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Abstract  
 
In the current understanding of adult bone marrow hematopoiesis, megakaryocytes (MKs) 
originate from cells immuno-phenotypically indistinguishable from  hematopoietic stem cells 
(HSCs), bypassing intermediate progenitors. Here, we use single cell RNA sequencing to 
characterize HSCs and MKs from human bone marrow, to investigate MK lineage 
commitment and maturation. We identify two MK primed HSC clusters exhibiting unique 
differentiation kinetics, at least one of which is used in steady state and stress 
thrombopoiesis. By analyzing transcriptional signatures we show that human bone marrow 
MKs  originate from MK primed HSC subpopulations, supporting the notion that these 
display exclusive priming for MK differentiation. We show that transcriptional programs 
change with increasing MK ploidy, where genes upregulated in high ploidy states may have 
functional relevance in platelet production. Finally, we highlight the presence of a specific 
transcriptional signature in MKs from individuals with myocardial infarction, supporting the 
aberration of MK differentiation in this thrombotic state.  
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Introduction 
 
The classic hierarchical differentiation model of hematopoiesis, in which hematopoietic stem 
cells (HSC) go through a series of  progenitors with increasing lineage restriction1 has been 
challenged with improved cell sorting, functional assays and single cell transcriptome 
analysis2-4. Recent data, based on the transcriptional profiling at single cell level, points to 
the existence of a hematopoietic stem cell compartment, formed by HSCs and multipotent 
progenitors, in which gene expression programs driving self-renewal and lineage 
commitment coexist5. Unipotent progenitors differentiate from the stem cell compartment 
and further lineage commitment is marked by key transcripts2,3. One of the first evidence 
against the classical model of hematopoiesis was the identification of lymphoid primed 
multipotent progenitor (LMPP) in mouse5,6, and multi lymphoid progenitor (MLP) in human7, 
both showing an early loss of megakaryocyte-erythroid potential. At the same time, 
megakaryocyte (MK)-primed HSCs were identified in mouse, and shown to transcribe 
MK/platelet genes, such as VWF8 and CD419. More recently, MK unipotent progenitors have 
also been identified in the phenotypic HSC compartment, where they remain quiescent until 
activated by acute platelet demand10. Furthermore, lineage tracking experiments have 
established a direct HSC origin, independent from other lineages, for at least half of the 
MKs11. These findings complement early evidence of a direct functional relationship between 
MK and HSC; with MKs inhibiting HSC proliferation via thrombopoietin (TPO)12,13 and CXCL4 
(PF4)14,15, as well as, their transcriptional similarity16, dependence on shared transcription 
factors17 and proximity within the stem cell niche18.  
 
The primary physiological function of MKs is thrombopoiesis where each cell releases up to 
6,000 platelets into the bloodstream. MKs comprise <0.01% of the total number of 
nucleated cells in the bone marrow and are the largest cell residing in the bone marrow with 
diameters up to 150µm. They undergo multiple rounds of DNA replication without cell 
division, known as endomitosis, resulting in cells with an enlarged cytoplasm and average 
ploidy, in man, of 16N19. The complex MK-platelet hemostatic system is unique to mammals20 
and the  function of MK polyploidization and its evolutionary advantage remains unclear. A 
number of technical challenges have precluded the study of human bone marrow residing 
MKs including recruitment of healthy bone marrow donors, the rarity of the cell population, 
and their size and fragility. These have so far prevented transcriptome analysis of primary 
human bone marrow MKs. Much of the current knowledge on MKs is based on gene 
expression array data of in vitro differentiated MKs cultured from CD34+ cells obtained from 
fetal liver, cord blood and adult blood, despite the fact that they are known to be 
phenotypically distinct from their in vivo counterparts21-25. In contrast to human bone marrow 
MKs, in vitro differentiated MKs cultured from CD34+ cells have average ploidy levels of 2N 
and limited capacity for platelet production26. It is therefore likely that there are drivers of 
differentiation, ploidy increase, and maturation of in vivo MKs that have yet to be identified. 
 
Platelets play a pivotal role in hemostasis by surveying the vasculature for endothelial 
lesions and tissue inflammation. When activated they adhere, spread and form  thrombus, 
in order to maintain vascular integrity. Aberration in platelet count and function can result in 
thrombotic or bleeding disorders27. During steady state thrombopoiesis, a constant 
circulating platelet mass is maintained by an inverse relationship between platelet count 
and volume. There is a complex homeostatic control system which is in part, but not solely, 
mediated by TPO where a change in hemostatic demand leads to modulation of TPO levels 
which regulate MK maturation28 and HSC quiescence14. This results in the acute release of 
platelets of greater volume to maintain overall circulating platelet mass27. Evidence suggest 
that stem-like megakaryocyte committed progenitors may be activated upon acute 
inflammatory stress10. Myocardial infarction has also been suggested as a model for stress 
thrombopoiesis based on the observation of elevated mean platelet volume and 
reticulated/immature platelet fraction in the acute setting suggesting an upregulation of the 
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HSC-MK axis29.  However, it is not clear whether “emergency” or “stress” thrombopoiesis is 
due to feedback at the level of HSC differentiation, or at the MK level. 
 
Here, we performed single cell RNA sequencing on human bone marrow HSCs and MKs 
and found that the HSC population could be divided into 5 clusters, based on their gene 
expression signatures, and that two of the clusters represent MK primed HSC. Human bone 
marrow MKs were also sequenced, single cell and low input, and were shown to branch 
from these MK primed HSC clusters using differentiation trajectory analysis. Primary MK 
transcriptome analysis demonstrated that, with increasing ploidy, there are two distinct 
transcriptional states. Increasing MK ploidy is associated with downregulation of platelet 
specific genetic programs and the upregulation of translation and protein localisation, as 
well as, with the expression of a number of transmembrane receptors implicated in platelet 
production. Finally, we analyzed the primary MK transcriptome in the clinical setting of 
myocardial infarction and found changes in gene expression landscape, supporting the 
notion of a role for stress thrombopoiesis in this pathological state.  
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Results 
 
Single cell RNA sequencing of ex vivo human bone marrow HSCs 
 
To characterize the HSC transcriptional landscape and to investigate early fate commitment 
events we sequenced 884 single HSCs (CD34+ CD38- CD45RA- CD90+ CD49f+, the 
compartment most enriched in long-term repopulating HSCs4) isolated from fresh bone 
marrow harvested from 5 individuals undergoing sternotomy for heart valve replacement 
(Fig. 1a and Supplementary Table S1). The HSCs were index-sorted and the intensities of 
the signal of cell surface proteins CD34, CD38, CD45RA, CD90 and CD49f were recorded 
(Supplementary Fig. 1). Raw reads were filtered to exclude cells that gave low quality 
libraries with a Support Vector Machine (SVM) machine learning method trained on a 
subset of single cell libraries made from cDNA positive for GAPDH, as measured by qRT-
PCR (Supplementary Table S2). This quality filter excluded cells where the majority of the 
reads mapped to mitochondrial genes or ERCC spike-in controls, both a sign of low cDNA 
input30 while favoring cells that had more reads mapping to exonic regions and to a high 
number of genes (Fig. 1b), leaving 119 cells that were used for analysis. The SVM selected 
for larger, more metabolically active cells, while excluding non-viable cells (Fig. 1c). ERCC 
spike-ins were used to model technical noise31 and to identify the 2000 most highly variable 
genes above the noise model32 (Fig. 1d).  This filtering strategy slightly favored ribosomal 
genes. However, analysis of another HSC single cell dataset built using MASS-seq and 
relying on unique molecular identifier (UMI) count33 gave a similar pattern of inter-cellular 
variance among ribosomal genes (Supplementary Fig. 2).  
 
Unsupervised clustering of single HSCs: two MK primed HSC subsets 
 
To identify subpopulations of cells within the HSC compartment, we used unsupervised 
hierarchical clustering of the cells’ Pearson correlation coefficients in the principal 
component analysis (PCA) space to generate clusters (Fig. 2a) where total silhouette score 
was used to select the number (from 1 to 20) of clusters tested (Supplementary Fig. 3). We 
further validated the robustness of our clustering strategy by inspecting the first four 
principal components (Fig. 2b), where each cluster separated well within the first three 
components and showed that the first two principal components were not explained by 
either donor or batch effect (Supplementary Fig. 4). The cells within the HSC population 
formed 5 distinct clusters. Marker genes for each cluster were then identified based on their 
predictive value to separate that cluster from the remaining cells (Wilcoxon Rank test 
p<0.0018). The expression of the top 20 genes characterizing each cluster shows distinct 
expression patterns independently of donor; of note cluster 3 had no significant marker 
genes (Fig. 2c and Supplementary Table S3 for the full list of genes). Many of the marker 
genes for cluster 1 and 4 were found to be highly expressed in previously reported MK 
datasets25. Cluster 1 cells were marked by the expression of genes known to be highly 
expressed in all MK precursors (HSC, multipotent progenitors, common myeloid progenitor, 
MK-erythroid progenitor) such as PRKACB, NRIP1, PARP1, HEMGN as well as ANGPT1 
and IL1b, which encode proteins directly involved in platelet function. By contrast cluster 4 
cells were characterized only by genes encoding proteins directly involved in platelet 
function such as: TUBB1, TUBA4A, F13A1, CCL5 and GRAP2.  
 
Gene Ontology terms enrichment analysis of the marker genes revealed early priming 
patterns: cluster 2 marker genes have an ontological bias towards angiogenesis, 
endothelial cell function and wound healing, whereas cluster 5 marker genes towards 
immunity and leukocyte function (Supplementary Tables S4-S7).  
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Developmental trajectories of early lineage priming in HSCs 
 
To investigate if the HSCs exhibited lineage priming potential we performed trajectory 
analysis, independently of the previous clustering, using Monocle234. We obtained potential 
developmental trajectories where the same clusters re-emerged, with the exception of a few 
cells (Fig. 2d). This analysis showed two distinct branching points, with clusters 1 and 4 
stemming from the same developmental trajectory (Fig. 2d). To determine whether these 
trajectories could delineate early fate priming in HSC, we derived gene signatures from the 
highly purified hematopoietic populations in a previously published study35 and visualized 
these signatures onto the trajectory plot. The signature for MK was found enriched in cells 
localized around branching point 2 and belonging to Cluster 1 and 4 (Fig. 2e), whereas the 
gene expression signature for the megakaryocyte erythrocyte progenitor (MEP) was found 
enriched only in cells belonging to cluster 1 after the branching point 2 (Fig. 2f). These 
signatures are largely non-overlapping (Supplementary Fig. 5) and no single gene appears 
to drive enrichment seen along the branches (Supplementary Fig. 6). Other hematopoietic 
signatures overlapped with different clusters, the monocyte gene signature was found 
enriched in cells belonging to cluster 5 and the lymphocyte signature was found enriched in 
cells belonging to cluster 2. 
 
Functional potential of MK primed clusters 
 
We then retrospectively analyzed index fluorescence-activated cell sorting (FACS) data and 
found that the cells that belong to different clusters based on transcriptome data also show 
differences based on cell surface markers intensities (Fig. 3a). Cluster 1 and 4 could be 
identified on the basis of FSC-A and CD34 with cluster 1 having CD34Lo and FSC-AHi, 
whereas cluster 4 has CD34Hi and FSC-AHi (Fig. 3b). Analysis of PCA vector loadings 
showed that the cell surface expression of CD34, FSC-A and CD49f drive most of the 
variance on PC2/3 within the HSCs (Fig. 3c). 
 
To characterize the lineage differentiation potential of Clusters 1 and 4, we compared our 
HSC index FACS profiles with those of Belluschi et al.36, who previously determined the 
lineage potential of index sorted single HSCs from human cord blood using an optimized 
single cell colony-forming cell assay, which supported myeloid/erythroid and MK lineage 
differentiation. Using an identical flow sorting protocol we could project our bone marrow 
derived HCS onto the PCA space of Belluschi et al. While only a small percentage of MK 
colonies containing MKs were observed after differentiation, when overlaid onto index data 
for HSCs in both studies, cells from HSC clusters 1 and 4 shared cell surface marker 
expression with HSCs forming MK colonies in vitro (Fig. 3d).   
 
Single cell and low input RNA sequencing of bone marrow MKs 
 
To further characterize the nature of the development of bone marrow residing MKs we 
sequenced 188 pools of 20-100 MKs and 1106 single MKs. The MKs were isolated from 
fresh bone marrow harvested from 20 individuals undergoing sternotomy for heart valve 
replacement or coronary artery bypass grafting. The cell surface markers CD41 (GPIIb) and 
CD42 (GPIb)  and the uptake of the DNA stain Hoechst 33342 was used to identify MKs of 
varying ploidy states (Fig. 4a). 
 
Filtering of low quality single cells was performed with a 5-round training scheme of random 
forest models37 trained on the 20 cell MK pools that were isolated using the same methods. 
Using this model 282 single cells were taken forward for downstream analysis (Fig. 4b). 
ERCC spike-ins were again used for gene-wise normalization and filtering of highly variable 
genes where 2000 were taken forward for further analysis (Fig. 4c).  
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To investigate where the mature MKs transcriptionally fell in terms of differentiation we 
added the MK pools to the HSC trajectory analysis above using Monocle234.  The addition of 
mature MK transcriptional signatures to the HSC developmental trajectories showed that 
these are most similar to and branch from HSC clusters HSC clusters 1 and 4 with the MKs 
forming their own trajectory within the PCA (Fig. 4d).   
 
Development and maturation of bone marrow residing MKs 
 
To investigate the changes in gene expression with increasing ploidy, we sequenced 32 
pools of 20-50 MKs and 1106 single MKs with different ploidy (2N to 32N). The MKs were 
isolated from fresh bone marrow harvested from 10 individuals undergoing sternotomy for 
heart valve replacement (Supplementary Table S8).  
 
In the 100 highest expressed genes from MK pools we found enrichment for mitochondrial 
and cell metabolism genes such as MT-RNR1, MT-RNR2, CYTB and COX-1 
(Supplementary Table S9) as previously described in platelet transcriptome studies38. 
Amongst these genes we observed a bimodal distribution in expression. 4N and 8N MKs 
shared expression of a number of genes (n=15) while there was a separate group of genes 
(n=40) mostly expressed in 16N and 32N cells, with different patterns of GO terms 
enrichment (Supplementary Table S10-S15).  The genes characterizing the lower ploidy 
group were mostly involved in platelet function whereas, with further endomitotic replication 
there was a progressive enrichment in genes associated with protein processing and 
translation (Fig. 5a).  
 
We performed differential gene expression (DGE) analysis with increasing ploidy using 
transcriptomes from MK pools as well as single cells for validation (Supplementary Tables 
S16-S19). We detected 944 DGE between 32N and 4N MK pools. 373 features were 
upregulated with increasing ploidy [False discovery rate (FDR)<0.05; with 181 features with 
an FDR <0.0001] and 571 features were downregulated (FDR<0.05, 179 with an FDR 
<0.0001). GO term enrichment analysis of the transcript biotypes revealed an enrichment 
for platelet degranulation, coagulation, hemostasis, wound healing and vesicle mediated 
transport in the lower ploidy MK transcriptome. Instead with increasing maturation and 
polyploidization these biotypes were downregulated in favor of terms related to translational 
initiation, elongation and termination, protein localization and cellular protein complex 
disassembly (Fig. 5b and Supplementary Tables S20 and S21). The same results were 
found in the single cell differential gene expression/GO analysis (Supplementary Tables 
S22 and S23).  
 
Collectively, the MK transcriptional landscape changes with maturation from a low ploidy 
state, with the expression of large numbers of genes related to platelet function, to a high 
ploidy state, where there is an enrichment of genes involved in translation and protein 
packaging arguably in preparation for platelet release. This contemporary model of MK 
maturation is in direct contrast with the current understanding based on in vitro derived 
MKs, in which accumulating ploidy is transcriptionally associated with an upregulation of 
genes involved with platelet, coagulation and hemostatic pathways24. Our transcriptome data 
is, however, in keeping with observed changes in MK ultrastructure during in vivo 
maturation. While stage 2 MKs (low ploidy) have free ribosomes, smooth endoplasmic 
reticulum and few granules, stage 3 MKs (high ploidy) are characterized by rough 
endoplasmic reticulum, formed alpha and dense granules, increases in heterochromatin 
and smaller nucleoli indicating a reduction of transcription39-41 (Fig. 5b). 
 
Using the expression profiles from increasing MK ploidy states (2N-32N), we modeled the 
trajectory from low ploidy to high ploidy, and were able to identify genetic programs turning 
on or off with the increasing of ploidy. This transcriptional signature was then plotted onto 
the HSC differentiation trajectories (Fig. 5c). Genes that are switched off at high ploidy are 
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more active in cluster 1 HSCs. This reflects strong MK priming in HSCs and shows that 
gene expression modules activated during MK differentiation after branching point 2 are 
then gradually switched off as the cells reach maturation, in favor of alternative gene 
expression programs. This finding was confirmed using both single cell and MK pool 
sequencing data (Supplementary Tables S22 and S23). Of note, genes whose expression 
increases with increasing ploidy did not map to any specific HSC cluster. 
 
MK interactions within the bone marrow niche 
 
The transcriptional differences that accompany increasing MK ploidy, highlighted in this 
work, are likely to underpin the functional differences observed between bone marrow MKs 
and in vitro derived MKs, namely efficiency of polyploidization and platelet release, which 
are likely to be due to signaling from the bone marrow niche. To investigate extracellular 
signals from the bone marrow niche that might contribute to MK maturation in vivo, we 
annotated genes upregulated with accumulating ploidy in the MK pool sequencing dataset 
in terms of their subcellular localization using the Ensembl database42 (Table 1). Of the 
373 upregulated genes, 78 contained transmembrane domains and most likely localized to 
the cell membrane. While these have a wide range of functions, there are a number of 
genes coding for transmembrane proteins known to be expressed on the platelet 
membrane including: the G-protein coupled receptor PTGER2, the tetraspanin CD63, the 
TNF alpha receptor TNFRSF1B and lysophosphatidic acid receptor PPAP2A. PTGER2, 
TNFRSF1B, P2Y6 encoding for the pyrimidine nucleotide receptor P2Y6, genes encoding 
for cytokine receptors IL13RA1, IL15RA as well as the complement receptor CR1 are highly 
enriched with increasing MK ploidy (FDR<1E-8). Many of these genes (except CD63) have 
extremely low levels of expression in previously published datasets of in vitro cultured MKs25 
(Supplementary Fig. 7). We hypothesize that a number of these transmembrane proteins 
may mediate extracellular signals that drive MK maturation, increase in ploidy and platelet 
release. 
 
MK signature in myocardial infarction 
 
Myocardial infarction has been suggested as a model for stress or accelerated 
thrombopoiesis accompanied by elevated mean platelet volume and reticulated platelet 
count29. We compared the transcriptomes of MK obtained from patients with severe 
coronary disease and recent myocardial infarction in the last 6 months (individuals 
undergoing sternotomy for coronary artery bypass grafting) with those from a control group 
(individuals undergoing sternotomy for heart valve replacement). We sequenced a total of 
156 pools of 50-100 MKs (irrespectively of ploidy); 101 pools from 7 individuals with severe 
coronary disease and recent myocardial infarction and 55 pools from 8 controls 
(Supplementary table S24).  
 
DGE analysis revealed 139 upregulated (FDR<0.05; with 21 features with an FDR 
<0.00010 and 679 downregulated (FDR<0.05; with 62 features with an FDR <0.0001) 
genes in MKs from patients with severe coronary disease and recent myocardial infarction. 
A number of upregulated genes were directly related to platelet activation and proteins 
released by the alpha granule including PPBP, THBS1 and RAP1B as well as the glutamate 
receptor GRIA1.  
 
We derived MK gene signatures associated with myocardial infarction and coronary disease 
and visualized these signatures onto the HSC differentiation trajectory plot (Fig. 5d). Genes 
that are modulated with coronary disease were active in Cluster 1 HSCs. None of the MK 
genes regulated by disease aligned to Cluster 4 HSCs. 
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Discussion 
 
Here we used single cell RNA sequencing to chart the transcriptional journey of human 
bone marrow MKs, from HSC early lineage priming, showing the presence of 2 separate 
MK primed clusters along the differentiation trajectory, to the later stages of MK maturation 
and polyploidization. 
 
We identified 5 transcriptionally distinct HSC subsets in human bone marrow using three 
independent clustering methods. Two of these subsets (cluster 1 and cluster 4) displayed 
transcriptional priming towards the MK lineage and indeed when overlaid onto data from 
single cell assays36, they showed a functional MK lineage bias. Cells in these two clusters 
expressed genes that have been shown to be highly expressed in the MK-platelet lineage in 
previous studies22,25,35,38. The high proportion of HSCs displaying priming to the MK lineage is 
in keeping with recent evidence indicating that this is the first lineage bifurcation in the 
multipotent HSC compartment4 and the role of MKs in HSC regulation within the stem cell 
niche15,18,43. Plotting these cells in pseudotime differentiation trajectories showed that cluster 1 
and cluster 4 in fact branch from the same trajectory. Comparison with previous datasets25,35 
demonstrated that, while cells in cluster 1 were enriched for genes involved in HSC 
function, megakaryopoiesis and genes commonly expressed between MK and MEP 
populations, cells in cluster 4, in contrast, were enriched for genes specific to MKs with a 
number of marker genes for this cluster directly related to platelet function. We have 
therefore delineated single cell heterogeneity within the bone marrow HSC compartment 
highlighting 2 subpopulations that are potentially unilineage MK.  
 
Our work presents the first interrogation of the transcriptional landscape of human bone 
marrow MKs. The knowledge of the MK transcriptome until now being based largely on in 
vitro derived MKs from CD34+ cells21-25. This analysis was made possible by the advances in 
single cell and low input sequencing techniques. We recreated a differentiation trajectory 
combining the HSCs and MKs transcriptomic data together and we have shown that human 
bone marrow MKs branch directly from phenotypic HSCs, specifically cells in clusters 1 and 
4 supporting the notion of transcriptional priming of these clusters towards the MK lineage.  
 
We charted transcriptional changes in human bone marrow MKs through different stages of 
polyploidization. Microarray data of increasing ploidy in in vitro derived MKs has previously 
shown an overall pattern of upregulation of genes involved with platelet, coagulation and 
hemostatic pathways and a downregulation of cell cycle associated genes24. Our results 
challenge this view. Our data provide a model of MK development and polyploidization 
whereby two distinct transcriptional states exist for low and high ploidy MKs and the cells 
switch from one to the other with successive endomitotic replication. With increasing ploidy 
we observed a downregulation of genetic programs related to platelet functionality, although 
these genes are still switched on and remain expressed within the higher ploidy MKs. 
Conversely, with increasing ploidy level, we observed a marked upregulation of genes 
encoding ribosomal subunits, those associated with protein translation and protein 
localization. These findings indicate that at high ploidy the energy is redirected to mRNA 
translation and appropriate localization of the newly generated proteins into alpha granules, 
dense granules and other vesicles, readying the cell for thrombopoiesis and platelet 
activation. Bone marrow MKs high energy requirement, particularly those of higher ploidy, is 
the likely explanation for the high levels of mitochondrial and other genes involved in 
cellular metabolism since the production of ribosomes consumes large amounts of energy44. 
Our data are in keeping with electron microscopy studies of MK ultrastructure at different 
points of maturation39-41.  
 
When the MK ploidy signature was plotted on to HSC differentiation trajectories, it 
overlapped with gene expression in cluster 1 HSCs only. This signature was modeled on 
genes that were downregulated with increasing ploidy indicating that genes modulated in 
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cluster 1 HSCs are important in MK lineage priming and early MK development in steady 
state thrombopoiesis.  
 
Identifying genes upregulated with increasing ploidy also has implications for improving our 
understanding of MK platelet release. Currently, the number of platelets produced for each 
in vitro generated MK  is ~1000-fold lower than in vivo, which has severe implications for 
platelet production for clinical transfusion from iPSC derived MKs45. This observation is likely 
a direct result of the differences between MKs produced in culture and MKs in the bone 
marrow niche in terms of ploidy level, cytoplasmic maturation or extracellular signals. A 
number of genes upregulated with increasing ploidy were identified to encode 
transmembrane receptors (PTGER2, TNFRSF1B, IL13RA1 and PPAP2A), which upon 
binding to their ligands, might modulate functional effects such as MK chemotactic migration 
from the osteoclastic niche to the vascular sinusoidal space or indeed initiate platelet 
production. These may represent important novel drivers of MK maturation and platelet 
release. PTGER2, a G-protein coupled receptor known to be present on the platelet 
membrane,  is an important regulator of HSC expansion and function in the bone marrow 
niche46 and has been shown to specifically promote megakaryocyte lineage recovery after 
radiation injury in mouse47. Binding of TNFRSF1B, also present on the platelet membrane, 
suppresses apoptosis and has been shown to induce megakaryopoiesis in hematopoietic 
progenitors which could in part account for increased platelet mass in inflammation10. 
IL13RA1 mediates the effects of IL13 which significantly increase MK colony formation in 
vitro48 and in murine models49. PPAP2A is an integral membrane glycoprotein that degrades 
lysophosphatidic acid (LPA) by dephosphorylation. LPA has been shown to inhibit 
megakaryopoiesis in vitro50. Furthermore, an LPA gradient has been proposed between the 
osteoblastic niche and vascular sinusoid regulating MK localization and maturation51. Future 
work on these transmembrane receptors and testing appropriate ligands to investigate their 
role in MK maturation would be imperative in identification of novel drivers of MK 
maturation. 
 
We also compared MK transcriptional signatures in myocardial infarction as a model for 
stress thrombopoiesis with controls. Our data showed that a number of genes upregulated 
in MKs from individuals with severe coronary disease and myocardial infarction compared 
to controls were related to platelet activation such as PPBP and THBS1 and RAP1B that 
encodes for a protein stimulated by collagen binding to and plays a critical role in 
modulating the affinity state of GP2b/3a52. RAP1B has also been identified as a potential 
therapeutic target in myocardial infarction53. There is now compelling evidence for enhanced 
megakaryopoiesis as an important pathogenic driver in atherosclerosis and myocardial 
infarction54,55. The clinical trial CANTOS56 demonstrated an improvement in cardiovascular 
outcome in patients with myocardial infarction with Canakinumab, a monoclonal antibody 
targeting IL1B, a known driver of megakaryopoiesis both in vitro and in vivo57. We found that 
the gene encoding the AMPA glutamate receptor, GRIA1, was upregulated in MKs in 
individuals with myocardial infarction. As glutamate serum levels are increased in 
thrombosis58 and interruption of glutamate binding to the NMDA glutamate receptor in 
megakaryocyte cell lines has impaired megakaryopoiesis59, this observation raises the 
possibility of a positive feedback mechanism of glutamate signaling leading to increased 
platelet production perpetuating a prothrombotic state. Therefore our data also supports a 
pathological role of stress thrombopoiesis in acute coronary thrombosis. 
 
Finally, we plotted the gene signature obtained from MK myocardial infarction  onto the 
HSC differentiation trajectories and we showed that it overlapped with the genes active in 
cluster 1 HSCs, in keeping with the MK ploidy signatures. This suggested that the MK 
lineage priming used in steady state thrombopoiesis potentially also occurs in stress 
thrombopoiesis.  
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Taken together our work describes the transcriptional heterogeneity within the human bone 
marrow HSC population with 2 subpopulations exhibiting MK lineage priming and direct 
branching of MK differentiation from these HSC subpopulations. Furthermore, it charts the 
transcriptional journey from MK lineage commitment through to the mature polyploid MK 
and apply this to the setting of myocardial infarction. Ultimately better understanding of MK 
lineage commitment, differentiation from the HSC, maturation and platelet release are key 
to deciphering pathological modulation leading to thrombosis and bleeding disorders.  
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Methods 
 
Human samples 
 
Pseudonomised bone marrow for HSC and MK sorting was obtained from individuals 
undergoing cardiac surgery at Barts Health NHS Trust, London, after informed consent and 
ethical approval from London - City & East, REC 13/LO/1760 (BAMI Platelet Sub-s. 
Individuals recruited fell into two separate categories: 1. elective open heart valve 
replacement with no evidence of coronary artery disease on coronary angiography; 2. 
coronary artery bypass grafting in the context of recent myocardial infarction (within 6 
months). Myocardial infarction was defined on the basis of clinical history, troponin rise and 
changes consistent with ischaemia on electrocardiography. Exclusion criteria 
comprised  emergency surgery, presence or history of hematological malignancy, abnormal 
platelet count and haemoglobin levels <85g/l.  
 
A sternal bone marrow scraping was taken directly following median sternotomy using a 
Volkmann’s spoon. The sample was collected into an EDTA Vacutainer tube containing 
1.8mg/ml EDTA. 4mL of Dulbecco’s phosphate buffered saline (PBS, Sigma) containing 
10% human serum albumin (HSA, Gemini Bio Products) was added and the whole volume 
was resuspended by pipetting 2-3 times. The sample was then put on metallic thermal 
beads (ThermoFisher Scientific) at a temperature between 0-4°C and transported to the 
University of Cambridge for further processing. 
 
Isolation of HSCs and MKs from fresh human bone marrow 
 
Processing of clinical bone marrow took place 2-3 hours after harvest. The cellular content 
was flushed out of the bone marrow using PBS containing 1.2% HSA, 2mM EDTA (Sigma) 
and the red cells were lysed using ammonium chloride lysis.  
 
For HSC isolation the cells were stained with the following antibody cocktail: PECy5 
conjugated anti-lineage specific antibodies: CD2 (BD), CD3 (BD), CD10 (BD), CD11b (BD), 
CD11c (BD), CD19 (BD), CD20 (BD), CD56 (BD), biotinylated CD42b (Pab5, NHS Blood 
and Transplant, International Blood Group Reference Laboratory [IBGRL]), biotinylated GP6 
(Pab5, NHS Blood and Transplant, International Blood Group Reference Laboratory 
[IBGRL]) used in combination with PECy5 conjugated streptavidin (Biolegend). Alexa Fluor 
700 conjugated anti-CD34 (BD), PerCP-Cy5.5 conjugated anti-CD38 (BD), Pacific Blue 
conjugated anti-CD45RA (Invitrogen), PECy7 conjugated anti-CD90 (BD),PE conjugated 
anti-CD49f (BD). After staining cells were kept at 4°C before sorting using a FACS Aria 
Fusion flow sorter (BD). Single HSCs defined as Lineage-, CD34+, CD38-, CD45RA-, 
CD90+, CD49f+ cells were sorted by FACS directly into individual wells of a 96-well plate. 
Index sort data was collected for each single cell. To ensure that the cells that were sorted 
and studied were in fact HSCs with both multilineage engraftment potential, cells sorted 
within these gates were transplanted into sub lethally irradiated NSG (NOD scid gamma) 
mice and demonstrated both myeloid and lymphoid engraftment at 16 weeks.   
 
For MK isolation the cells were stained for surface MK markers with mouse anti-human 
CD41a APC conjugated antibody (BD) and mouse anti-human CD42b PE conjugated 
antibody (BD) and for ploidy analysis with 1ug/ml Hoechst 33342 (Invitrogen). After 
incubation at 37°C for 30 minutes, the cells were kept at 4°C before sorting using a FACS 
Aria Fusion flow sorter (BD). Single cells and MK pools of 20 cells were sorted by FACS 
according to ploidy level using a 100uM nozzle directly into individual wells of a 96-well 
plate. 
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For both HSC and MK isolation cells were sorted into wells each containing 2.5ul lysis 
buffer/well: 950uL RLT Plus buffer (Qiagen) and 50ul 20U/ul SUPERase In RNase inhibitor 
(Ambion) and stored at -80°C until library preparation.  
 
RNA sequencing library preparation 
 
cDNA synthesis and poly(A) enrichment was performed following the G&T-seq protocol60, a 
variation of the Smart-seq2 protocol. ERCC spike-in RNA (Ambion) was added to the lysis 
buffer in a dilution of 1:4,000,000. Streptavidin-coupled magnetic beads (Dynabeads, Life 
technologies) were conjugated to the biotinylated oligo-dT primer: 5’-biotin-triethyleneglycol-
AAGCAGTGGTATCAAC GCAGAGTACT30VN-3’ where V is A/C/G and N is any base (IDT) 
according to manufacturer’s instructions. Separation of DNA and RNA was performed using 
a Biomek FXP Laboratory Automation Workstation (Beckman Coulter). 10ul conjugated 
beads were added to the cell lysate and incubated for 20minutes at room temperature with 
continuous mixing. The mRNA bound to streptavidin beads was then magnetized to the 
side of the well and the genomic DNA containing supernatant was transferred to a different 
plate. The beads were further washed 4 times at room temperature with a wash buffer 
consisting of 50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl2, 10 mM DTT (Life 
technologies), 0.5% Tween-20, 0.1x 20U/ul SUPERase In RNase inhibitor.  
 
After this either the Superscript II (MKs) or the Smartscribe (HSCs) reverse transcription 
(RT) mix (10ul) was added to the beads. Common to both mixes were: 0.25ul 20U/ul 
SUPERase In RNase inhibitor, 2ul 5M betaine (Sigma), 0.06ul 1M MgCl2 (Life technologies), 
1ul 10mM dNTP mix (Thermo Scientific) and 1ul 100mM Template-Switching Oligo: 5’-
AAGCAGTGGTAT CAACGCAGAGTACrGrG+G-3’ where rG is a  ribo-guanosine and +G is 
a locked nucleic modified guanosine (Exiqon). The Superscript II RT mix also contained: 
0.5ul 200U/ul Superscript II reverse transcriptase (Life technologies), 2ul 5x Superscript II 
First-Strand Buffer (Life technologies), 0.5ul 100mM DTT (Life technologies) and 3.59ul 
nuclease-free water (Life Technologies). The Smartscribe RT mix also contained: 1ul 
Smartscribe reverse transcriptase (Clontech), 2ul 5x Smartscribe First-Strand Buffer 
(Clontech), 1ul 20nM DTT (Clontech) and 2.59ul nuclease-free water. cDNA first strand 
synthesis was performed by incubating at 42°C for 60 min, followed by 50°C for 30 min and 
60°C for 10 min with mixing on a Thermomixer (Eppendorf). 
 
Global amplification of the cDNA by PCR was then performed by adding PCR mastermix 
consisting of: 12.5ul 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems), 0.25ul 10mM 
Smart PCR primer: 5′-AAGCAGTGGTATCAACGCAGAGT-3′ (Biomers) and 2.25ul 
nuclease-free water to the reverse transcription reaction mixture. The PCR reaction 
consisted of heating to 98°C for 3 min, 22 PCR cycles (98°C/20 s, 67°C/15 s, 72°C/6 min) 
and incubation at 72°C for 5 min. A 1:1 Ampure XP (Beckman Coulter) PCR purification 
step was performed followed by assessment of size distribution using an Agilent high-
sensitivity DNA chip (Agilent technologies) and expression of selected genes was also 
examined at this stage using Taqman real-time qPCR. Briefly, TaqMan Fast Advanced 
Master Mix (Applied Biosystems) and Taqman probe: Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH, Hs02758991_g1) (Applied Biosystems) were used to perform 
real-time PCR reactions over 40 cycles according to manufacturer’s instructions on the 
StepOnePlus system. At least 2 technical replicates for each sample were performed. 
 
Illumina libraries were prepared from between 0.5 and 10ng of amplified cDNA using the 
Nextera XT DNA sample preparation protocol (Illumina) and a 1:1 Ampure XP purification 
step was performed. Library size distribution was checked on an Agilent high-sensitivity 
DNA chip and the concentration of the indexed library was determined using the KAPA 
library quantification kit (KAPA Biosystems) according to the manufacturer's instructions on 
the StepOnePlus system (Applied Biosystems).  150 base pair (bp) paired-end sequencing 
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was performed on the Illumina HiSeq 4000 instrument using TruSeq reagents (Illumina), 
according to manufacturer’s instructions. 
 
RNA sequencing analysis 
 
Paired-end reads were trimmed of PCR and sequencing adapters <32bp using TrimGalore! 
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ 2014). The reads were 
mapped to the human reference genome (GRCh37) using STAR61. Quality metrics were 
assessed for each sample including: total reads, alignment rate, ERCC ratio, number of 
called genes, ratio of exonic reads, ratio of reads mapping to the mitochondrial genes. 
These metrics were illustrated using: http://servers.binf.ku.dk:8890/sinaplot/62. 
 
Single cell RNA sequencing analysis 
 
For HSCs filtering of low quality cells was performed using  similar SVM approach and 
rafures as described30 using HSC single cell cDNA positive for the house-keeping gene 
GAPDH as determined by real-time qPCR as target for classification. For MKs filtering of 
low quality cells was performed using the same features in a 5-round training of random 
forest models37, using output of previous model as input for next model in order to iteratively 
increase the sensitivity, when trained to classify the 20 cell MK pools that were isolated 
using an identical sorting and sequencing protocol, when all other cells acted negatives. 
 
The most highly variable genes were filtered above technical noise using the Scater 
package63 using previously described methods32. ERCC spike-ins were used to model the 
trend in technical variability.  
 
Unsupervised clustering of single cells was performed in a principal component analysis 
(PCA) space using correlation distances  correlation in the PCA space. The robustness of 
the clusters was determined by the Silhouette index64. Using SC365, cluster marker genes 
were identified based on their predictive value to separate each cluster from the rest. A p-
value was then assigned to each gene using the Wilcoxon signed-rank test. Genes with 
P<0.001 were defined as marker genes. 
 
Cells were ordered into differentiation trajectory using the Monocle 2 single-cell analysis 
toolset66,34.  
 
In order to assess expression of known hematopoietic gene signatures within the single 
cells clusters, gene signatures for each cell type in the DMAP dataset35 were created using 
the LIMMA package67. Here a one vs all comparison was made for all cell types. Genes that 
were considered to be part of the gene signature log2 fold change of >1 and FDR <0.05. 
The expression of genes from each DMAP gene signature was then assessed in each 
individual single cell and this information was superimposed as size of dots on the Monocle 
2 plots. Furthermore, expression of cluster marker genes within hematopoietic progenitor 
populations in the Blueprint dataset25 was assessed using the Blueprint tools portal: 
https://blueprint.haem.cam.ac.uk. 
 
Differential expression analysis 
 
DESeq268 was used to find genes that were differentially expressed using the Wald test, and 
size factors estimated by scran69. Differentially expressed genes were defined as FDR<0.05. 
 
Functional gene list analysis 
 
Gene ontology (GO) analysis was performed and its visual representation generated using 
the online tool, Fidea70: http://circe.med.uniroma1.it/fidea. Here enrichment analysis is 
performed by statistically assessing whether a pathway or process is enriched in the 
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specific gene list. This is achieved by the hypergeometric test with the resulting p-values 
corrected using the Benjamini and Yekutieli FDR method.  
 
Analysis of indexed FACS data 
 
FACS data from previous study by Belluschi et al.36 were used in PCA analysis on scaled 
data (PCA_B), onto which new samples (BM_HCS) where projected by applying PCA_B 
scaling target and center, and the position was calculated as dot-product of scaled 
BM_HSC vector and PCA_B rotation. Cells from the previous study were then marked 
according to differentiated cell type, as determined by FACS, where cell type perimeter is 
shown via geom_encircle (https://CRAN.R-project.org/package=ggalt) using parameters 
s_shape=0.6 and expand=0.1.  
  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.20.957936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.20.957936
http://creativecommons.org/licenses/by-nc/4.0/


Data availability 
 
All RNA-seq data have been deposited in the European Genome-phenome Archive under 
the accession number _________. All relevant data are also available from the authors. 
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Figure legends 
 
Figure 1 Single cell RNA sequencing of ex vivo human bone marrow HSCs 
a. Experimental design. Sternal bone marrow was harvested from 5 individuals undergoing 
sternotomy for heart valve replacement. It was stained with antibodies for surface markers 
that define the human HSC population and sorted as single cells using index FACS into cell 
lysis buffer. Single cell RNA sequencing libraries were then prepared, sequenced on a 
HiSeq 4000 instrument and analysis was performed as described in Methods; b. Cell 
filtering. Performed using a SVM machine learning method (modified from a previously 
described model37) trained on cDNA from HSCs selected by expression of the housekeeping 
gene GAPDH. High and low quality cells shown by mitochondrial mapping (ChrM), ERCC 
ratio (ERCC), exonic ratio (Exon), number of called genes (Genes). Green denotes high 
quality, red denotes low quality. Out of 884 cells, 119 were taken forward for further analysis 
based on high quality; c. Filtered cells are larger. Flow cytometric plot FSC/SSC showing 
cells filtered as high quality by the SVM machine learning method. Green denotes high 
quality, red denotes low quality; d. Gene filtering. Variance of normalized log-expression 
values for each gene in the HSC dataset, plotted against the mean log-expression. 
Variance estimates for ERCC spike-in transcripts and curve fit are highlighted in red. Blue 
dots represent highly varying genes (n=2000). 
 
Figure 2 Unsupervised clustering and developmental trajectories of early lineage 
priming in single HSCs 
a. Pearson’s correlation map of HSCs in unsupervised clusters by distance within the PCA 
space, dendrograms are formed by hierarchical clustering on the Euclidean distances 
between cells; b. PCA plots constructed from normalized log-expression values of 
correlated highly variable genes, where each point represents a cell in the HSC dataset. 
First, second, third and fourth components are shown; c. Heatmap of mean-centered 
normalized and corrected log-expression values for the top 20 marker genes for each 
cluster. Dendrograms are formed by hierarchical clustering on the Euclidean distances 
between genes (row). Column colors represent the cluster to which each cell is assigned; d. 
Ordering single cell differentiation between cell clusters using Monocle 2. Individual cells 
are connected by a minimum spanning tree with branch points (thin lines), representing the 
differentiation trajectory and clusters are differentiated by color; e. Single cell differentiation 
trajectory showing expression of MK gene signature from DMAP dataset. Expression of 
gene signature is indicated by the size of each single cell; f. Single cell differentiation 
trajectory showing expression of MEP gene signature from DMAP dataset. Expression of 
gene signature is indicated by the size of each single cell. 
 
Figure 3 Prospective identification of HSC clusters 
a. Retrospective analysis of FACS sorting strategy for each individual HSC sorted. Left 
panel: CD34 vs CD38; Middle panel: CD90 vs CD45RA; Right panel: CD90 vs CD49f. 
Individual surface marker expression was normalised. Cluster 1: red, cluster 2: yellow, 
cluster 3: green, cluster 4: blue, cluster 5: magenta, cells filtered due to poor quality: grey; 
b. Retrospective analysis of FACS index data: FSC-A vs CD34 for each individual HSC 
sorted. Identifies: cluster 1 (red): FSC-AHi CD34Hi, Cluster 4 (blue): FSC-AHi CD34Lo, cluster 2 
(yellow): FSC-ALo CD34Hi. Individual surface marker expression was normalised. Cluster 1: 
red, cluster 2: yellow, cluster 3: green, cluster 4: blue, cluster 5: magenta, cells filtered due 
to poor quality: grey; c. Principal component analysis (PC2/PC3) of FACS surface marker 
expression for each individual HSC sorted including: FSC-A, SSC-A, Lin, CD34, CD38, 
CD45RA, CD90, CD49f. Vector loading for FSC-A, CD34 and CD49f are shown. cluster 1: 
red, cluster 2: olive, cluster 3: green, cluster 4: blue, cluster 5: magenta; d. Projection of 
FACS surface marker expression of HSCs characterized by differentiation assay and their 
lineage output onto Fig. 4c. Differentiation assay outputs: erythrocyte: yellow, MK: violet, 
multipotent progenitor: pink, myelocyte: grey. Cluster 1: red, cluster 2: olive, cluster 3: 
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green, cluster 4: blue, cluster 5: magenta. Shaded areas: red: cluster 1, blue: cluster 4, 
yellow: erythrocyte output, violet: MK. 
 
Figure 4 Single cell and low input RNA sequencing of bone marrow MKs 
a. Human bone marrow MK phenotype. Left panel: Cytocentrifugation of enriched MK 
population stained with Roberts stain, 40x objective; Middle panel:  Immunofluorescent 
staining of enriched megakaryocyte population with DAPI DNA stain (blue) and CD41 
surface stain (green); Right panel: Fluorescence activated cell sorting for primary 
megakaryocytes from whole human bone marrow. Ploidy plot shown detecting levels of 
Hoechst 33342 staining showing typical ploidy distribution for human bone marrow MKs 
(cells shown are CD41a+, CD42a+); b. Single MK cell filtering. Performed using a 5-round 
training scheme of random forest models37 trained cDNA from 20 cell MK pools that were 
isolated using an identical sorting and sequencing protocol. High and low quality cells 
shown by mitochondrial mapping (ChrM), ERCC ratio (ERCC), exonic ratio (Exon), number 
of called genes (Genes). Green denotes high quality, red denotes low quality. Out of 1106 
cells, 282 were taken forward for further analysis based on high quality; c. Gene filtering. 
Variance of normalized log-expression values for each gene in the HSC dataset, plotted 
against the mean log-expression. Variance estimates for ERCC spike-in transcripts and 
curve fit are highlighted in red. Blue dots represent highly varying genes (n=2000); d. 
Ordering differentiation trajectories between HSC cell clusters using Monocle 2 with the 
addition of the MK 20-100 cell pools. HSC clusters and MKs are differentiated by color. 
 
Figure 5 Development and maturation of bone marrow residing MKs 
a.  Number of genes expressed related to specific GO terms at each ploidy level, data 
shown based on 100 most abundantly expressed genes. GO terms: platelet activation, 
blood coagulation, response to wounding, translation, protein localization. The full GO 
analysis may be found in Supplementary Table S10-S14; b. Two distinct transcriptional 
states in MK differentiation. Upper panel: Over-represented GO terms in downregulated and 
upregulated genes with increasing ploidy, data shown is based on differential expression 
analysis between 32N and 4N MK 20 cell pools. The word cloud is a visual representation 
of the over-represented GO biological processes (size: indicator of significance). Full GO 
analysis may be found in Supplementary Tables S20,S21; Lower left panel: Electron 
microscopy image of a human stage 2 basophilic MK (2N-4N). Platelet specific granules (d), 
mitochondria (m), free ribosomes (r).  Lower right panel: Electron microscopy image of a 
human stage 3 granular MK (8N-32N). Many platelet specific granules, mitochondria, rough 
endoplasmic reticulum. Black line or dotted black line of DMS is partitioning the MK 
cytoplasm into platelet territories. (Lower left and right panels reused from the Proceedings 
of the Japan Academy, Ser. B39 and the original figures were reproduced from Fig. 1.51, Fig. 
1.52 respectively in Kosaki, G. and Fujimoto, T. (1979) Morphology of blood platelets, 
megakaryocytes differentiation and platelet release (in Nippon- Ketsuekigaku-Zensho (New 
Edition), vol. 11. Maruzen, Tokyo with permission from the publisher); c. Single cell HSC 
differentiation trajectories using Monocle 2 showing expression of MK ploidy signature: 
genes that are downregulated with increasing ploidy. Individual HSCs are connected by a 
minimum spanning tree with branch points (thin lines), representing the differentiation 
trajectory, clusters are differentiated by color. Expression of gene signature is indicated by 
the size of each cell; d. Single cell HSC differentiation trajectories using Monocle 2 showing 
expression of MK myocardial infarction signature. Individual HSCs are connected by a 
minimum spanning tree with branch points (thin lines), representing the differentiation 
trajectory, clusters are differentiated by color. Expression of gene signature is indicated by 
the size of each cell.  
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Table 1 Transcripts upregulated with ploidy: Localisation within the cell 
Using the Ensembl database the genes upregulated with ploidy were annotated in terms of 
their localization within the cell. 78 contained transmembrane domains and localized to the 
cell membrane, 77 were annotated as encoding cytoplasmic proteins, 57 as nuclear 
proteins, 27 as internal membrane proteins, 18 as mitochondrial proteins, 18 and secreted 
proteins and for 104 transcripts there was no localization information available.  
 

Localisation Significantly upregulated genes in 32N megakaryocyte pools compared with 4N 

Cell 
membrane 

UNC80, ENPEP, PTGER2, TMPRSS7, ASGR2, KCNK5, CACNA2D1, P2RY6, NTRK3, SLC52A3, ADCY5, TNFRSF1B, 
OPRM1, LRP6, LRP1B, EPCAM, TRPM2, ARHGAP31, CR1, TMCO4, HEPHL1, CACNA1B, SECTM1, IL15RA, PPAP2A, 
SLC26A3, IGHV1-46, DPEP2, MYO1B, IL13RA1, ADAM29, JAG1, TTYH1, TMEM144, SCRIB, ITGA11, ATRNL1, PDE6G, 
MS4A1, GRID2IP, RRAS2, IGLV3-25, SLCO5A1, RAET1E, IFI6, RAB33A, KCNJ6, MUC16, NFAM1, TREM1, RELT, 
GRAMD1C, SLC4A7, MGAM, DLGAP2, MSR1, ERBB4, CLECL1, SRGAP2, LRRC37B, SEMA6A, FPR2, SCN3A, PIEZO2, 
PTPRC, ABCA12, ZAN, CACNB4, PLIN2, ANXA4, RBSN, TMEM176A, CD63, SLC13A5, SLC36A4, LILRB4, ADAM8, 
FCHO1, OTOA 

Cytoplasm PLA2G16, PDE1C, ARHGEF10L, CLIP4, WNK2, NLRP13, CTH, USP13, KRT23, MYH4, GDPGP1, PRG3, TTLL4, GYS1, 
GSDMA, NAF1, MYO7A, UNC13C, SPATA21, CAMSAP1, PLEKHS1, ARHGEF26, PRKAA2, OAS3, GAS2, ASZ1, RGS7, 
KIF20A, APAF1, KLHL22, GALK1, MYO10, SAC3D1, SCLT1, FRY, DNAH8, CHORDC1, SPHK2, RPL38, CNKSR2, TANC2, 
CDC45, SACS, SEPT14, CCNG2, HS3ST1, PTPN13, DIAPH3, FAM49B, RPLP2, EPB41L4A, GPALPP1, RPS21, PIWIL3, 
RPLP1, SLFN13, HOOK2, RPL27, PSMB7, UBA6, SWAP70, FRMPD1, PSMA6, DOCK3, PLBD1, TTC6, HINT3, FEZ1, 
RPS12, PSMB9, CHODL, SLC24A4, RPL27A, RPS17, MTHFD1, RPS26 

Internal 
membrane 

GALNTL6, SNX24, CCZ1B, CFTR, YIF1A, CCDC51, POMT2, LDAH, ACAP1, STEAP2, TMEM38B, NCS1, PIPOX, 
ST6GALNAC1, PIGK, RETSAT, FAM21C, UBIAD1, SMPD4, SNX14, EMC10, RYR1, GCNT1, VPS18, TRAPPC8, AGPAT9, 
SNX13 

Mitochondria GLDC, ACSM2B, MMAA, GRAMD4, OMA1, SFXN4, TFB1M, MCCC1, GOT2, COX7B, IDH3B, ATP5G2, ABAT, NDUFB11, 
COX7C, MARC1, SURF1, NDUFC2, CENPBD1P1 

Nucleus RORB, ZNF692, NOC4L, DXO, ESRP1, C2orf83, C16orf86, NUF2, NLE1, ZNF234, KIAA0556, ZNF763, ASF1B, FIGN, 
SH2D6, ZNF347, ZCCHC4, NUP35, NOVA1, POLR3H, ZNF343, PELO, CCDC155, TATDN1, ZNF780A, PWP2, IQCA1, 
CHTF18, KIAA0101, AIM1, CDCA5, RHNO1, ZNF174, WDHD1, ZNF543, WDR12, WDFY3, PRIM2, COMMD6, ZMYM5, 
LRRIQ1, FBXO48, DNASE1L3, NCAPD2, PPARG, ZWILCH, ATAD2, MAP2K6, ZNF154, LYRM1, BRAT1 

Secreted 
  

COCH, APOC1, TIMP2, TLL2, CDNF, AGR3, GDF11, OVCH1, ADAMTS1, CES4A, CPAMD8, HSD11B1L, LAMA3, S100A8, 
OSCAR, VCAN, CFD, S100A9 
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