature-specific suppression. 
 

 
Figure 5: Temporal Evolution of Influence Inferred from Transient Responses. 

(A) Influence as a function of signal correlation in neuronal networks (similar to Figure 1H), when the 

influence is inferred from the average firing rate up to time T. Gray dots: all pairs; red: average 

influence (bin size: 0.05). Shading denotes ±sem at each bin. 𝛼 = 2, 𝑔 = 2, 𝜂 = 3. 

(B) Same for a network with weaker E→I connectivity (𝛼 = 1).  

Inhibitory Single-Neuron Influence 

We also studied how single-neuron perturbations would change, if inhibitory neurons are 
perturbed as influencers instead of excitatory neurons. Mapping such inhibitory influences is 

more challenging experimentally, but we could investigate it in our model (Figure S5). We 

observed stronger negative influences, on average (Figure S5), presumably due to stronger 

weights of I→E connections. Beyond the mean suppression, a negative slope of influence versus 
response correlation (which indicates feature-specific suppression) was observed for higher 

signal correlations (Figure S5A), as opposed to excitatory single-cell perturbations where such 
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a feature-specific suppression was present in the intermediate regime (illustrated in Figure 2E). 

In fact, lack of a significant negative slope for intermediate positive signal correlations indicated 

an absence of feature-specific suppression in this regime (Figure S5B). The negative slope was, 

however, present for negative signal correlations in this regime, leading to some degree of 

apparent feature-specific “amplification” for intermediate negative correlations (Figure S5B). 

Thus, the pattern of inhibitory influence in the intermediate regime seems to be the opposite of 

the pattern of excitatory influence (c.f. Figure 1H), while the feature-specific amplification for 

highly similar regime is obviously missing. Another conspicuous difference between excitatory 
and inhibitory single-neuron perturbations was in the transient responses of the latter, which did 

not show a significant change in overall shape over time (Figure S5C). This argues that 

polysynaptic motifs are more important in establishing feature-specific suppression in excitatory 
single-neuron perturbations, as it involves the interaction of excitation and inhibition. 

Functional Consequences for Sensory Processing 

Our work so far revealed how different connectivity profiles lead to various patterns of feature-
specific suppression/amplification when individual neurons are perturbed. But single neurons 
are rarely perturbed in isolation. Instead, the realistic operating regime of the brain involves 
collective activation of neurons, for instance in response to external stimuli. To examine the 
functional consequences of such single-cell properties in naturalistic conditions, we therefore 
need to study the response of populations of neurons in different regimes. To address this, we 
presented natural images to large-scale visual networks. The feedforward input was obtained by 
filtering the images by the RF of individual neurons, and the output of the network was read from 

the population activity (Figure 6A; see Methods). We then analyzed how different networks 

transformed the input to output in different regimes.  
 
We first looked at networks similar to those with feature-specific suppression/amplification as a 

result of single-neuron perturbations (e.g. as in Figure 1). We analyzed the output activity of 

excitatory neurons as a function of their input in response to a sample image (Figure 6B). For 

such networks, the activity of neurons with small inputs (small feedforward projections) was 
suppressed, while the activity of neurons with medium and large feedforward projections were 

mainly maintained or amplified (Figure 6B). To understand what underlies such a transformation, 

we repeated the input-output analysis for the same network but with weaker E-I connectivity. 
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Here, we did not observe the same nonlinear transfer function; instead, output responses were 

generally amplified with respect to the input (Figure 6C).  

 
To quantify the transformation, we calculated the response gain for each neuron as a factor with 
which the input needs to be multiplied to obtain the output. Neurons in the original networks 
(with strong E-I connections) showed a sigmoid response gain function: close to zero gains for 
small inputs and high gains for larger inputs, with a saturation trend at very high feedforward 

projections (Figure 6D). In contrast, the network with weak E-I connections showed the opposite 

trend: higher gains for neurons with small feedforward projections, and the least amplification 

for intermediate and large inputs (Figure 6D). We characterized such response gain curves for 

an ensemble of natural images (Figure 6E) and observed similar nonlinear behavior for both 

networks across the images (Figures 6F,G). These results suggest that recurrent interactions in 

the networks with strong E-E connections can amplify the “noise”, if the E-I interaction is weak; 
however, when strong and functionally specific connectivity exists between E-E and E-I 
connections, neuronal responses show a selective suppression of the noise and enhancement 
of the signal.  
 
Lack of sigmoid-shape transfer functions in networks with weaker E-I connections can be a result 
of less inhibition in the network. We therefore asked if an unselective increase of inhibition in our 
networks can compensate for the weakening of E-I connections, and restore the transfer 
function. To test that, we studied networks with an increase in inhibition-dominance or 
broadness of the inhibitory connectivity, similar to the procedure we used before to evaluate 

different regimes of feature-specific suppression/amplification in these networks (c.f. Figures 

2C,D). Under both scenarios, we observed qualitatively similar response gain curves as in 

networks with weak E-I connections, and sigmoid nonlinearity did not emerge as a result of 

nonspecific inhibition (Figure S6). These results corroborates that strong and functionally-

specific E-I connections, which were necessary to obtain feature-specific suppression and 
amplification for different regimes, are also necessary for the emergence of sigmoid-shape 
nonlinear transfer functions, which can potentially enhance sensory coding.  
 
To evaluate more directly the contribution of such nonlinear transfer functions to sensory 
processing, we studied the representation of natural images in different networks. We assessed 
how population responses to different images could be distinguished in networks with different 
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nonlinearities. This was measured by quantifying the distance between population vectors in the 
N-dimensional space of neural activity (where N is the number of neurons). If the nonspecific 
component induced by all images over neurons is smaller than the specific projections, the 
distance between the vectors of population activity is small and hence it is more difficult to 
discriminate different images. On the other hand, orthogonal representations, namely patterns 
of activity with the least overlap, enable the most discriminability for image pairs. We quantified 
such discriminability of population representations for all pairs of natural images in different 

networks (Methods). The results revealed that networks with strong E-I connections increased 

the discriminability of feedforward projections, whereas networks with weak E-I had lower 

discriminability (Figure 6H). By suppressing the redundant information and enhancing the 

representation of more informative neurons, networks with the sigmoid nonlinearity can therefore 
provide a more efficient population code to represent natural images. 
 
The enhancement in the encoding of visual stimuli should lead to better decoding capacities of 
visual networks. To test this directly, we assessed the capacity of different networks in 
distinguishing different natural images. We trained a decoder to discriminate a target image from 

other images in the ensemble, based on the population activity of excitatory neurons (Methods). 

We then tested the discrimination accuracy of the decoder when other non-target images (not 

seen during the training) were shown, under different levels of noise (Figure 6I; see Methods). 

Decoders which performed their discrimination based on the population activity of networks with 
strong E-I connections performed significantly better than decoders based on the feedforward 

input, while networks with weak E-I weights did much worse than both (Figure 6J). Increasing 

the level of noise reduced the accuracy for all networks, but networks with strong E-I connections 
outperformed other networks consistently; moreover, they showed the most robust behavior and 

were affected the least by noise (Figure 6K). We therefore conclude that nonlinear response 

gains, emerging in networks with strong E-I connections and feature-specific 
suppression/amplification in single-neuron perturbations, improve image processing by 
increasing the capacity of a downstream decoder to distinguish different stimuli. 
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Figure 6. Population Responses in Different Regimes and Consequences for Sensory Processing.  

(A) The response of the network is obtained by projecting the input image over RF of neurons 

(feedforward input) and accounting for recurrent interactions resulting from the weight matrix.  

(B) Input and output of excitatory neurons in the network for a weight matrix with strong E→I. Input 
and output are both normalized to the maximum level of input in response to the image. 

Distribution of input and output are shown on respective axes. 
(C) Same as (B) for a weight matrix with weak E→I. 

(D)  Response gain (output divided by input) for each excitatory neuron as a function of input, for 

weight matrices with weak and strong E→I, respectively. 
(E) Sample images from an ensemble of 617 natural images used to test the networks. 

(F) Individual response gain curves (as In (D)) for individual images (gray) and their average (red).  
(G) Same as in (F) for a weight matrix with weak E→I connections. 

(H) Discriminability of population responses, calculated as the normalized angle (by 90°) of the vectors 

of population responses to all pairs of natural images (see Methods).  

(I) For each image, a decoder is trained to distinguish the image from half of the images in the 

ensemble. It is then tested to distinguish the image from images in the other half of the ensemble. 
(J) Percentage of the correct responses of decoder in (I) in distinguishing the target image. 

(K) Percentage of correct responses at different levels of noise corrupting the population responses. 
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Discussion 

We presented computational models and mathematical analysis of the functional effects of 
single-neuron perturbations in neuronal networks. Our results revealed specific connectivity 
motifs necessary for the emergence of feature-specific suppression and amplification for 
moderately-similar and highly-similar receptive fields. Strong and specific E-I connections were 
necessary in combination with strong inhibitory connectivity to yield those results. A key finding 
of our study is thus the importance of strong and specific E-I connectivity. This was necessary 
to explain the experimental results of single-neuron perturbations (Chettih and Harvey, 2019), 
but also consistent with recent experimental reports of the specificity of E→I and I→E 

connections in visual cortex (Znamenskiy et al., 2018). Our theoretical analysis suggests that the 
most feature-specific suppression is achieved when these two motifs are balanced. Based on 
these results, an important implication of our study is that selective targeting of E-I connections, 
e.g. by optogenetics techniques, should modulate the feature-specific suppression. 
 
We found that the same connectivity profiles also gave rise to the nonlinearity of neuronal 
responses, which underlie the enhancement of population capacity to discriminate natural 
images. A similar nonlinearity has been suggested to explain the visual responses to natural 
images in mouse V1 (Fig. 2g in Yoshida and Ohki, 2020). A prediction of our model is that such 
a sigmoid nonlinearity can be an emergent property of neuronal responses at the population 
level, as networks with different connectivity profiles expressed different nonlinearities in our 
simulations. Our model neurons in fact lacked such nonlinear transfer function at the single-cell 
level, and, given the operating regime of V1 (low firing rates and fluctuation-driven regimes of 
activity due to E-I balance), it seems unlikely that such a nonlinearity can arise from neuronal 
responses in isolation. Selective perturbation of the recurrent circuitry, especially targeting E-I 
connections, is thus needed in future studies to address the presence and nature of this 
nonlinearity, and its potential link to the representation capacity of the population code.  
 
Strong E-I connectivity has been reported in many cortices across different species (Molnár et 

al., 2008, 2016; Hofer et al., 2011). Specifically, very large excitatory inputs from pyramidal cells 
to inhibitory neurons have been observed in humans, a property that has been absent in any 
other nonhuman cortices (Molnár et al., 2008; Szegedi et al., 2016), which may argue for the 
prominent role of this connectivity motif in complex cognitive processing. However, in the 
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absence of specific mapping of their functional properties, and in view of the broad selectivity of 
inhibitory neurons (Bock et al., 2011; Hofer et al., 2011), it has been assumed that these 
connections are nonspecific and provide a blanket of inhibition to the local network (Fino and 
Yuste, 2011; Packer and Yuste, 2011; Karnani, Agetsuma and Yuste, 2014). Recent studies, on 
the other hand, have revealed the emergence of specific E-I subnetworks, emphasizing the 
potential significance of selective inhibition for cortical computation (Wilson et al., 2017; Khan et 

al., 2018; Najafi et al., 2020). In mouse visual cortex, dendrite-targeting somatostatin positive 
(SOM+) inhibitory neurons have been reported to have comparable levels of orientation 
selectivity to excitatory neurons in both L4 and L23 (Ma et al., 2010), and even within parvalbumin 

positive (PV+) interneurons a range of selectivity has been observed depending on the extent of 
their dendritic tree (Runyan and Sur, 2013). Future studies are thus needed to address the 
functional connectivity of E-I subnetworks more systematically to shed light on the specificity of 
E-I interactions. A case in point is a recent study of odor processing in the olfactory bulb of larval 
zebrafish (Wanner and Friedrich, 2020). By mapping the functional connectomics via dense 
reconstructions of wiring diagrams (as opposed to sparse sampling of connections), the study 
could shed light on the higher-order interactions of excitatory and inhibitory neurons. 
Interestingly, the study found that bidirectional E-I connectivity is implicated in the decorrelation 
of odor responses via feature suppression. 
 
In addition to linking connectivity and coding in single-neuron perturbations, our theory outlines 
how multiple-cell perturbations can be used to study functional properties of neuronal networks, 
by mapping higher-order interactions between influencers. A similar mathematical approach has 
been recruited recently to analyze the interaction of drugs and their resulting changes in cell 
morphologies, in order to shed light on the link between drug combinations and treatment of 
diseases (Caldera et al., 2019). Targeted multiple-neuron perturbations of functionally identified 
neurons have in fact been used recently to shed light on the dynamics of persistent activity and 
short-term memory in mice (Daie, Svoboda and Druckmann, 2019). Similar approaches can be 
recruited to reveal how neurons work in tandem to shape functional processing in sensory 
cortices, with the possibility that different network perturbomes can dissociate between 
functional and dysfunctional circuitries. 
 
Our study also suggests that the temporal dynamics of the evolution of feature-specific 
suppression/amplification can reveal fundamental insights about the operation of the network. 
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In our model neuronal networks, we found that feature-specific suppression emerges later than 

feature-specific amplification as a result of polysynaptic interactions (Figure 5). Testing if such 

a pattern also exists in the cortex would have implications for the connectivity and function of 
cortical networks (e.g. transient responses versus sustained activity). Although technically 
challenging, future experiments can use population voltage-based measurements (Knöpfel and 
Song, 2019; Piatkevich et al., 2019) combined with single-neuron optogenetic perturbations to 
cast light on this important aspect. The temporal profile of functional influence can be further 
combined with multiple-neuron perturbations to map the temporal perturbome of neuronal 
networks, which will provide a more complete picture of functional and temporal patterns of 
processing in the brain. 
 
In summary, our study provides a general mathematical framework to study the effect of single- 
(and multiple-) neuron perturbations in excitatory-inhibitory neuronal networks. By applying it to 

the visual cortex, we could unveil connectivity principles underlying the emergence of feature-
specific influence in recent single-neuron perturbations, and predict further properties of visual 
networks. The model specifically provided an explanation for the mutual presence of functionally 
specific excitatory connectivity and feature-specific suppressive influence of perturbations, 
which seemed contradictory in view of previous experiments (Ko et al., 2013; Cossell et al., 2015; 
Lee et al., 2016; Chettih and Harvey, 2019). The modelling framework can be used in future 
studies to link cortical connectivity and dynamics to function in perturbation experiments. 
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Supplementary Figures 

 

 
Figure S1. Influence for All Neurons in the Network (related to Figure 1). 

The matrix of normalized influence between influencers (different rows) and influencees (different columns) 

similar to Figure 1G but for all excitatory neurons in the network. Influence is normalized by the maximum 

absolute value of influence between all excitatory pairs. In each row, the influencees are sorted according 
to their response correlation with the respective influencer in an ascending order. The average influence 

for each column is plotted on the right. Inset: The distribution of normalized influence for all excitatory 
pairs in the network. Note the logarithmic scale on the y-axis. 
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Figure S2: Regimes of Feature-Specific Influence in Neuronal Networks (related to Figure 2). 

(A,B) Same as Figure 2C and Figure 2D, respectively, for rate-based neuronal networks with similar 

weight matrices. For each network, the weight matrix is generated with the same combination of 

parameters as in Figures 2C,D, respectively, but instead of inferring the influence from the weight 

matrix (as in Eq. 19), the influence is calculated from rate-based simulations of the network (Eq. 14). 
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Figure S3: Influence as a Function of the Interaction of Individual Features (related to Figure 3). 

Same as Figure 3, but for interaction of individual features. 

(A) Left: Average influence for all pairs within a given range of dPO and dPH. Right: Average influence 
as a function of dPO for three levels (minimum, medium and maximum) of dPH. 

(B) Same as (D) for the interaction of dPO and dSF. 

(C) Same as (D,E) for the interaction of dPO with the conjoint change of SF and phase (dSF x dPhase). 
dSF and dPhase are both normalized to their maximum values, respectively, and then multiplied 

to obtain a single variable. 
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Figure S4: Synergy of Interaction in Double-Cell Perturbations (related to Figure 4). 

(A) Illustration of different outcomes of double-neuron perturbations compared to single-neuron 

results. First column: An influencer with a net positive influence on an influencee (first row) can 
experience synergistic interaction with another influencer if the net influence of the double-neuron 

perturbation is more positive (second row), or an antagonistic interaction if the net influence is less 

positive or negative (third row). Second column: Example of synergistic or antagonistic interaction 
for a negative single-neuron influence.     

(B) Average synergy index (see Methods) of an example first influencer with all other influencees as 

a function of response correlation of the first influencer with the second influencers. Black line 

shows the average in each CC bin (bin width: 0.1).  
(C) The average synergy as a function of response correlation (black line in (B)) for 100 sample first 

influencers (gray). Black line shows the average across all curves. Bin width: 0.1.    
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Figure S5: Influence Inferred from Perturbing Single Inhibitory Neurons (related to Figure 5). 

(A) Influence of inhibitory neurons on excitatory neurons for all pairs (black) and as average calculated 
for all pairs within a given range of signal correlation (bin size: 0.05).  

(B) Zoom in for the intermediate range. Error bars denote ±sem. 

(C) Same as in Figure 5 for inhibitory single-neuron perturbations. 
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Figure S6: Response Gain Curves for Networks with Weak E→I and Stronger or Broader Inhibition 

(related to Figure 6). 

Same as Figure 6G, for control conditions where the network with weak E→I connections had either higher 

inhibition dominance (left) or broader inhibition (right). Neither of the two conditions resulted in sigmoid 

nonlinearity of gains as observed in Figure 6F. 
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Methods

1 Network simulations

1.1 Neuronal receptive fields

Visual receptive field (RF) of neurons were modeled as two-dimensional Gabor fields:

gλ,θ,φ,σ,γ(x, y) = exp(−x
′2 + γ2y′2

2σ2
) cos(2π

x′

λ
+ φ) (1)

where
x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ).

x and y are the position on the visual field, σ sets the size, θ is the preferred orientation,

ω = 1/λ the spatial frequency, and φ the spatial phase of the receptive field. RFs are

instantiated on a L × L field, with their resolutions expressed in pixels per degree (ppd),

and centered at (x0, y0). Unless stated otherwise, parameters are chosen as the default

values below: L = 50, ppd = 4, σ = 2.5, γ = 0.5. The following parameters are drawn

randomly from a uniform distribution: (x0, y0) from [−1.25, 1.25] degrees, θ and φ from

[0, π) and [0, 2π), respectively. Spatial frequency, ω, is drawn from a gamma distribution

with shape parameter 2 and scale parameter 0.04 and 0.02 for excitatory and inhibitory

neurons, respectively.

1.2 Neuronal connectivity

Network connectivity is represented by the weight matrix W , with the entry wij denoting

the weight of the connection from presynaptic neuron j to postsynaptic neuron i. Connec-

tivity is all-to-all and weights between two neurons are modulated as a function of similarity

of their respective receptive fields. Functional similarity is assayed in two ways: first, by

1
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calculating the correlation coefficient of the receptive fields (RF CC) directly:

CCRF
ij =

cov(gi, gj)

σgi σgj

. (2)

Alternatively, functional similarity is assayed by using external stimuli. Consider a se-

quence of stimuli, e.g. Nstim static gratings or natural images. The functional behaviour of

neuron i in response to this stimulus set can be described by a response vector ρi (with

size Nstim). The k-th element of the vector represents the correlation coefficient of the

neuronal RF with the k-th stimulus in the sequence. For a pair of neurons (i, j), the Re-

sponse CC (also referred to as signal CC) is then calculated from the correlation of their

response vectors, (ρi, ρj):

CCresponse
ij =

cov(ρi, ρj)

σρi σρj
(3)

To evaluate response CCs in our simulations, we used 1000 static gratings with random

preferred orientations between [0, π] and spatial frequencies drawn from a gamma distri-

bution with shape parameter 2 and scale parameter 0.04. Gratings were instantiated in

the same fashion as the Gabor RFs described above, with the difference that they were

extended in space to obtain full-field gratings. This was achieved by choosing very large

values of σ in Eq. (1).

For each pair of neurons i and j, the weight between them is then modulated as a

function of the respective measure of similarity (CCij):

wij = J exp(ηCCij) + ζ (4)

where CCij can be CCRF
ij or CCresponse

ij (this is specified in each case in the details of

the simulation). J parameterises the strength of the respective weights (denoted as JXY ,

where {X, Y } ∈ {E, I}), and η determines the sharpness of the exponential dependence

of weights on similarity (with a default value of η = 3). ζ is an i.i.d distributed randomly

chosen value between [−ζmax, ζmax] added to each element, with ζmax = 0.005. For

E → {E, I} weights the values smaller than 0, and for I → {E, I} weights values larger

than 0, are clipped to 0. For a given value of E → E weights (JEE), inhibition-dominance

is parameterized by the relative surplus of I → {E, I} weights: JIE = JII = −gJEE.

The relative strength of E → I weights are quantified by a similarly defined parameter,

α: JEI = αJEE. Broadening of inhibitory connectivity (e.g. in Figure 2D) is controlled by

changing the sharpness of the profile of I → {E, I} connections, by keeping η the same

2
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for other connections and changing ηIE and ηII specifically.

1.3 Neuronal simulations

The activity of neuronal networks was simulated by numerically solving the following equa-

tions:

τ
dr

dt
= −r + [Wr + s]+ (5)

where r is a vector of all firing rates (for N neurons, composed of NE excitatory and NI

inhibitory neurons), W is the matrix of connection weights as described above, s is the

vector of external input to all neurons, τ is the effective time constant of integration, and

[]+ denotes half-wave rectification.

The influence is assayed by simulating the response of the network for a given time

(T ) in the baseline state (s0) and with an extra perturbation of a single neuron: sp =

s0 + δsi, where δsi is a perturbation vector containing δp (the size of perturbation) for the

i-th element and zeros for the rest of neurons. The average (temporal) firing rate of the

neurons in the stationary state (after discarding the initial transient response for Ttrans) is

calculated for the baseline and the perturbed state as r0 and rp, respectively. The vector of

change in firing rates, δr = rp − r0, is normalized by the size of perturbation to obtain the

influence of neuron i (the influencer) on the rest of the network (influencees): ψ = δr/δp.

For double-neuron perturbations, the same procedure was repeated with the only dif-

ference that the vector of perturbations contained two non-zero elements for the two in-

fluencers with size δp, and influence was obtained by normalizing the induced changes in

the activity of influencees by δp.

Default values for the quantification of influence are: NE = NI = 400, τ = 10, T = 500,

Ttrans = 50, δp = 0.1.

1.4 Data analysis

To analyse the behaviour of the influence as a function of signal correlation between in-

fluencers and influencees in different regimes (Figure 2), we employed a feature-specific

suppression/amplification (S/A) index. It was calculated from the average influence, which

was obtained as the average influence between all pairs of influencers and influencees

with signal correlations in a certain bin (with bin widths of 0.02) between −1 and 1. The

index is composed of three submetrics: (1) x: the mean average influence in the inter-

mediate regime; (2) y: the slope of the dependence of the average influence on signal

3
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correlation in the intermediate regime; and (3) z: the mean level of average influence in

highly similar regime. The intermediate regime was defined as signal correlations between

−0.3 to 0.3, and a highly similar regime was taken as the range of signal correlation be-

tween 0.7 to 0.9. Each submetric was normalized to the maximum of the absolute values

for all the network simulations with different parameters tested (e.g. as in Figures 2F-H).

The feature-specific S/A index (SAI) was then obtained as:

SAI = −x/(|x|)− y/(|y|) + z/(|z|) (6)

The more the suppression at intermediate regimes and the more the amplification at highly

similar regimes, the higher the SAI would be.

To quantify the combined influence of perturbing two influencers in double-neuron per-

turbations (Figure 4), we developed a synergy index. For the first influencer (neuron i),

the effect of additional perturbation of a second influencer (neuron j) on the influencee

(neuron k) was quantified as follows:

∆ψ(i, j, k) = ψ({i, j} → k)− ψ(i→ k), (7)

where ψ({i, j} → k) is the influence of double-neuron perturbations of {i, j} on k and

ψ(i → k) is the single-neuron influence of i on k. The synergy of influence between the

triplet {i, j, k} was then calculated as:

syn(i, j, k) = ∆ψ(i, j, k)/ψ(i→ k). (8)

We excluded pairs with very small single-neuron perturbations (ψ(i → k) < 0.001) to

avoid their overrepresentation in the metric. The average synergy between two influencers

(i, j) (as in Figures 4E,F) was calculated by computing the mean synergy across all target

influencees:

syn(i, j) =
1

N− 2

N−2∑
k=1

syn(i, j, k) (9)

Note that the synergy will be positive (synergistic) if the change in the influence as a result

of the interaction of the second influencer is in the same direction as the original, single-

neuron perturbation, and negative (antagonistic) otherwise. Thus, both suppression and

amplification of single-neuron influences can undergo synergy (or antagonism) as a result

of double-neuron perturbations, depending on whether the interaction exacerbates (or

diminishes) the initial influence in the same (or reverse) direction.

4
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1.5 Decoding of natural images

To evaluate the population responses of neuronal networks to external stimuli, we pre-

sented natural images to our model networks. Natural images were chosen from the

McGill calibrated colour image database (http://tabby.vision.mcgill.ca). The feedforward

input (Iffw) to each neuron in response to each natural image was calculated as:

Iffw = exp(γ CC(RF, IM)) (10)

where CC(RF, IM) is the correlation coefficient of the image (IM) with the neuronal RF,

and γ = 3 determines the sharpness of the exponential dependence. CC(RF, IM) was

calculated for the central part of the image with the same size (in pixels) as RFs (that is,

the central 200× 200 pixels of the image for RFs instantiated on a visual field with 50× 50

degrees extent and ppd = 4).

The activity of the network was calculated after accounting for recurrent operations on

this input, by applying the matrix operator A = (I −W )−1 for different weight matrices:

r = [A.Iffw]+ (11)

The gain of neuronal responses in response to each image is then obtained by dividing the

activity of each neuron over its respective feedforward input. Discriminability of population

responses to two images i and j are quantified by calculating the angle between the

vectors of population responses (ri and rj):

θij =
180

π
arccos

(< ri.rj >

|ri|.|rj|
)

(12)

where< . > denotes the dot product and |.| is the norm of the vector. θij = 90 corresponds

to the maximum discriminability (orthogonal representations) and 0 or 180 degrees show

the maximum collinear relationships (in the same or opposite directions, respectively). We

use a normalized version of this angle:

dij = |θij mod 90|/90 (13)

to quantify discriminability (as in Figure 6H), which ranges from 0 (minimum discriminabil-

ity) to 1 (maximum discriminability).

To assess the decoding capacity of neuronal networks to discriminate natural images,

5
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we trained linear decoders on the population activity of the excitatory neurons. Each

decoder was trained to distinguish a target image from other images. The ensemble of

natural images was broken into two random parts (test and train sets, each containing 300

images) and the decoder was trained on the train set to detect the target image from the

rest of the images. The training was done by presenting 300 pairs of images, containing

the target image and one of the 300 test images. The decoder then finds (via linear

regression) the best weighting of population activity of the network which separates the

response to the target image from the non-target ones. To control for different levels of

population activity under different conditions (e.g. networks with strong and weak recurrent

interaction), we normalized the activity of the networks, such that the average activity of

the network in response to each image was 1.

The decoder was tested on the test set, by presenting pairs of images containing the

target image and each of the 300 test images. A threshold of 90% was set for the correct

detection. The percent correct was then calculated as the fraction of the pairs for which

the target image passed the threshold and the test image did not. The decoding task was

performed for all 600 images as decoding targets. For each decoding task, the procedure

was repeated for different levels of noise added to the population activity (both during

training and for the test). It was added to the normalized activity of all excitatory neurons

in response to each image and was drawn from a uniform distribution between 0 and ξ,

with ξ ranging from 0.02 to 0.1 (Figure 6K). The example shown in Figure 6J had an

intermediate noise level of 0.04.

2 Theoretical analysis of neuronal influence in single-

neuron perturbations

We analytically evaluate the effect of single-neuron perturbations in networks of rate-

based neurons as described above (Eq. (5)). We drop the firing threshold nonlinearity

and analyze the linear behaviour of the network as described with the following dynamics:

τ
dr

dt
= −r +Wr + s (14)

6
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The stationary state solution of the firing rates under such dynamics is obtained under

dr/dt = 0 and can be written as:

r = Wr + s→ r = (I −W )−1s. (15)

We define A = (I − W )−1 as the operator which acts on external input to obtain the

steady-state firing rates in any equilibrium, r0 = As0. Single-cell perturbations around this

steady-state leads to a new firing rate solution, rp = Asp. Here, sp = s0 + δs, and δs is a

vector of zeros at all entries except for the neuron which is perturbed. If the i-th neuron in

the network is perturbed, we have:

δsk =

0, k 6= i

δp, k = i
(16)

where δp is the size of perturbation. To obtain the influence of perturbation of neuron i on

the postsynaptic neuron j, ψ(i → j) we need to calculate the change in the firing rate of

the j-th entry of rp. Writing

δr = Aδs (17)

the rate change of the j-th neuron is obtained as:

δrj =
N∑
k=1

Ajkδsk = Ajiδsi (18)

where Aji is the entry on the j-th row and i-th column of matrix A. Writing the influence as

the rate change of the influencee j divided by the perturbation strength of the influencer i:

ψ(i→ j) =
δrj
δsi

= Aji (19)

reveals that Aji is, in fact, denoting the influence.

To obtain the neuronal influence in single-neuron perturbations, we used the above

framework to evaluate ψ(i → j) = Aji, by mathematically calculating the influence in

networks with different profiles of connectivity. We explain this approach in more detail

below.

7
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2.1 Calculating influence for a general weight matrix

To obtain the influence, we calculate Aji, by expanding the matrix A with regard to W as:

A = (I −W )−1 = I +W +W 2 + . . . (20)

Aji can therefore be expressed as:

Aji = Wji︸︷︷︸
ψ1(i→j)

+ (W 2)ji︸ ︷︷ ︸
ψ2(i→j)

+ (W 3)ji︸ ︷︷ ︸
ψ3(i→j)

+ . . . (21)

Note that the first term in Eq. (20) (the identity matrix) does not contribute to the influence

in Eq. (21), since i 6= j (the influencer and the influencee are different neurons).

The series describes different pathways of interaction from i to j in the following fash-

ion:

(I) Mono-synaptic influence denotes the direct interaction from i to j, which is inferred

from the corresponding entry on the original weight matrix:

ψ1(i→ j) = Wji (22)

(II) Di-synaptic influence entails second-order interactions, comprising all the pathways

in which neuron i can influence neuron j via secondary neurons. It can be mathematically

expressed as:

ψ2(i→ j) = (W 2)ji =
N∑
k=1

WjkWki (23)

where index k denotes all the neurons in the network that mediate the influence from

neuron i to neuron j.

(III) Tri-synaptic influence captures all interactions with two layers of intermediate neu-

rons, denoted by indices k and l in the following formulation:

ψ3(i→ j) = (W 3)ji =
N∑
l=1

Wjl(
N∑
k=1

WlkWki) (24)

Higher order interactions (including tetra-synaptic ψ4(i → j), penta-synaptic ψ5(i →
j), etc) can be calculated via similar equations.

8
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2.1.1 Networks with excitation and inhibition

In the next step, we calculated the influence for networks containing two subtypes of exci-

tatory (E) and inhibitory (I) neurons, with the number of neurons in the network denoted

by NE and NI , respectively. The connection weights from E to E, E to I, I to E and I to I

neurons are described, respectively, by JEE, JEI , JIE, and JII . W is ordered such that

the first NE elements are excitatory neurons and the next NI elements (NE+1 to NE+NI

rows/columns) represent inhibitory neurons.

The influence of the i-th excitatory neuron on the j-th excitatory neuron in the network

can be calculated as:

ψ(i→ j) = ψ1(i→ j) + ψ2(i→ j) + ψ3(i→ j) + . . . (25)

where different orders of influence are calculated as the following:

(I) Mono-synaptic influence is given by

ψ1(i→ j) = Wji = JEE (26)

which is the direct connection between the two excitatory neurons.

(II) Di-synaptic influence is calculated as

ψ2(i→ j) =

NE∑
k=1

WjkWki +

NE+NI∑
k′=NE+1

Wjk′Wk′i

=NEJ
2
EE +NIJEIJIE

(27)

which contains pathways with either excitatory or inhibitory neurons in between the influ-

encer and the influencee.

(III) Tri-synaptic influence can, in turn, be written as

ψ3(i→ j) =

NE∑
l=1

Wjl(

NE∑
k=1

WlkWki +

NE+NI∑
k′=NE+1

Wlk′Wk′i)

+

NE+NI∑
l′=NE+1

Wjl′(

NE∑
k=1

Wl′kWki +

NE+NI∑
k′=NE+1

Wl′k′Wk′i)

(28)

This includes four possibility of mediation between two excitatory neurons, E → X →
Y → E (namely E → E → E → E, E → E → I → E, E → I → E → E,

9
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E → I → I → E, respectively) and can be calculated as:

ψ3(i→ j) =JEEJEEJEENENE (E → E → E → E)

+JEEJEIJIENENI (E → E → I → E)

+JEIJIEJEENENI (E → I → E → E)

+JEIJIIJIENINI (E → I → I → E)

=N2
EJ

3
EE + 2NENIJEIJIEJEE +N2

I JEIJIEJII

(29)

Note that the latter motif entails a net positive influence, as it involves inhibition of inhibi-

tion.

(IV) Tetra-synaptic influence can, similarly, be mediated by 3-order motifs (E → X →
Y → Z → E, where {X, Y, Z} can be either E or I, leading to a total of 8 possibilities),

and therefore can be written as

ψ4(i→ j) =JEEJEEJEEJEE ×NENENE (E → E → E → E → E)

+JEEJEEJEIJIE ×NENENI (E → E → E → I → E)

+JEEJEIJIEJEE ×NENINE (E → E → I → E → E)

+JEEJEIJIIJIE ×NENINI (E → E → I → I → E)

+JEIJIEJEEJEE ×NINENE (E → I → E → E → E)

+JEIJIEJEIJIE ×NINENI (E → I → E → I → E)

+JEIJIIJIEJEE ×NININE (E → I → I → E → E)

+JEIJIIJIIJIE ×NININI (E → I → I → I → E)

(30)

Higher order influences can be calculated in a similar fashion by counting higher-order

motifs.

2.1.2 The case of inhibition-dominance

It is useful to calculate the influence for a simplified description of the abovementioned

weight matrices, where JEE = J , JEI = αJEE, and JIE = JII = −gJEE. We further

10
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assume NE = NI = N and write:

ψ1(i→ j) = J

ψ2(i→ j) = NJ2 −NαJgJ = NJ2(1− αg)

ψ3(i→ j) = N2J3 − 2N2αJgJJ +N2αJgJgJ = N2J3(1− 2αg + αg2)

ψ4(i→ j) = N3J4(1− αg − αg + αg2 − αg + α2g2 + αg2 − αg3)

= N3J4(1− 3αg + 2αg2 + α2g2 − αg3)

(31)

For the specific condition that α = 1, we have:

ψ1(i→ j) = J

ψ2(i→ j) = NJ2(1− g)

ψ3(i→ j) = N2J3(1− g)2

ψ4(i→ j) = N3J4(1− g)3

(32)

which in fact provides a closed-form description of the influence at all orders of influence:

ψk(i→ j) = Nk−1Jk(1− g)k−1 (33)

The total influence can therefore be written as:

ψ(i→ j) =
∑
k

ψk(i→ j) = J(1 +NJ(1− g) + (NJ(1− g))2 + . . . ) (34)

which can be expressed as:

ψ(i→ j) =
J

1−NJ(1− g)
(35)

Note that inhibition dominance, g > 1, does not imply a negative influence here.

Rewriting κ = 1 − NJ(1 − g), and noticing that κ > 1 for g > 1, we observe divisive

inhibition as a result of inhibition dominance:

ψ(i→ j) =
J

κ
. (36)

The stronger the inhibition-dominance, the larger the divisive term in the denominator, and

hence the higher the divisive inhibition.
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2.2 Calculating influence for networks with specific connectivity

The calculations presented in the previous section can be extended to networks with spe-

cific connectivity, where the weight of connections between neurons are defined as a func-

tion of their functional similarity. First we consider a scenario where the functional property

of neurons is defined by a one-dimensional parameter, e.g. their preferred orientations, θ.

We consider weight matrices described by:

Wij = J(1 +m cos(2(θi − θj))) (37)

where the connection weight between neuron i and j is modulated by the similarity of their

respective preferred orientations. m determines the degree of specificity of connections,

withm = 0 retrieving the unspecific weight matrices described in the previous section. We

now calculate the influence (Aji) for a network of excitatory and inhibitory neurons with

specific connectivity, described as:

WEE
ij = JEE(1 +mEE cos(2(θEi − θEj )))

WEI
ij = JEI(1 +mEI cos(2(θEi − θIj )))

W IE
ij = JIE(1 +mIE cos(2(θIi − θEj )))

W II
ij = JII(1 +mII cos(2(θIi − θIj )))

(38)

Here, JXY and mXY denote, respectively, the average weight and the degree of specificity

of synapses, and θX represents the preferred orientation. (X, Y ) ∈ (E, I).

We first calculate the influence for a scenario where all connections have the same

degree of specificity, i.e. mEE = mEI = mIE = mII = m. We also assume that JEE = J ,

JEI = αJEE, and JIE = JII = −gJEE, as described above. Under these conditions, the

influence of perturbing excitatory neuron i on the excitatory neuron j can be calculated as

the following for different orders of interaction:

(I) Monosynaptic:

ψ1(i→ j) = J(1 +m cos(2∆θ)) (39)

where ∆θ = θi − θj .
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(II) Di-synaptic:

ψ2(i→ j) =

NE∑
k=1

WjkWki +

NE+NI∑
k′=NE+1

Wjk′Wk′i

=

NE∑
k=1

J(1 +m cos(2(θj − θk)))× J(1 +m cos(2(θk − θi)))

+

NE+NI∑
k′=NE+

(−gJ)(1 +m cos(2(θj − θk′)))× αJ(1 +m cos(2(θk′ − θi)))

(40)

Assuming large N , we can solve the following continuous version of the equation:

ψ2(i→ j) =

∫ π

θ=0

J2(1 +m cos(2(θ − θj)))(1 +m cos(2(θ − θi)))dθ

−
∫ π

θ=0

αgJ2(1 +m cos(2(θ − θj)))(1 +m cos(2(θ − θi)))dθ
(41)

which, given ∆θ = θi − θj , leads to

ψ2(i→ j) = NJ2(1− αg)(1 +
m

2
cos(2∆θ)) (42)

In calculating the above identity, we used the following equation:∫ π

θ=0

(1 +m cos(2(θ − θj)))(1 +m cos(2(θ − θi)))dθ = π(1 +
m

2
cos(2(θi − θj))) (43)

and its discrete equivalent:

N∑
k=1

(1 +m cos(2(θk − θj)))(1 +m cos(2(θk − θi))) = N(1 +
m

2
cos(2(θi − θj))) (44)

It describes how indirect weights and their specificity are effectively determined when a

layer of intermediate neurons is mediating the influence, and is useful to highlight since it

appears recurrently in calculating higher-order motifs in what follows.
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(III) Tri-synaptic:

ψ3(i→ j) =

NE∑
l=1

Wjl(

NE∑
k=1

WlkWki +

NE+NI∑
k′=NE+1

Wlk′Wk′i)

+

NE+NI∑
l′=NE+1

Wjl′(

NE∑
k=1

Wl′kWki +

NE+NI∑
k′=NE+1

Wl′k′Wk′i)

(45)

which can be written as:

ψ3(i→ j) =

NE∑
l=1

J(1 +m cos(2(θj − θl)))×
NE∑
k=1

[J(1 +m cos(2(θj − θk)))J(1 +m cos(2(θk − θi)))]+

NE∑
l=1

(−gJ)(1 +m cos(2(θj − θl)))×
NE+NI∑
k′=NE+1

[αJ(1 +m cos(2(θj − θk′)))J(1 +m cos(2(θk′ − θi)))]+

NE+NI∑
l′=NE+1

J(1 +m cos(2(θj − θl′)))×
NE∑
k=1

[(−gJ)(1 +m cos(2(θj − θk)))αJ(1 +m cos(2(θk − θi)))]+

NE+NI∑
l′=NE+1

(−gJ)(1 +m cos(2(θj − θl′)))×
NE+NI∑
k′=NE+1

[(−gJ)(1 +m cos(2(θj − θk′)))αJ(1 +m cos(2(θk′ − θi)))]

(46)

and results in:

ψ3(i→ j) = N2J3(1− 2αg + αg2)(1 +
m

4
cos(2∆θ)) (47)

(IV) Tetra-synaptic: Accounting for all fourth order motifs in a similar fashion as ex-

plained above, we obtain the following for the fourth order influence:

ψ4(i→ j) = N3J4(1− 3αg + 2αg2 + α2g2 − αg3)(1 +
m

8
cos(2∆θ)) (48)

The total influence between excitatory neurons i and j in specific EI networks can,
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therefore, be expressed as:

ψ(i→ j) =(1 +m cos(2∆θ))J+

(1 +
m

2
cos(2∆θ))NJ2(1− αg)+

(1 +
m

4
cos(2∆θ))N2J3(1− 2αg + αg2)+

(1 +
m

8
cos(2∆θ))N3J4(1− 3αg + 2αg2 + α2g2 − αg3)+

. . .

(49)

Note that the influence contains nonspecific and specific components, and that the

nonspecific component is similar to what we obtained before for influence in nonspecific

networks (Eq. (31).

For the simplified case of α = 1, we can follow similar steps as described above for

nonspecific networks to characterize the influence for all higher orders with a closed form

expression:

ψ(i→ j) =(1 +m cos(2∆θ))J+

(1 +
m

2
cos(2∆θ))NJ2(1− g)+

(1 +
m

4
cos(2∆θ))N2J3(1− 2g + g2)+

(1 +
m

8
cos(2∆θ))N3J4(1− 3g + 2g2 + α2g2 − g3)+

. . .

=
N∑
k=1

(1 +
m

2k−1
cos(2∆θ))Nk−1Jk(1− g)k−1)

(50)

The nonspecific part retrieves the same formulation as before (c.f. Eq. (35)):

ψ(i→ j) = J

∞∑
k=0

NkJk(1− g)k

=
J

1−NJ(1− g)

(51)
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while the specific component of the influence can be expressed as:

ψ(i→ j) = Jm cos(2∆θ)
∞∑
k=0

NkJk(1− g)k2−k

=
Jm cos(2∆θ)

1−NJ(1− g)/2

(52)

Note that inhibition dominance (g > 1) does not yield a net negative influence here too.

That is, feature-specific suppression does not result from general inhibition dominance in

specific EI networks, when α = 1. Instead, it leads to (feature-specific) divisive inhibition

(c.f. Eq. (35)), with higher inhibition-dominance values (g) implying higher divisive terms

for the specific component.

2.2.1 Networks with broad inhibitory connectivity

So far, we considered the scenario where all connections had the same degrees of specific

connectivity, by assumingmEE = mEI = mIE = mII = m. We now relax that assumption

by allowing excitatory and inhibitory weights to have different degrees of specificity. We

assume mEE = mEI = me and mIE = mII = mi, and solve for the condition where

inhibition has a broader (i.e. less specific) connectivity, me > mi.

Accounting for broader inhibition does not change the nonspecific component of the

influence, but the specific component can now be written as:

ψ(i→ j) = Jme cos(2∆θ)

+NJ2(m2
e − gmemi) cos(2∆θ)/2

+N2J3(m3
e − 2m2

egmi +meg
2m2

i ) cos(2∆θ)/4

+N3J4(m4
e − 3gm3

emi + 3g2m2
em

2
i − g3mem

3
i ) cos(2∆θ)/8

+ . . .

(53)

Defining J ′ = meJ and g′ = gmi/me, we can write:

ψ(i→ j) = J ′ cos(2∆θ)

+NJ ′
2
(1− g′) cos(2∆θ)/2

+N2J ′
3
(1− 2g′ + g′

2
) cos(2∆θ)/4

+N3J ′
4
(1− 3g′ + 3g′

2 − g′3) cos(2∆θ)/8

+ . . .

(54)
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and therefore the specific component of the influence can be calculated as

ψ(i→ j) = J ′ cos(2∆θ)
∞∑
k=0

NkJ ′
k
(1− g′)k2−k (55)

which leads to:

ψ(i→ j) =
J ′ cos(2∆θ)

1−NJ ′(1− g′)/2

=
Jme cos(2∆θ)

1−NJ(me − gmi)/2

(56)

To obtain feature-specific suppression in single-neuron influences (namely, more sup-

pression for pairs with smaller ∆θ), we need to have 1 − NJ(me − gmi)/2 < 0. Broader

inhibition does not confer such a negative influence in inhibition-dominance networks,

if g mi > me. The only situation under which such a negative influence appears is if

me > gmi and NJ(me − gmi)/2 > 1 at the same time, but note that the latter condition

implies instability of the weight matrix along the specific eigenmode.

2.3 Calculating influence for specific E-I networks with strong E-to-I

connectivity

In this section, we relax the previously made assumption of JEE = JEI , and allow the

excitatory neurons to have different connection weights to their excitatory and inhibitory

postsynaptic targets, formulated by: JEE = J , JEI = αJEE, JIE = JII = −gJEE. We

assume similar connection specificity for all synapses: mEE = mEI = mIE = mII = m.

Following similar procedures as described before for networks with specific connectivity

(and summarized in Eq. (49)), different orders of influence in specific networks with strong

E → I connectivity can be written as:

ψ1(i→ j) = J(1 +m cos(2∆θ))

ψ2(i→ j) = NJ2(1− αg)(1 +
m

2
cos(2∆θ))

ψ3(i→ j) = N2J3(1− 2αg + αg2)(1 +
m

4
cos(2∆θ))

ψ4(i→ j) = N3J4(1− 3αg + 2αg2 + α2g2 − αg3)(1 +
m

8
cos(2∆θ))

...

(57)

We define ψE = ψE→X→E and ψI = ψI→X→E as two second-order, di-synaptic mo-
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tifs of influence, one starting from an excitatory and the other from an inhibitory neuron,

respectively. The excitatory second-order motif ψE is ψ2(i → j), by definition, and can

hence be written as before:

ψE = NJ2(1− αg)(1 +
m

2
cos(2∆θ)) (58)

The inhibitory second-order motif can, in turn, be calculated as:

ψI = −NJ2g(1− g)(1 +
m

2
cos(2∆θ)) (59)

Note that, although starting from an inhibitory neuron, this motif would be positive for

g > 1 (the condition which we referred to as inhibition-dominance). That is, inhibition-

dominance leads to a net excitatory effect of the second-order motif of inhibitory neurons;

this is because the net positive effect of inhibition of inhibition (I → I → E) is larger than

the net negative effect of inhibition of excitation (I → E → E).

We define
ζE = (1− αg)

ζI = −g(1− g)
(60)

as the main factors appearing in the second-order excitatory and inhibitory motifs. This

allows us to write the specific component of the higher-order motifs (in Eq. (57)) in terms

of the basic factors of the respective di-synaptic motifs:

ψ2 = ψE = ζE ×NJ2m

2
cos(2∆θ)

ψ3 = (ζE + αζI)×N2J3m

4
cos(2∆θ)

ψ4 = (ζ2
E −

α

g
ζ2
I )×N3J4m

8
cos(2∆θ)

...

(61)

Feature-specific suppression implicates a higher suppressive influence between neu-

ronal pairs with smaller ∆θ. We can now evaluate this for specific components of higher-

order motifs of influence, in view of the interaction of the basic di-synaptic motifs.

[1] For the 2nd-order motif, this implies that the basic excitatory second-order motif is

negative, hence:

ζE < 0→ αg > 1 (62)

Both E → I connections (parameterized by α) and I → {E, I} weights (parameterized
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by g, or inhibition-dominance) can be strong to satisfy this condition, which highlights the

significance of the specific excitatory-inhibitory interaction.

[2] For networks with weak recurrent coupling (NJ � 1), higher-orders of influence

would be much smaller than the lower orders and hence can be ignored in the net influ-

ence. However, higher-order motifs cannot be ignored in networks with strong coupling

(NJ � 1). In that case, the condition inferred from the 2nd-order motif, ζE < 0, does not

guarantee a negative specific 3rd-order motif, since we need: (ζE + αζI) < 0. However,

as we argued above, inhibition-dominance (g > 1) implies a positive ζI . ζI is only negative

if we have:

ζI < 0→ g < 1 (63)

This means that α and g cannot be arbitrarily increased as we assumed for the 2nd-order

motif in [1].

An alternative way to satisfy this condition might be obtained by broadening of inhi-

bition. If we allowed for different selectivity of excitatory and inhibitory connectivity (as

denoted by me and mi in Section. 2.2.1), the condition in Eq. (63) would change to

g mi/me < 1. Now, this can be satisfied by changing g and/or mi/me, with the small

values of the latter (mi/me < 1) implying broaderer specificity of inhibitory connections

compared to excitation. Overall, it means a weak specific inhibitory connectivity, which

can be satisfied by weaker or broader inhibition. As strong inhibition-dominance might be

necessary to balance nonspecific excitation, broader inhibition might be a better strategy

to satisfy the negative influence of this specific motif.

[3] So far, negative influence of motifs could be satisfied, if the the two basic 2nd-order

excitatory and inhibitory specific motifs were negative. For the 4th-order specific motif to

be negative, we need:

ζ2
E −

α

g
ζ2
I < 0 (64)

We therefore have:

α/g > ζ2
E/ζ

2
I (65)

One way to achieve this is to have balanced di-synaptic motifs: ζE ≈ ζI . Under this

condition, we have ζ2
E/ζ

2
I ≈ 1, and we therefore need α/g > 1, or α > g. But this

is already satisfied, since the two conditions αg > 1 (from Eq. (62)) and g < 1 (from

Eq. (63)), imply α > 1 > g and hence α > g.

Taken together, several conclusions can be inferred from our little exercise here: first,

it is not possible to obtain negative influence for specific motifs by simply increasing the

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.954222doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.954222
http://creativecommons.org/licenses/by/4.0/


inhibition-dominance g; too large values of g can lead to strong disinhibitory effects, which

might counteract the direct inhibitory effects via higher-order interactions. Second, the

strength ofE → I connections are as important, if not more, to achieve negative influence.

Finally, balancing excitatory and inhibitory motifs might be needed, to avoid the dominance

of one over the other.

However, although illustrative, these results are not conclusive, for the following rea-

sons. First, we do not have a closed-form expression for higher-order motifs, which

hinders a systematic evaluation of all such terms and the conditions for their negativity.

Moreover, the actual condition for the net negative influence is not the negativity of each

higher-order term, but the negativity of the net sum. We therefore need mathematical

formulations which provide us with these two requirements. We attempt to provide such

analyses in the following sections.

2.3.1 Networks with dominant E-to-I connections only

It is instructive to study a special case where α � 1 and g = 1, to evaluate the effect

of strong E-to-I connections in the absence of strong inhibition-dominance. Under this

condition, the basic di-synaptic motifs (Eq. (60)) can be written as

ζE = 1− α

ζI = 0
(66)

Only the excitatory component of basic di-synaptic motifs counts for calculating higher-

order motifs, and we can therefore express different motifs as the following:

ψ1 = J(1 +m cos(2∆θ))

ψ2 = J2N(1− α)(1 +
m

2
cos(2∆θ))

ψ3 = J3N2(1− α)(1 +
m

4
cos(2∆θ))

ψ4 = J4N3(1− α)2(1 +
m

8
cos(2∆θ))

ψ5 = J5N4(1− α)2(1 +
m

16
cos(2∆θ))

ψ6 = J6N5(1− α)3(1 +
m

32
cos(2∆θ))

...

(67)

Writing in terms of the sum of subsequent motifs (ψ1 + ψ2, ψ3 + ψ4, ψ5 + ψ6, . . . ), we
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reach to the following closed-form expression of the total influence, for nonspecific and

specific components, respectively:

ψ = J [(1− α)J2N2]k(1 + (1− α)JN)

ψ = J [
1− α

2
J2N2]k(1 +

1− α
2

JN)m cos(2∆θ))
(68)

and hence:

ψ =
J [1 + (1− α)JN ]

1− J2N2(1− α)

ψ =
J [1 + 1−α

2
JN ]m cos(2∆θ)

1− J2N2 1−α
2

(69)

If α > 1, the denominator is positive, and the condition for a net negative influence

becomes:
1 + (1− α)JN < 0

α > 1 +
1

JN

(70)

for the nonspecific, and

α > 1 +
2

JN
(71)

for the specific component of the influence. Both conditions can be met by strong E-to-I

(α) and/or strong connectivity (JN ), but α should be stronger for a net negative specific

influence.

2.3.2 Solution for strong E-to-I and inhibitory connections

Here, we consider a more general conditions, where E → I and I → {E, I} connections

are both arbitrary and strong (i.e. JEE = J , JEI = αJEE, JIE = JII = −gJEE, and

g > 0, α > 0). We start by writing the n-th excitatory and inhibitory motifs of influence

(i.e., the motifs starting from an n-th order E or I neurons in the chain of influence), in

terms of the subsequent motifs:

ψnE = NJψn−1
E + αNJψn−1

I

ψnI = −NgJψn−1
E −NgJψn−1

I

(72)

Replacing inhibitory motifs from the second equation iteratively, the n-th excitatory
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motif can be written in terms of lower order excitatory motifs as:

ψnE = NJψn−1
E + α(−g)(NJ)2ψn−2

E + α(−g)2(NJ)3ψn−2
E + . . . (73)

which can be described by the following recursive formula:

ψnE = NJψn−1
E + α

n−2∑
k=1

(−g)n−k−1(NJ)n−kψkE + α(−gNJ)n−1J

ψ1
E = J

(74)

If we write Eq. (72) in the matrix form:(
ψnE
ψnI

)
= NJ

(
1 α

−g −g

)
︸ ︷︷ ︸

Φ

(
ψn−1
E

ψn−1
I

)
(75)

the k-th motif can be obtained by applying the matrix Φ, recursively, on lower orders:(
ψkE
ψkI

)
= Φk−1

(
ψ1
E

ψ1
I

)
= Φk−1

11 J − Φk−1
12 gJ (76)

Here, Φk
11 and Φk

12 are the entries on the first row and the first and the second columns,

respectively, of the k-th power of Φ, and we have used the identities ψ1
E = J and ψ1

I =

−gJ . The influence of an excitatory neuron i on a target neuron j can now be calculated

by counting the influence via all such higher order motifs:

ψE(i→ j) =
∞∑
k=0

(Φk
11J − Φk

12gJ) (77)

Defining AΦ =
∑∞

k=0 Φk = (I − Φ)−1, we can write:

ψE(i→ j) = AΦ
11 J − AΦ

12 gJ (78)

AΦ can be calculated as:

AΦ =
1

(1−NJ)(1 + gJN) + αNJgNJ

(
1 + gNJ αNJ

−gNJ 1−NJ

)
(79)
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and hence the influence can be written as:

ψE(i→ j) =
J + gNJ2(1− α)

1 + (g − 1)NJ + g(α− 1)(NJ)2
(80)

Strong g and α would make the denominator positive, but for a negative influence the

numerator should be negative, which, assuming strong connectivity and hence gNJ � 1,

necessitates the condition of α > 1. Hence, strong E → I connections is necessary to

obtain a negative influence. Similar arguments can be made for the tuned component of

influence, which argues for the necessity of strong E → I specific connectivity in order to

obtain feature-specific suppression in single-neuron perturbations.

2.4 Solution for general connectivity conditions

Here, we consider the most general condition, where all connections (E → {E, I} and

I → {E, I}) can have arbitrary weights. We parameterize this condition by defining:

JEE = J , JEI = αJEE, JIE = −βgJEE, and JII = −gJEE. Dominance of weights with

regards to the excitatory weight, JEE, is thus determined by three independent factors:

α denoting the dominance of E → I; g denoting the dominance of inhibition; and β

parameterizing the extra inhibition of I → E weights. All factors can indicate dominance

(> 1) or lack thereof (< 1).

The n-th excitatory and inhibitory motif of influence can be expressed now in terms of

previous motifs (similar to Eq. (72)), in a recursive fashion:

ψnE = NJψn−1
E + αNJψn−1

I

ψnI = −βNgJψn−1
E −NgJψn−1

I

(81)

Expressing in matrix form as before (Eq. (75)), we have:(
ψnE
ψnI

)
= NJ

(
1 α

−βg −g

)
︸ ︷︷ ︸

Φ

(
ψn−1
E

ψn−1
I

)
. (82)

The k-th order motif can now be obtained by recursive application of operator Φ on all

lower-order (< k) motifs, resulting in:(
ψkE
ψkI

)
= Φk−1

(
ψ1
E

ψ1
I

)
= Φk−1

11 J − Φk−1
12 βgJ (83)
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The influence of an excitatory neuron i on a target neuron j can again be calculated

by counting the influence via all higher order motifs:

ψE(i→ j) =
∞∑
k=0

(Φk
11J − Φk

12βgJ) (84)

which can, in turn, be written as:

ψE(i→ j) = AΦ
11 J − AΦ

12 βgJ (85)

where

AΦ =
∞∑
k=0

Φk = (I − Φ)−1. (86)

AΦ can now be calculated as:

AΦ =
1

(1−NJ)(1 + gJN) + αβNJgNJ

(
1 + gNJ αNJ

−βgNJ 1−NJ

)
(87)

The influence can therefore be expressed as:

ψE(i→ j) =
J + gNJ2(1− αβ)

1 + (g − 1)NJ + g(αβ − 1)(NJ)2
(88)

Following the same argument made for Eq. (80), we reach to the conclusion that,

given a strong level of inhibition-dominance (g � 1), the condition for negative influence is

αβ > 1. This argues for a strong interaction of dominant E → I and I → E weights as the

necessary condition for suppressive influence of single-neuron perturbations. Similar for-

mulation and argument for the case of specific connectivity argues for strong and specific

connectivity of E → I and I → E as a prerequisite for suppressive influence along the

specific dimension, and hence feature-specific suppression. This, in turn, explains why

global inhibition dominance, or broad inhibition, alone is not enough for feature-specific

suppression in EI networks.
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