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Graphical Abstract 11 

We hypothesize that SNPs imposing dissimilar minor groove width profiles (ΔMGW) are 12 

more likely to alter function.  ΔMGW was interrogated genome-wide and then used as a 13 

weighting metric for fine-mapping associations. 14 
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Abstract  16 

In genomic fine-mapping studies, some approaches leverage annotation data to 17 

prioritize likely functional polymorphisms. However, existing annotation sources often present 18 

challenges as many: lack data for novel variants, offer no context for noncoding regions, and/or 19 

are confounded with linkage disequilibrium. We propose a novel annotation source – sequence-20 

dependent DNA topology – as a prioritization metric for fine-mapping. DNA topology and 21 

function are well-intertwined, and as an intrinsic DNA property, it is readily applicable to any 22 

genomic region. Here, we constructed and applied, Minor Groove Width (MGW), as a 23 

prioritization metric. Using an established MGW-prediction method, we generated an MGW 24 

census for 199,038,197 SNPs across the human genome. Summarizing a SNP’s change in 25 

MGW (∆MGW) as a Euclidean distance, ∆MGW exhibited a strongly right-skewed distribution, 26 

highlighting the infrequency of SNPs that generate dissimilar shape profiles. We hypothesized 27 

that phenotypically-associated SNPs can be prioritized by ∆MGW. We applied Bayesian and 28 

frequentist MGW-prioritization approaches to three non-coding regions associated with System 29 

Lupus Erythematosus in multiple ancestries. In two regions, including ∆MGW resolved the 30 

association to a single, trans-ancestral, SNP, corroborated by external functional data. 31 

Together, this study presents the first usage of sequence-dependent DNA topology as a 32 

prioritization metric in genomic association studies.  33 
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Introduction 35 

Genetic association studies have successfully identified thousands of loci associated 36 

with a broad range of phenotypes.(1) However, despite the abundance of these genomic 37 

associations, analytic challenges have largely hindered identification of the specific genomic 38 

drivers of disease.(2–4) First, linkage disequilibrium (LD) constitutes a major analytic challenge, 39 

as highly correlated variants exhibit comparable evidence of association, making it difficult to 40 

statistically isolate causal polymorphisms. Second, many associated single nucleotide 41 

polymorphisms (SNPs) reside in non-coding regions, occluding functional relevance without 42 

additional context and information. Even with increased sample sizes and variant coverage, 43 

these challenges remain.(2–5) In-depth functional analyses are not practical for a large number 44 

of variants, and thus, there remains the need to effectively prioritize the most likely causal 45 

variants for follow-up studies and approaches (e.g. CRISPR).  46 

 To prioritize potential causal variants, association results can be weighted by external 47 

functional information (e.g. histone modifications, eQTL status, transcription factor binding 48 

sites).(5–8) This approach has been successful in reducing and refining associated variants, 49 

and there are a growing number of tools and methods that integrate external data with genomic 50 

association studies.(6, 9–13)  Nevertheless, such methods are not without limitations. 51 

Importantly, the choice of annotation and database bias are strong factors for consideration as 52 

missing or incomplete functional data could result in down-weighting potentially causal 53 

polymorphisms. These challenges particularly arise for regions with no (presently) known 54 

functional implications. Additionally, many annotation resources are based on European data; 55 

and thus may offer limited information for genetic studies in non-European individuals (e.g. 56 

novel regions).(14, 15) Such limitations can reduce the rate of progress in understanding the 57 

functional impact of ancestry-specific associations and perpetuate health disparities.(16, 17) To 58 

alleviate some of these biases imposed by external datasets, we propose a prioritization 59 
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approach that leverages information intrinsic to the DNA itself, sequence-dependent DNA 60 

topology.  61 

From chromatin conformation to selective protein binding,(18–26) DNA is a highly 62 

dynamic macromolecule with structure inherently linked to function. Sequence-dependent DNA 63 

topology (or shape) refers to the geometric parameters (measured in Angstroms or degrees) 64 

between successive nucleotides in a DNA sequence.(24, 27–29) The sequence dependency of 65 

these spatial measures (Figure 1) has been well-studied and in recent years, increasingly 66 

connected to various functional implications, including protein binding, DNA stability, and 67 

methylation.(18, 20, 21, 23, 30–38)  High-throughput DNA shape prediction methods now 68 

enable exploration of DNA topology on a genome-wide scale, and thus, provide new 69 

opportunities in association studies.(24, 39)  70 

This study presents using sequence-dependent DNA topology as a prioritization metric 71 

in genomic association studies. Here, we focused on minor groove width (MGW), which 72 

measures the distance (Angstroms, Å) between the sugar phosphate backbone of the forward 73 

and reverse strands. For each SNP, we analyzed its change in minor groove width (ΔMGW) to 74 

evaluate whether the SNP’s alleles created similar or divergent MGW profiles.  MGW has been 75 

implicated in numerous protein binding studies and used in transcription factor binding 76 

prediction algorithms.(18, 20, 24, 32, 34, 36, 37, 40, 41) Recently it was studied in the context of 77 

purifying selection, where “shape disrupting variants” (examples shown in Figures 2 and 3) tend 78 

to be less common in functional regions (shape-preserving polymorphisms being more 79 

frequent).(42) Thus, we proposed that if a phenotypically-associated SNP also yields a large 80 

ΔMGW, it is more likely to be causal as a function of divergent shape profiles.  81 

We specifically hypothesized that highly correlated SNPs in a phenotype-associated 82 

region can be functionally prioritized using each SNP’s magnitude of ΔMGW.  We evaluated this 83 

hypothesis in three stages. First, using an established MGW-prediction algorithm(39), we 84 
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generated the complete sample space for ΔMGW for all possible input sequences. Second, we 85 

evaluated the observed frequency of ΔMGW across the human genome using bi-allelic SNPs in 86 

the dbSNP SNP150 dataset. Third, we tested this approach by prioritizing SNPs in three 87 

genomic regions previously associated with systemic lupus erythematosus (SLE)(43) leveraging 88 

both frequentist and Bayesian association methods.  89 

Methods and Materials 90 

 91 

Calculation of ∆MGW for a bi-allelic SNP. 92 

The predicted MGW for a given sequence was obtained using the DNAshapeR package 93 

(https://bioconductor.org/packages/release/bioc/html/DNAshapeR.html) , available through 94 

Bioconductor.(39) DNAshapeR calculates DNA features using Monte Carlo simulations for 95 

nucleotide structure based on DNA sequence fragments. DNA feature predictions are based on 96 

a rolling window of five nucleotides for a given n-length sequence. For this study, to capture the 97 

MGW at a SNP, we used the four flanking (up and downstream) nucleotides (9-mer sequence) 98 

as input. Each bi-allelic SNP produces two unique 9-mer sequences (one sequence for each 99 

allele) and thus, both of a SNP’s sequences were submitted to DNAshapeR to obtain the 100 

corresponding feature vectors for MGW. The MGW was retained for the nucleotide at the SNP’s 101 

position as well as +/- 1 nucleotides. Capturing MGW for additional bases would require longer 102 

input sequences, which could introduce additional variability (e.g. SNPs within the flanking 103 

sequence). The ∆MGW was calculated as a Euclidean distance for the SNP and +/- 1 base 104 

(Figure 2). 105 

Generation of ∆MGW sample space  106 

To calculate the entire sample space for ∆MGW, we generated a dataset of all possible 107 

input sequences. Since our goal was to evaluate the ∆MGW at a SNP with +/- 4 base pairs, 108 

input sequences required nine nucleotides.  Thus, all possible combinations of Adenine, 109 

Cytosine, Guanine, and Thymine, generated 262,144 9-mer sequences. From this dataset, all 110 
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possible bi-allelic pairings (A/C, A/G, A/T, C/G, C/T, G/T) were created on the 5th nucleotide of 111 

each sequence (“SNP position”) while holding the flanking nucleotides constant, generating 112 

393,216 9-mer pairings. These 9-mer pairings represent every possible sequence combination 113 

that could be observed for a bi-allelic SNP (Figure 3). These paired sequences were evaluated 114 

for ∆MGW using the previously described method.  115 

Visualization of DNA sequences 116 

 DNA shape measures, provided by DNAshapeR, were submitted as a parameter file to 117 

the 3D-Dart webportal (http://milou.science.uu.nl/services/3DDART/) for a ‘BDNA nucleic acid’. 118 

(44) Resulting pdb files from 3D-Dart were then visualized using Chimera 119 

(https://www.cgl.ucsf.edu/chimera/).(45) 120 

Curating dbSNPs150 database  121 

The NCBI hg19 dbSNPs150 data file (snp150.txt.gz) was downloaded via UCSC 122 

GoldenPath (hgdownload.cse.ucsc.edu) on July 6, 2018.(46) Insertion-deletions, tri-allelic, 123 

quad- allelic, and multiple nucleotide polymorphisms were excluded. Retained bi-allelic SNPs 124 

were limited to those located on chromosomes 1-22 and X. Any SNPs that were labeled with 125 

“Unusual Conditions” as defined by UCSC were excluded, as these indicate possible 126 

discrepancies among alleles and/or potential mapping issues (e.g. SNP flanking sequence 127 

aligns to more than one location in the reference assembly).(46, 47) The pruned bi-allelic 128 

dataset contained 199,038,272 SNPs.  129 

For dbSNP 150 data, each SNP’s flanking sequence of four nucleotides was retrieved 130 

from the Human Reference Genome (downloaded October 2017)(48) using SAMTOOLS. For 131 

each SNP, the dbSNP “Strand” variable was used to inform if the alleles reported by dbSNP 132 

aligned with the reference genome. All SNPs were successfully queried against the reference 133 

genome. There were 75 SNPs that contained at least one flanking base encoded as “N” (any 134 
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base) and were excluded from summarizations, leaving a final dataset of 199,038,197 SNPs. 135 

The ΔMGW for these sequences were obtained as described above. 136 

 137 
SLE Immunochip Data for fine-mapping analyses 138 

Genomic data for fine-mapping analyses came from the published trans-ancestral SLE 139 

Immunochip study; genotype calling and genomic quality control methods were previously 140 

described.(43) This data includes three ancestries, European Ancestry (EA), African Ancestry 141 

(AA), and Hispanic Ancestry (HA), with large case-control counts: EA (6,748; 11,516), AA 142 

(2,970; 2,452), and HA (1,872; 2,016).  143 

Genomic regions were named for the genes in physical proximity to the region of 144 

association. Non-HLA genomic regions were selected for fine-mapping if the region contained 145 

SNPs reaching genome-wide significance (p< 5x10-8) in at least two ancestry-specific 146 

analyses.(43) We also limited our analyses to regions where the top associations mapped to 147 

non-coding regions (e.g. introns, intergeneic), where we hypothesize DNA topology might 148 

provide novel insight to the fine-mapping analyses. Genomic regions containing FAM167A-BLK 149 

(8p23), STAT4 (2q32), and TNIP1 (5q33) met these criteria. Quality controlled genomic data for 150 

these regions were extracted using a 250 kb window around the previously reported top 151 

association from the Immunochip analysis.(43) 152 

SNPs from the selected genomic regions were queried against the human reference 153 

genome to retrieve the four flanking bases. Each SNP’s strand information (based on Illumina 154 

Infinium Immunochip documentation) was utilized to ensure that the corresponding alleles 155 

appropriately aligned with the reference genome.  156 

Statistical Analyses.  157 

Single-SNP associations. Single-SNP associations were previously reported and 158 

described in the transancestral SLE Immunochip study.(43)  159 
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SKAT analyses. The previous single-SNP logistic regression analyses (43) did not 160 

incorporate SNP-specific weights/information. Thus, SNPs in high LD yielded comparable 161 

association values. The Sequence Kernel Association Test (SKAT) is a regression approach 162 

that was designed to handle covariates and SNP-specific weights through a weighted linear 163 

kernel.(49) It was shown that well-selected SNP weights can yield better statistical power (e.g. 164 

increasing weight of functional variants).(49)  SKAT was originally developed to leverage minor 165 

allele frequency (MAF), as the weighting scheme in rare variant studies; however, the SKAT 166 

framework is a general method that can accommodate any user-specified SNP weights.(49)  167 

Here, we used ∆MGW as the weighting scheme. A variation of SKAT is the Optimal unified test 168 

which combines both SKAT and the burden test (SKAT-O).(12)  The SKAT-O test statistic is a 169 

weighted average of the SKAT and burden test statistics and can be beneficial when applying to 170 

genomic regions where one test may be better powered than another.(50)  Primary advantages 171 

of burden tests occur when a large number of variants are causal and for smaller sample sizes 172 

(SKAT loses power in small sample sizes, <2000 cases and controls). Generally, burden tests 173 

do not perform as well as SKAT when a large proportion of the variants are non-causal.(12, 49, 174 

50) In this study, our datasets are large (AA: 5,422; EA: 18,264; HA: 2,016), and we expect 175 

many of the highly associated SNPs in LD to be non-causal; thus, in this scenario we selected 176 

SKAT to be more appropriate, which is consistent with published power calculations and 177 

simulations.(12, 49, 50)  SKAT was applied to genomic regions through its implementation in 178 

the R package, SKAT (https://CRAN.R-project.org/package=SKAT). For each genomic region, 179 

the model parameters and residuals were calculated for SKAT using SKAT_Null_Model() for a 180 

dichotomous outcome (case/controls status) and previously described (43) population-specific 181 

factors (to account for admixture). Since all datasets (AA, EA, and HA) had a sample size 182 

greater than 2,000 cases and controls, no small-sample adjustment was applied. Within each 183 

genomic region, adjacent 5-SNP windows were generated, offset by 1 SNP. Each window was 184 

evaluated using the SKATbinary() with method=SKAT and a linear-weighted kernel with SNPs 185 
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weighted by their ∆MGW. To evaluate consistency of the results (e.g. for SNPs outside of the 186 

main peak of association), genomic regions were also evaluated using equal-weighting for all 187 

SNPs. Given the small window size (n=5 SNPs), we expect a large proportion of each window 188 

to contain non-causal SNPs, further supporting our selection of SKAT. For comparison, we also 189 

applied SKAT-O but noted minimal differences on the final outcome. To localize the top 190 

association signals to each SNP, SNP-window p-values were treated as a SNP prioritization 191 

metric by generating the geometric mean of -log10(p-values) across windows containing each 192 

SNP.  That is, the prioritization metric was calculated using the p-value for each SKAT analysis 193 

window (pi) that contained the kth SNP (n analysis windows). With the exception of the first and 194 

last five SNPs in a region, each SNPk was included in five analysis windows (n=5). Thus, for 195 

each SNP k, we calculated its prioritization metric as:  196 

                           (Equation 1) 197 

Bayesian Approach: Credible SNP Sets.  Frequentist approaches, such as those 198 

implemented SKAT or single-SNP logistic regression analyses are widely utilized; however, 199 

their resulting p-values are not without limitations.(51) For one, p-values do not capture the 200 

confidence of a particular association. Furthermore, they’re more dependent on factors such as 201 

the power of the statistical test (influenced by sample size and other variables). Bayesian 202 

methods offer an alternative approach; here, Bayes factors are used, capturing the ratio of 203 

probabilities between the null and alternative hypotheses.  204 

As a comparison to the frequentist approaches, we used SNPTEST to generate the 205 

Bayes factors (BF), using the score test and additive genotype modeling.(52) Posterior 206 

probabilities for a given SNP k, were then calculated using method published by the Welcome 207 
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Trust Case Control Consortium.(53) For SNPs 1-j in the region, the posterior probability for each 208 

SNP k, was calculated by:  209 

               (Equation 2) 210 

Using these posterior probabilities, the 95% credible set was determined for each region. This 211 

test assumes only one causal SNP in the region and places equal a priori probabilities that the 212 

causal SNP is any one of the analyzed SNPs.(53)  In this study, we applied this method to 213 

previously defined regions (43) where we hypothesized the association signal is driven by one 214 

SNP.   215 

Like the single-SNP logistic regression analyses, this Bayesian analysis is not weighted 216 

by functional data. Thus, for a ΔMGW-weighted analysis, a derived credible set was generated 217 

from posterior probabilities that accounted for each SNP’s ΔMGW through ad hoc weighting, 218 

where the posterior probability for a given SNP k, was calculated by weighting the Bayes factor 219 

by ΔMGWk divided by the weighted average of Bayes factors for SNPs 1-j in the region. Here, 220 

the derived posterior probability for each SNP k, is:  221 

     (Equation 3) 222 

Using these values, the derived 95% credible SNP sets were generated and compared with the 223 

unweighted 95% credible SNP sets. This methodology enabled weighting by a continuous 224 

variable versus existing methods designed for dichotomous (presence/absence of functional 225 

annotation) SNP weights.(54) 226 

Functional Annotation  227 
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To evaluate the functional plausibility for an identified variant, several publically available 228 

resources were referenced. For variant associations with gene expression (eQTL status), the 229 

Genotype-Tissue Expression (GTEx) dataset, version 7 (hg19) was queried at 230 

gtexportal.org.(55) GTEx is a comprehensive eQTL resource, providing eQTL information 231 

across 48 tissues. SNPs were also queried using the SCREEN (Search Candidate cis-232 

Regulatory Elements by Encode, http://screen.encodeproject.org).(56, 57) Built using Encode 233 

data, SCREEN (hg19) evaluates if a given genomic coordinate resides in a Candidate cis-234 

Regulatory Element (ccRE). ccREs are designated based on evidence from DNase 235 

hypersensitivity sites, H3K4me3 and H3K27ac histone activity, and CTCF-binding data. 236 

SCREEN contains 1.31 million ccREs, correlating to 20.8% of the mappable human genome 237 

(http://screen.encodeproject.org). Genomic variants were also evaluated for evidence of long-238 

range DNA interaction via Hi-C data (hg19) available through the Yue Lab 3D Genome Browser 239 

(http://promoter.bx.psu.edu/hi-c/).(58) Similar to the ccRE search, SNPs were queried to see if 240 

they resided in a genome region that exhibited long-range chromatin interactions. The Yue 241 

Lab’s Capture Hi-C data offers information across 19 cell line options. We evaluated immune-242 

related cell types: naïve B-Cells, CD4_Total (CD4 activated and Naïve), CD8 naïve, monocytes, 243 

and neutrophils. 244 

Results 245 

 246 

For ∆MGW, SNPs in the human genome exhibit a stronger right skewed distribution in 247 

comparison to the complete sample space. 248 

In the complete sample space of ∆MGW, ∆MGW values ranged from 0.00 to 3.16 Å, with 249 

a mean of 0.77 Å and a standard deviation of 0.42. (Table 1) The overall data exhibited a right-250 

skewed distribution (Figure 3) with few sequences inducing large changes in MGW. 251 

Unsurprisingly, given the sequence-dependency of this topological measure, parsing the data 252 
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by the paired alleles (fifth nucleotide, see Methods and Materials), revealed allele-specific 253 

patterns of ∆MGW (Table 1).  Transition pairings (A/G and C/T) yielded the smallest changes in 254 

∆MGW, while transversion pairings (Purine/Pyrimidine) produced the largest changes in ∆MGW. 255 

Subsets that represent complimentary allele pairs (i.e. A/G & T/C; A/C & T/G) yielded the same 256 

∆MGW values. (Table 1) Of all allele-pairings, A/T alleles presented the largest ∆MGW with a 257 

mean of 1.16 Å (SD, 0.47) (Figure 3).  258 

We compared the ∆MGW sample space statistics to the observed frequencies of ∆MGW 259 

across the human genome using dbSNP data. The hg19 download of NCBI dbSNP150 260 

contained 234,104,110 entries. After pruning to high quality (see Methods and Materials), bi-261 

allelic SNPs, 199,038,197 polymorphisms remained. For these SNPs, there was an average 262 

∆MGW of 0.68 Å with a standard deviation of 0.43. In comparison to the ∆MGW sample space, 263 

SNPs across the genome exhibited a stronger, right-skewed distribution of ∆MGW. (Figure 3).  264 

Transition SNPs are more likely to occur (59, 60), and this is consistent with our SNP150 265 

summarizations, where transition SNPs comprised 66.43% of the dataset (Table S1). Our 266 

ΔMGW sample space summarization showed that transition allele pairings had the smallest 267 

change in ΔMGW (Table 1); thus, the decreased average in ∆MGW dbSNP data is expected 268 

and illustrates the high prevalence shape-preserving SNPs in the genome. To evaluate patterns 269 

in ∆MGW by SNP function (i.e. missense, intron, coding-synonymous), SNPs with a single 270 

NCBI-designation (see Methods and Materials) were subset and summarized (Table 2, Figure 271 

4). Notably, some SNP categories are limited to specific sequence combinations(61) (i.e. stop-272 

loss, Table S2), which were reflected in the SNP-function-specific patterns of ∆MGW. (Figure 273 

4) Coding-synonymous SNPs exhibited the smallest overall change in ∆MGW (mean=0.48 Å). 274 

Unknown and intron SNPs, which are not constrained to specific sequences (by definition), 275 

comprised the two largest categories (nunknown=99,004,130; nintron=84,909,115) and yielded high 276 

averages for ∆MGW: 0.69 Å and 0.56 Å, respectively.  277 
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Fine-mapping SLE-associated genomic regions using ∆MGW prioritization identifies 278 

potentially functional SNPs.  279 

 To-date, more than 100 genomic loci have been associated with SLE.(43, 62) Here, we 280 

selected the genomic regions containing FAM167A-BLK, STAT4, and TNIP1 for fine-mapping 281 

because these regions showed robust single-SNP associations (p < 5x10-8) with SLE in at least 282 

two ancestries (FAM167A-BLK: EA and AA; STAT4: EA and HA; TNIP1: EA and HA) and the 283 

association signals are not refined to a single SNP, due in part to strong linkage disequilibrium. 284 

Furthermore, neither the SNPs nor their LD proxies are protein-coding variants, leaving DNA 285 

topology as a potential functional mechanism. For each region, we first describe the previous 286 

SNP association results (43) and their LD patterns, by ancestry. Each region is then 287 

summarized by its ΔMGW measures which were used in frequentist and Bayesian ΔMGW-288 

weighted analyses. SNPs identified by the ΔMGW-weighted analyses were subsequently 289 

investigated for existing functional evidence (See Methods and Materials).  290 

FAM167A-BLK.  291 

The SLE-associated region at 8p23 lies upstream of FAM167A and BLK, which are in a 292 

head-to-head gene orientation. Across the 500kb candidate region, 835 and 933 genotyped 293 

SNPs passed quality control in the EA and AA data, respectively. In the previous(43) logistic 294 

regression analyses, the primary peak of association was captured by a 60 kb window. In EA, 295 

the most significant SNP associations mapped to a 26 kb region of 16 SNPs in high LD (r2>0.8); 296 

within the AA data, the top associations were refined to a smaller 14 kb window containing 7 297 

highly correlated SNPs (Figure 5).The summary statistics for ΔMGW for SNPs in the 500 kb 298 

and 60 kb regions were comparable to what was observed across the genome, with only a few 299 

SNPs imposing large changes in MGW (Table S3).   300 
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Hypothesizing that plausibly functional SNPs can be identified by incorporating both 301 

ΔMGW and evidence for disease association, we applied two ΔMGW-weighted approaches via 302 

SKAT and Bayesian credible sets. For the 500 kb region, SKAT was applied in a 5-SNP rolling 303 

window (see Methods and Materials). Across the region, SNPs with the highest SKAT-weighted 304 

prioritizations largely followed the pattern observed in the single-SNP logistic regression 305 

analyses. That is, SNPs that were not previously associated with SLE were not prioritized solely 306 

on ΔMGW, as illustrated in the region outside of the 40 kb peak of association (Figure 5). When 307 

weighted by ΔMGW, rs2061831 was sharply prioritized in both the EA and AA analyses (Figure 308 

5). In EA, rs2061831 was one of the 14 highly correlated SNPs identified by the single-SNP 309 

logistic regression analyses; likewise, in AA, it was also within the LD block comprising the 7 310 

most highly associated SNPs. While the other SNPs in these LD blocks exhibited comparable 311 

SLE-association, rs2061831 had the greatest ΔMGW at 1.63 Å, prioritizing it above other SNPs 312 

in the weighted analyses. Importantly, while the single-SNP logistic regression analyses 313 

identified a different top SNP in EA (rs13277113) and AA (rs2736440), ΔMGW-weighting 314 

prioritized the same SNP (rs2061831), across ancestries. An unweighted SKAT prioritized the 315 

signal downstream of rs2061831, to the region where multiple SNPs from the same highly-316 

associated LD block were included in the same 5-SNP windows (Figure S1, Tables S4-S5).  317 

The ΔMGW-weighted frequentist fine-mapping evidence for rs2061831 was 318 

corroborated using the Bayesian refinement approach.  In both EA and AA, the derived ΔMGW-319 

weighted credible set placed the highest posterior probability on rs2061831 (58.9%-EA; 44.2%-320 

AA) (Figure 5). In the un-weighted (standard) Bayesian analysis, rs2061831 was included in the 321 

EA (30.6% posterior probability) and AA (20.9% posterior probability) 95% credible sets, but it 322 

was not the highest prioritized (Table S4-S5). Instead, the SNPs originally identified in the 323 

ancestry-specific logistic regression analyses were given the highest posterior probability—EA: 324 

rs13277113 (49.9% posterior probability), AA: rs2736340 (33.1%).  Thus, like the frequentist 325 
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approach, weighting by ΔMGW resolved the signal in both EA and AA to the same SNP, 326 

rs2061831.  327 

 Using ΔMGW as a prioritization metric, rs2061831 was consistently prioritized in both 328 

EA and AA data. SNP rs2061831 has a ΔMGW of 1.63 Å, which is 2 standard deviations above 329 

the mean across dbSNP150. Interestingly, this SNP is a transition polymorphism 330 

(Purine/Purine), a polymorphism type which we previously showed to have the smallest (on 331 

average) ΔMGW (Table 1, Figure 3). Considering only transition SNPs, rs2061831 is actually 332 

4.52 standard deviations above the mean ΔMGWtransition SNPs (0.50 Å), indicating a considerable 333 

departure from the expected value and thus we would hypothesize a greater likelihood of 334 

functional relevance. Given the consistent evidence for a signal at rs2061831 in both the EA 335 

and AA data, we explored previously described (see Methods and Materials) functional data 336 

resources for evidence of biological relevance, in comparison to the top SNP signals from the 337 

single-SNP analyses (rs13277113 in EA; and rs2736440 in AA). All three SNPs are in high LD 338 

(R2>0.95) with one another in both EUR and AFR 1000 genomes data. Thus, it is unsurprising 339 

that all three SNPs yielded similar eQTL results via GTEx (data not shown). Despite the high 340 

LD, these three SNPs are physically separated by several kilobases. Of these three SNPs, 341 

rs2061831 is the only SNP that maps (via SCREEN) to a Candidate Cis-Regulatory Element 342 

(accession number: EH37E0941109) showing evidence for DNase, H3K27ac, and CTCF-343 

binding activity. Consulting the 3D-genome browser yielded a larger number of long-range 344 

chromatin interactions in monocytes, B-Cells, and CD4 cells for rs2061831, in comparison to 345 

rs13277113 and rs2736440 (Figure S2). Thus, in this region, ΔMGW-weighting successfully 346 

differentiated among highly-correlated SNPs and prioritized rs2061831, a SNP within a 347 

potentially important regulatory region as documented by independent data.   348 

STAT4 349 
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   The single-SNP SLE associations at 2q32 span the STAT4 gene (Figure 6). SNP 350 

associations reached genome significance in the EA and HA cohorts, with the strongest signals 351 

within intronic regions.(43) In the 500 kb region, there were 192 and 202 genotyped SNPs that 352 

passed quality control measures in EA and HA, respectively. In both ancestries, the primary 353 

peak of association was captured by a broad 110 kb window (Figure 6). The strongest 354 

associations in the EA data (p-values < 1x10-62) mapped to six SNPs in high LD, spanning 29 355 

kb. Five of these SNPs also comprised the LD block of strongest associations in the HA data 356 

(p< 1x10-13), in a slightly narrower 26 kb region. The consistency of SNP association results in 357 

the EA and HA data provided a prime opportunity to test ΔMGW-prioritization among highly-358 

correlated SNPs.  359 

 The mean ΔMGW for SNPs in this region was 0.72 Å in EA and 0.73 Å in HA and both 360 

cohorts had a median ΔMGW of 0.56 Å. While these average ΔMGW were slightly higher than 361 

what was observed across the entire bi-allelic dbSNP dataset (mean=0.68 Å), the EA and HA 362 

medians were of the same magnitude (dbSNP ΔMGW median=0.56). The ΔMGW for SNPs 363 

within the 110 kb association window exhibited similar means as the 500 kb region (Table S6). 364 

We again applied the two ΔMGW-weighted approaches using SKAT and Bayesian 365 

credible sets in the region. In EA, the ΔMGW-weighted SKAT analyses shifted the top signal 366 

upstream to rs11889341, which markedly increased its priority (Figure 6). This SNP was one of 367 

the top six SNPs in the single-SNP association LD-block. While it and the other five SNPs were 368 

all significantly associated with SLE, rs11889341 had the greatest ΔMGW at 1.75 Å, which 369 

prioritized it over the other SNPs in the LD block; the remaining SNPs had ΔMGW values 370 

ranging from 0.31-1.12 Å (Figure 6). In HA, weighting by ΔMGW in the SKAT analysis also 371 

prioritized rs11889341 as the top SNP. This SNP was previously identified with the best p-value 372 

in the single-SNP association analysis, but in the ΔMGW-weighted approach, its prioritization 373 

distinctly increased relative to the other SNPs in the LD block (Figure 6).  374 
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In the Bayesian analysis, rs11889341 was included in the EA and HA derived ΔMGW-375 

weighted 95% credible sets (Figure 6). In EA, rs11889341 was not in the unweighted 95% 376 

credible set but inclusion of ΔMGW increased its posterior probability from 2.4% to 6.0% (Table 377 

S7, Figure S3). In EA, rs7568275 yielded the strongest signal in both the unweighted (81.0% 378 

posterior probability) and derived ΔMGW-weighted (77.3% posterior probability) credible sets 379 

(Table S7). This is important to note, as rs7568275 had a much smaller ΔMGW (0.66 Å) than 380 

rs11889341 (1.75 Å.).  This provided an example where the magnitude of the Bayes factor was 381 

so large (p=4x1068), that the influence of ΔMGW was largely diminished in the analysis. 382 

However, despite the predominant rs7568275 signal, the derived credible set still detected 383 

rs11889341, the SNP identified by the ΔMGW-weighted SKAT approach. In the HA data, 384 

rs11889341 yielded the largest posterior probability in the ΔMGW-weighted derived credible set. 385 

This SNP also had the largest posterior probability in the unweighted credible set. Unlike the EA 386 

analysis, where the magnitude of the Bayes factor dominated the impact of the ΔMGW-387 

weighting, in the HA data, the ΔMGW strongly increased the posterior probability of rs11889341 388 

from 58.6% to 73.5% (Figure 6, Table S8). This limited the derived 95% credible set to only 3 389 

SNPs: rs11889341 (73.5%), rs8179673 (16.6%), and rs7574865 (4.8%) (Table S8). 390 

 In the single-SNP association analyses of STAT4 SNPs, the association signal was 391 

refined to an LD block of 6 SNPs in the EA data and 5 SNPs in the HA dataset. In ΔMGW-392 

weighted analyses, rs11889341 was sharply prioritized over other SNPs in the LD block, with an 393 

exception in the EA ΔMGW-weighted derived credible set, where the high magnitude of the 394 

Bayes factor for rs7568275 (bf=2.20x1064) over other SNPs (bf <=1.79x1063) largely negated 395 

any impact of ΔMGW in this analysis. Considering the evidence for rs11889341 in the other 396 

three analyses due to its strong combination of SLE association and ΔMGW, we would 397 

hypothesize that rs11889341 would be a candidate functional polymorphism. Like rs2061831 in 398 

FAM167A-BLK, rs11889341 is also a transition SNP (purine/purine). While transition SNPs are 399 
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more frequent across the genome (previously shown in Table S1), there are few transition SNPs 400 

(+/- 4 nucleotides) that yield such a high ΔMGW (mean ΔMGW for transition SNPs=0.50 Å).   401 

Evaluation of publically available functional datasets (see METHODS) yielded limited 402 

information for both rs7568275 and rs11889341. Neither of these SNPs were identified as 403 

eQTLs in GTEx nor were they within Candidate Cis-Regulatory regions (cCREs). Furthermore, 404 

neither variant was shown with long range chromatin interactions in the in the currently available 405 

HI-C data via the 3D genome browser. However, despite the lack of functional information from 406 

these resources, functional evaluation of rs11889341 is available via a 2018 study by Patel and 407 

colleagues, where transancestral mapping identified rs11889341 with strong association with 408 

SLE.(63) In this study, rs11889341 was associated with STAT1 expression in B-cells through 409 

increased binding of the transcription factor, HMGA1. Given the relationship between 410 

transcription factor binding and DNA topology(20, 31, 32, 64, 65), we hypothesize that the 411 

identified functional activity of rs11889341 (via HMGA1 binding) may be mediated by the large 412 

MGW change imposed by the SNP’s alleles.  413 

TNIP1 414 

 Previous single-SNP association analyses(43) identified genome-wide significant 415 

findings (p<5x10-8) in EA and HA data at 5q33 (Figure 7).  In the 500 kb region, there were 497 416 

and 500 high quality genotyped SNPs in the EA and HA data, respectively. The peak of SLE 417 

association is captured by a 40 kb window which encompasses most of the TNIP1 gene. In the 418 

EA data, the top associations mapped to three SNPs (rs960709, rs10036748, rs6889239) in 419 

high LD, spanning 3 kb of a TNIP1 intron. These three SNPs are also encompassed by the 420 

associated LD block in the HA data, where four, highly correlated SNPs (rs1422673, rs960709, 421 

rs10036748, and rs6889239) yielded p-values < 5x10-8. As completed in the FAM167A-BLK and 422 

STAT4 regions, we again applied ΔMGW-weighted fine-mapping strategies to prioritize these 423 

non-coding SLE-associated SNPs. 424 
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 In the TNIP3 region, the lists of high-quality genotyped SNPs were largely the same 425 

between the EA and HA datasets. Consequently, the statistics for ΔMGW in this region were 426 

very similar between the two cohorts. Across the 500 kb window of high quality SNPs, the 427 

average ΔMGW was 0.67 Å (median=0.55 Å) in both EA and HA. (Table S9) These values 428 

were slightly lower than the observed mean for bi-allelic SNPs from dbSNP (Table 1). 429 

 The SKAT analyses yielded similar results between the EA and HA data. The ΔMGW-430 

weighted analyses did not effectively prioritize or refine the SNP signal. Unlike FAM167A-BLK 431 

and STAT4, ΔMGW-weighting did not resolve the top signal to the same SNP in both 432 

ancestries. Instead, in TNIP1, the top SNPs in the ΔMGW-weighted analyses for EA 433 

(rs6889239) and HA (rs10036748) were the same as those identified in the single-SNP logistic 434 

regression analysis (Figure 7).  The SNPs that were prioritized in the unweighted SKAT 435 

analyses were also prioritized in the ΔMGW-weighted analyses; notably, in this region ΔMGW-436 

weighting actually dampened the signal because the SNPs with the greatest SLE association 437 

values had low magnitudes of ΔMGW (ranging from 0.31-0.37 Å). This pattern was also 438 

observed in the Bayesian approach, where SNPs with the highest posterior probabilities in the 439 

derived credible sets exhibited lower posterior probabilities than in the unweighted credible set 440 

(Figures 7 and S4 and Tables S10-S11), again due to the low magnitudes of ΔMGW for top-441 

associated SNPs.  442 

In TNIP1, the ΔMGW-weighted analyses did not differentially prioritize SNPs in 443 

comparison to the unweighted approaches. While there were SNPs with large ΔMGW in the 444 

region, these did not have strong SLE-associations. Unlike the FAM167A-BLK and STAT4 445 

regions, where ΔMGW successfully prioritized specific SNPs, this was not achieved in the 446 

TNIP1 region. This could indicate several possibilities, including:  ΔMGW may not be a relevant 447 

mechanism for these SNPs, another DNA measure may be more informative, DNA topology 448 

may not be a functional driver for this region, and/or or the functional variant was not included in 449 
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these analyses. Here, an alternative strategy is required to identify the most plausible functional 450 

polymorphisms.  451 

Discussion 452 

Sequence-dependent DNA topology could provide important functional context for 453 

associations, especially for polymorphisms that do not impose protein changes (e.g., coding-454 

synonymous) and/or variants mapping to non-coding regions.  We explored ΔMGW, a specific 455 

sequence-dependent measure of DNA topology, as a weighting variable in fine-mapping 456 

analyses. In a sample of 300k SNPs, Wang et al. previously found that MGW-preserving SNPs 457 

are more common.(42) Here, we built upon these findings through a full census of bi-allelic 458 

SNPs (n=199,038,197) across the genome. We showed the observed genomic ΔMGW was 459 

significantly lower than the complete ΔMGW sample space. These findings were consistent with 460 

the relative frequencies of transversion (~33%) and transition (~66%) mutations in the human 461 

genome.(59, 60) We hypothesized that phenotypically-associated SNPs with large ΔMGW 462 

would be more likely to impose functional consequences; and thus, proposed ΔMGW as a 463 

prioritization metric in fine-mapping studies.  464 

We tested our hypothesis using ΔMGW weights in two fine-mapping approaches in three 465 

regions (FAM167A-BLK, STAT4, and TNIP1) with well-established SLE associations. In 466 

FAM167A-BLK and STAT4, we successfully identified SNPs of possible functional 467 

consequence, underscoring ΔMGW as a plausibly informative prioritization metric in fine-468 

mapping studies.  469 

There are several advantages to using sequence dependent topology, such as ΔMGW, as a 470 

weighting metric in fine-mapping studies. For one, it is an intrinsic variable, inherent to the 471 

genetic sequence surrounding the polymorphism; thus, it is not reliant on external data which 472 

may offer limited information for the SNPs of interest (database bias). As an intrinsic variable it 473 

is also not ancestry specific, tissue specific, or sample size dependent.  Limitations in external 474 
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(non-intrinsic) data may down-weight potentially causal SNPs due to a lack of available 475 

functional data. While publically available functional resources continue to expand, they still 476 

present these challenges, especially for rare or novel variants. This is particularly relevant for 477 

diverse study populations where annotation resources based on European data offer 478 

inadequate or no coverage for regions of interest.(14) For example, Sherman et al. presented 479 

deep sequencing in 910 individuals of African descent and found over 296 million base pairs 480 

which were absent in the human reference genome.(15) Novel variants or regions are unlikely 481 

to be annotated by commonly used resources. Therefore, while a SNP’s functional relevance 482 

can be supported by public resources, a lack of information does not necessarily indicate a 483 

variant’s lack of function. This was illustrated by rs11889341 in STAT4, which lacked functional 484 

information from public resources (GTEx, ENCODE, 3D-genome browser)(55, 56, 58), but in a 485 

targeted functional study by Patel et al., rs11889341 was correlated with gene expression and 486 

binding of the transcription factor HMGA1.(63)  We identified rs11889341 using ΔMGW as the 487 

prioritizing variable. Thus, prioritizing SNPs by a factor intrinsic to DNA may help alleviate some 488 

bias that would otherwise be introduced by missing data from publically available functional 489 

datasets. Consequently, we propose including ΔMGW among annotation resources used in 490 

SNP-weighted fine-mapping methods.  491 

Changes in DNA topology can potentially impact an array of biological functions such as 492 

transcription factor binding, chromatin remodeling, or methylation.(20, 21, 23, 26, 31, 32, 36)  493 

Likewise, using DNA topology as a SNP prioritization metric does not limit functional information 494 

to a single biological mechanism. This may be especially beneficial when the relationship 495 

between phenotype and biological mechanism is unknown. While functional work in STAT4 496 

showed that rs11889341 altered HMGA1 binding, functional work is still needed to evaluate the 497 

rs2061831 genotype in FAM167A-BLK. Here, the biological implications of rs2061831 could 498 

involve transcription factor binding, and/or, given its apparent location within a long-range 499 
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chromatin interaction hotspot (Figure S1), chromatin organization. Considering the strong trans-500 

ancestral signal of rs2061831 across EA and AA, further functional work should explore whether 501 

this SNP acts through an independent functional mechanism or through interactions with other 502 

variants in the region (e.g. within the context of sequence-dependent structural motifs), such as 503 

the insertion-deletion identified in a study of ATAC-seq data in 100 individuals of British 504 

Ancestry.(66)  Leveraging changes in DNA topology can identify potentially causal 505 

polymorphisms and also generate specific hypotheses for functional follow-up studies. 506 

Furthermore, sequence-dependent DNA topology is a weighting scheme that informatively 507 

decouples SNPs in high LD, a long sought after feature as associations and eQTLs are often 508 

confounded by LD. In FAM167A-BLK, we observed comparable eQTL evidence for SNPs in the 509 

associated LD cluster, making eQTL status ineffective at differentiating highly-correlated SNPs. 510 

Instead, consideration of sequence-dependent ΔMGW allowed differential prioritization among 511 

these otherwise, highly-correlated SNPS, selecting rs2061831 as a plausible functional 512 

candidate SNP. 513 

Another advantage to using local DNA topology in fine-mapping studies is its consistency of 514 

information across ancestries. Assuming identical flanking sequence (e.g., no genomic variant 515 

within +/- 4 bases of the SNP), a SNP’s impact on DNA topology would be constant across 516 

ancestries, highlighting the potential utility of DNA topology as a means of resolving association 517 

signals across ancestries. Here, we showed that ΔMGW-weighted analyses of FAM167A-BLK 518 

and STAT4 resolved the association signal to the same SNP in each ancestry via the frequentist 519 

approach, followed by largely corroborating evidence via the derived credible sets in the 520 

Bayesian approach. Notably, rs2061831 was not the top-associated SNP in either the ancestry-521 

specific analyses; however, it was previously identified via the SLE Immunochip trans-ancestral 522 

meta-analysis, where combining association signals across ancestries identified it as the top 523 

SNP.(43)  524 
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Limitations and Future Work 525 

 There are several considerations and limitations to using sequence-dependent topology 526 

as a weighting metric in fine-mapping analyses. Notably, some of these limitations could result 527 

in inconclusive and/or insignificant results, as observed in the TNIP1 region.  First, the functional 528 

variants may not have been genotyped or imputed in the study. Analyses that utilize SNP-529 

specific weights decouple associations from LD. Thus, a weighted metric performs best when 530 

the functional SNP is included in the analysis set.  For this reason, we propose application of 531 

this prioritization technique in genomic regions where there is high confidence that the functional 532 

variants have been genotyped or imputed. We note this limitation exists for any statistical 533 

association method.  534 

Second, DNA topology, here ΔMGW, may not be the mechanism impacting phenotype. 535 

While sequence dependent DNA topology can influence a number of functional factors(18, 21, 536 

23, 24, 32),  it is not the only source of biological interactions and could be irrelevant for a 537 

specific phenotype. Thus, when using change in DNA topology, such as ΔMGW, in fine-538 

mapping studies, analyses should be considered in the form of a two-parameter hypothesis – a 539 

combination of association signal and ΔMGW. For example, in both the FAM167A-BLK and 540 

STAT4 regions, the highest prioritized SNPs, rs2061831 and rs11889341, did not have the 541 

largest magnitude of ΔMGW in the regions (Figures 5-6). Instead, these two SNPs were 542 

prioritized by their combined SLE-association and ΔMGW.  543 

Third, we placed greater weights on SNPs with larger magnitudes of change on DNA 544 

topology. We recognize that even small changes could yield functional consequences. Thus, 545 

future studies should explore weighting SNPs by particular topological profiles (e.g., those 546 

matching binding site profiles). For instance, our TNIP1 analyses did not show strong signals 547 

when weighting by the magnitude of ΔMGW, but this does not definitively rule out MGW as a 548 

functional mechanism (e.g. driven by pattern, not magnitude). The focus on MGW was 549 
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motivated by the breadth of study on MGW and function.(18, 20, 32, 34, 36) So while this 550 

manuscript considered a single parameter, ΔMGW, we are currently expanding to incorporate 551 

additional measures (e.g., helix twist, roll) through multivariate approaches that account for the 552 

correlation structure (dependencies) among spatial measures.   553 

Fourth, in this study, we used SKAT and a derived credible sets (Bayesian) approach to 554 

apply a topological weighting scheme to prioritize SNPs; however, we note that there are other 555 

methods that can incorporate weights for SNP association analyses.(10, 67)  Here, we assumed 556 

that the majority of variants in the region are non-causal, which is why we selected SKAT over a 557 

combined burden test. However, we note that the results from SKAT and SKAT-O were largely 558 

similar. Similarly, in case of the Bayesian approach applied here, a limitation is its assumption 559 

that a single causal SNP exists in a region, but other Bayesian methods can be explored.(53, 560 

68)  In the EA STAT4 data, the magnitudes of the Bayes factors were so large that weighting by 561 

ΔMGW yielded minimal impact. Future work should consider approaches to scale weighting 562 

schemes by a constant derived from the magnitude of signal across a genomic region. In the 563 

SKAT approach, for the sliding analysis window, we used five SNPs, which should yield a 564 

region that is neither too wide nor too unstable. Additional testing could potentially improve 565 

optimization of parameters for this analysis. Furthermore, we emphasize that our evaluation of 566 

the SKAT results by summarizing each SNP as the geometric mean of SKAT-analysis p-values 567 

should be regarded as a metric for prioritizing SNPs, not an association analyses, as these 568 

values do not have the statistical properties of a p-value. Overall, these limitations should be 569 

carefully considered when applying these specific methods; but they also highlight opportunities 570 

to further explore the relationship between sequence-dependent DNA topology and phenotype 571 

associations.  572 

In summary, weighting SNP associations by functional data can greatly improve 573 

identification of potentially causal SNPs; however, existing annotation resources can negatively 574 
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affect these outcomes when SNP information is unavailable in public datasets, especially in 575 

non-EA populations.(8, 10, 11, 14)  In this study, we presented and tested sequence-dependent 576 

DNA topology as a novel annotation source for genetic fine-mapping studies. As an intrinsic 577 

property, sequence-dependent DNA shape alleviates many of the challenges imposed by 578 

external data resources; and it provides potential functional (testable) context for associations 579 

(e.g. topological disruption for protein binding). Using ΔMGW in weighted analyses, we 580 

successfully prioritized functional SNPs in two SLE-associated regions with high LD. Likewise, 581 

as an annotation resource, sequence-dependent DNA topology, such as ΔMGW, is readily 582 

applicable in any fine-mapping methods that can incorporate continuous values for SNP 583 

weights. Altogether, this manuscript presents methods that are immediately applicable to 584 

existing genetic data, and it illustrates how sequence-dependent DNA topology can be used as 585 

a paradigm to investigate and understand genetic associations in fine-mapping studies. 586 
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Primary Figures and Legends 785 

 786 

Figure 1: Single nucleotide substitutions sequence can impose large or small changes 787 

on local DNA shape, dependent on the flanking sequence. 788 

(A) A single A/C substitution within a sequence generates minimal spatial differences.   789 

(B) A single A/C substitution within a sequence imposes large spatial differences790 

  791 
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Figure 2: Generation of ∆MGW for a SNP.  792 

(A) Minor groove width measures are plotted for the two sequences generated by a specific bi-793 

allelic T/C SNP. For a given SNP, the flanking sequence (+/- 4 bp) was used as input for 794 

DNAshapeR (via Bioconductor) which calculates MGW along a rolling sequence window.  For a 795 

9-mer sequence, the MGW can be consistently provided at the SNP’s position +/- one 796 

nucleotide which is highlighted in yellow and labeled as the ‘region of interest’. Expanding this 797 

region to additional nucleotides would require a longer input sequence and increases chance of 798 

additional variants being within the input (and introducing additional variability). Although the two 799 

sequences for a SNP only differ at one nucleotide (at the SNP position), the impact on MGW 800 

carries through adjacent bases. Thus, ∆MGW was calculated to capture the change in MGW for 801 

a SNP by incorporating information at the SNP’s position and +/- 1 base pair (dashed lines).   802 

(B) Workflow for calculating the ∆MGW for a bi-allelic SNP. This method captures the change in 803 

MGW at the SNP position and +/- 1 base pair. This Euclidean distance captures ∆MGW as a 804 

measure of magnitude (in Angstroms). 805 
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Figure 3: Summarization of ∆MGW across the complete sample space 808 

(A) ΔMGW sample space was constructed on six allele pairings (A/C, A/G, A/T, C/G, C/T, G/T) 809 

with all possible combinations for flanking +/- 4 bp. This yielded 393,216 paired sequences that 810 

were evaluated for ∆MGW. 811 

(B) The distribution of ∆MGW for the 393,216 paired sequences, these summary statistics are 812 

listed in Table 1.  813 

(C) Two randomly selected paired sequences from the average and right tail of the ∆MGW 814 

distribution are shown. Sequences are plotted with their respective MGW values (Angstroms). 815 

∆MGW is calculated as a Euclidean distance, which captures the change in MGW (dashed 816 

lines) at the SNP position and +/- 1bp (highlighted in orange). ATGA[C/A]CGAT exhibits a small 817 

∆MGW , at 0.47 Å while TCCA[T/A]ATTG yields a large change in MGW (2.34 Å) which we 818 

would hypothesize to have greater potential for functional consequence if also associated with 819 

disease status.  820 

(D) The ∆MGW distribution for all paired sequences (gray) is shown superimposed on the 821 

∆MGW distributions by 5th nucleotide alleles (blue). Transition pairings (C/T, A/G) have a more 822 

strongly skewed distribution with a smaller average ∆MGW compared to transversion pairings 823 

(A/C, A/T, C/G, G/T), (Table 1). Pairings that represent complimentary sequences (C/T – A/G 824 

and A/C – T/G) exhibit the same distributions of ∆MGW, as expected. 825 

  826 
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Figure 4: Summarization of ∆MGW across the human genome using bi-allelic SNPs from 829 

dbSNP SNP150. 830 

(A) Comparison of ∆MGW sample space (Figure 3) and the observed ∆MGW from SNPs across 831 

the genome (via dbSNP). Distribution of ∆MGW is shown in blue for observed bi-allelic SNPs 832 

from the SNP150 dataset (n=199,038,197 SNPs). The ∆MGW sample space distribution (Figure 833 

3) is plotted in gray (n=393,216 paired sequences). The observed ∆MGW across genomic 834 

SNPs showed a stronger right skewed distribution than what would be expected from a random 835 

sampling of the entire sample space of all-possible sequences.  Only small numbers of SNPs 836 

elicit large magnitudes of ∆MGW.  837 

(B) ∆MGW distributions are similarly shown for SNP subsets, by NCBI function (exclusive NCBI 838 

function label for each SNP, see Methods and Materials). Again, each distribution is 839 

superimposed with the distribution from the ∆MGW sample space (shown in gray). Subsetting 840 

by NCBI function yields similar patterns observed in part A, with observed genomic SNPs 841 

showing smaller averages in ∆MGW. Some NCBI SNP-functions have specific sequence 842 

requirements (Supplemental Table 1) and these are reflected in the resulting ∆MGW 843 

distributions which are also sequence-dependent (e.g. splice-6, nonsense).   844 

(C) The mean and median ∆MGW for each SNP category. All dbSNP SNP categories have 845 

significantly lower mean and median compared to the ∆MGW sample space (Tables 1-2). 846 

Coding-synonymous SNPs have the smallest magnitudes of ∆MGW, compared to all other 847 

categories. 848 

849 
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Figure 5: FAM167A-BLK ∆MGW prioritization by Frequentist and Bayesian Methods in 853 

European and African Ancestries. 854 

(A) Genotyped SNPs that passed quality control and were within 250kb of the top single-SNP 855 

association analysis in EA and AA data. A 60 kb region capturing the primary peak of 856 

association is highlighted. In both the EA and AA data a cluster of SNPs in high LD yielded the 857 

top association signals. 858 

(B) Using SKAT as a ∆MGW-weighted frequentist approach, rs2061831 was sharply prioritized 859 

over SNPs in the previously identified LD blocks. While the single-SNP logistic regression 860 

analyses in (A) identified a different top SNP in the EA (rs13277113) and AA (rs2736340) data, 861 

rs2061831 was consistently prioritized as the top SNP in both the EA and AA analyses. ∆MGW-862 

weighting did not yield spurious associations for with SNPs outside the broad 60 kb peak of 863 

association highlighted in yellow. 864 

(C) SNPs within the 60 kb association peak were analyze by a Bayesian approach. The ∆MGW-865 

weighted posterior probabilities are plotted. While the majority of SNPs yielded infinitesimal 866 

posterior probabilities, those comprising the 95% derived credible sets are labeled. Akin to the 867 

∆MGW-weighted SKAT analyses, rs2061831 was again prioritized in both the EA and the AA 868 

data, with the largest posterior probability.  869 

(D) The ∆MGW is plotted for each SNP in the 60 kb region. The ∆MGW for a SNP is sequence-870 

specific thus yielding the same values in EA and AA data. Differences between the two plots 871 

result from differences in genotyped SNP lists (i.e. SNPs that are monomorphic in one 872 

population would not be plotted). SNPs identified by the derived ∆MGW-weighted credible set 873 

are plotted in yellow. While rs2061831 had a large ∆MGW, other SNPs in the region had larger 874 

magnitudes of ∆MGW but did not show evidence of SLE-association. This illustrates the 2-875 

parameter hypothesis of considering a combination of association signal and magnitude of 876 

∆MGW. Prioritized SNPs fall upstream of both FAM167A and BLK. 877 
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Figure 6: STAT4 ∆MGW prioritization by Frequentist and Bayesian Methods in European 879 

and Hispanic Ancestries. 880 

(A) Regional association plots in EA and HA for genotyped SNPs that passed quality control 881 

and were within 250kb of the top single-SNP association analysis in STAT4. Within the broad 11 882 

Mb peak of association (highlighted in yellow), a cluster of SNPs in high LD yielded the top 883 

association values. 884 

(B) SNP refinement using SKAT with a ∆MGW-weighted approach sharply prioritizes 885 

rs11889341 in both EA and HA data. In the EA data, the ∆MGW-weighting shifted the top signal 886 

to rs1188931, whereas in the HA data, it simply further accentuated the signal above other 887 

SNPs.  888 

(C) For the highlighted 11 Mb region, SNP posterior probabilities are plotted for the derived, 889 

∆MGW-weighted Bayesian analysis. While the frequentist MGW-weighted approach prioritized 890 

the same SNP (rs1188931) in both ancestries, this was not observed in the Bayesian approach. 891 

In the EA data, the Bayes factor for rs7568275 (BF=2.20x1064) was at such a large magnitude, 892 

that it was largely unaffected by ∆MGW-weighting. However, rs1188931 still entered the 95% 893 

derived credible set, but with a much smaller posterior probability (6.03%) compared to 894 

rs7568275 (77.25%). In the HA data, ∆MGW-weighting further prioritized rs1188931. 895 

(D) The ∆MGW for SNPs within the 11 Mb region. SNPs that were identified by the derived 896 

∆MGW-weighted credible set are plotted in yellow. Again, the analytic approaches consider 897 

SNPs in the context of a 2-parameter hypothesis, evaluating SNPs for a combination of 898 

association signal and magnitude of ∆MGW. Hence, the prioritized SNPs (yellow) are not 899 

necessarily the SNPs with the largest ∆MGW in the region. Prioritized SNPs occur within an 900 

intron of STAT4. 901 
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Figure 7: TNIP1 ∆MGW prioritization by Frequentist and Bayesian Methods in European 904 

and Hispanic Ancestries. 905 

(A) Genotyped SNPs within 250 kb of the top single-SNP association analysis are shown for EA 906 

and HA. The 40 kb region that captures the primary peak of association is highlighted in yellow. 907 

In EA and HA, the same three SNPs (rs10036748, rs6889239, and rs960709) show the highest 908 

association values and are all in high LD. In EA rs6889239 has the best p-value and 909 

rs10036748 yields the best p-value in HA.  910 

(B) Analyzing the region with SKAT in a ∆MGW-weighted approach. In this region, for these 911 

SNPs, including ∆MGW did not provide differential prioritization, rs6889239 remained the top 912 

signal for EA and rs10036748 for HA.  913 

(C) For each SNP in the 40 kb region, the posterior probabilities are plotted for the derived, 914 

∆MGW-weighted Bayesian analysis. The weighted Bayesian analysis did not alter the relative 915 

signals observed in the single-SNP logistic regression analyses. In the EA data, rs6889239 916 

yielded the largest posterior probability in EA and rs10036748 remained the top signal for HA.  917 

(D) The ∆MGW is plotted for each genotyped SNP that passed quality control measures. SNPs 918 

that were identified by the derived ∆MGW-weighted credible set are plotted in yellow. These 919 

prioritized SNPs have comparatively low magnitudes of ∆MGW, indicating that the driving factor 920 

of these SNP prioritizations stemmed from their SLE associations and not their magnitude of 921 

∆MGW. 922 
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Primary Tables  926 

Table 1. Summary statistics for the complete ΔMGW (Å)  sample space. 927 

5th Nucleotide 
pairinga N Min. Max. Range Median Mean 

Standard 
Deviation 

A/C 65,536 0.03 2.74 2.71 0.86 0.90 0.39 

A/G 65,536 0.05 2.07 2.02 0.46 0.50 0.25 

A/T 65,536 0.07 3.16 3.09 1.11 1.16 0.48 

C/G 65,536 0.00 1.44 1.44 0.62 0.64 0.27 

C/T 65,536 0.05 2.07 2.02 0.46 0.50 0.25 

G/T 65,536 0.03 2.74 2.71 0.86 0.90 0.39 

All Possible 393,216 0.00 3.16 3.16 0.67 0.77 0.42 

aPairings generated by 5th nucleotide in 9-mer sequence, all other nucleotides held constant.  928 
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Table 2. Summary Statistics for ΔMGW (Å) across bi-allelic SNPs in dbSNP SNP150 dataset. 930 

 
SNP Category N Min. Max. Range Median Mean 

Standard 
Deviation 

dbSNP SNP150 (bi-allelic) 199,038,197 0.00 3.16 3.16 0.56 0.68 0.43 

S
in

g
le

-N
C

B
I 
F

u
n
c
ti
o
n
 S

u
b
s
e
ts

 

coding-synonymous 1,178,980 0.00 2.58 2.58 0.48 0.55 0.30 

intron 84,909,115 0.00 3.16 3.16 0.56 0.68 0.42 

missense 2,345,831 0.00 3.16 3.16 0.52 0.61 0.36 

ncRNA 499,593 0.00 3.16 3.16 0.54 0.63 0.38 

near-gene-3 654,589 0.00 3.16 3.16 0.55 0.66 0.41 

near-gene-5 2,487,192 0.00 3.16 3.16 0.54 0.65 0.41 

nonsense 66,275 0.00 3.16 3.16 0.55 0.65 0.37 

splice-3 25,401 0.01 2.07 2.05 0.57 0.61 0.31 

splice-5 28,983 0.00 2.74 2.74 0.57 0.65 0.31 

stop-loss 2,225 0.03 3.16 3.13 0.61 0.71 0.42 

unknown 99,004,130 0.00 3.16 3.16 0.57 0.69 0.43 

untranslated-3 1,299,685 0.00 3.16 3.16 0.55 0.67 0.41 

untranslated-5 181,208 0.00 3.16 3.16 0.50 0.58 0.33 
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