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ABSTRACT  

Interactions between plant pathogens and other plant-associated microorganisms regulate disease. 

Deciphering the networks formed by these interactions, termed pathobiomes, is crucial to disease 

management. Our aim was to investigate whether microbial association networks inferred from 

metabarcoding data give relevant insights into pathobiomes, by testing whether inferred associations 

contain signals of ecological interactions. We used Poisson Lognormal Models to construct microbial 

association networks from metabarcoding data and then investigated whether some of these 

associations corresponded to interactions measurable in co-cultures or known in the literature, by 

using grapevine (Vitis vinifera) and the fungal pathogen causing powdery mildew (Erysiphe necator) 

as a model system. Our model suggested that the pathogen species was associated with 23 other 

fungal species, forming its putative pathobiome. These associations were not known as interactions 

in the literature, but one of them was confirmed by our co-culture experiments. The yeast 

Buckleyzyma aurantiaca impeded pathogen growth and reproduction, in line with the negative 

association found in the microbial network. Co-cultures also supported another association involving 

two yeast species. Together, these findings indicate that microbial networks can provide plausible 

hypotheses of ecological interactions that could be used to develop microbiome-based strategies for 

crop protection. 
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INTRODUCTION 

Plant growth and health depend on their associations with a large number of microorganisms that 

interact with each other (Vandenkoornhuyse et al. 2015; Hassani et al. 2018). Among all these 

microorganisms, those that interact with pathogens and regulate diseases are particularly important 

and were recently termed the plant's pathobiome (Vayssier-Taussat et al. 2014; Brader et al. 2017; 

Bass et al. 2019). Some pathobiome members form a barrier that limits pathogen development 

through direct antagonistic interactions (Arnold et al. 2003; Kemen 2014; Durán et al. 2018; Li et al. 

2019), while others can prime the plant immune system (Vogel et al. 2016; Lee et al. 2017; Hacquard 

et al. 2017). In turn, a successful pathogen invasion can disrupt the plant microbiota and drive higher 

community heterogeneity (Zaneveld et al. 2017). This increase in heterogeneity among infected 

microbiotas is termed the Anna Karenina principle, based on the first sentence of Leo Tolstoy’s book: 

“Happy families are all alike; every unhappy family is unhappy in its own way”. This can be 

transposed to microbiology as: “All healthy microbiomes are similar; each dysbiotic microbiome is 

dysbiotic in its own way” (Zaneveld et al. 2017).   

Deciphering microbial interactions within pathobiomes, and determining what environmental factors 

shape those interactions, will be an important step towards improved plant health protection. A better 

understanding of plant pathobiomes will allow us to reduce our reliance on chemical pesticides, 

through the discovery of novel biocontrol agents (Poudel et al. 2016) and cultural practices fostering 

the protective microbiota (Hartman et al. 2018). To achieve this aim, research is needed at the 

interface between plant pathology, microbial community ecology, culturomics, metagenomics and 

big data (Vannier et al. 2019). Culturable and unculturable microorganisms associated with healthy 

and diseased plants can be described using metabarcoding approaches (Abdelfattah et al. 2018; 

Nilsson et al. 2019). Network inference methods can then be applied to reconstruct microbial 

association networks from metabarcoding data (Faust and Raes 2012; Biswas et al. 2016; Vacher 

et al. 2016; Layeghifard et al. 2017). These networks, in which nodes correspond to microbial taxa 

and links to direct statistical associations between their sequence counts, constitute hypotheses of 

microbial interactions (Jakuschkin et al. 2016; Poudel et al. 2016). Finally, microbiological 

experiments could then be used to test these interaction hypotheses (e.g. Lima-Mendez et al. 2015; 
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Biswas et al. 2016; Wang et al. 2017; Das et al. 2018; Durán et al. 2018; Gao et al. 2018) and 

develop microbiome-based plant protection strategies.  

Despite its potential interest to agriculture and environment, the application of network inference 

methods to pathobiome research is still in its infancy. Several methodological issues must be 

overcome to generate robust and relevant hypotheses of microbial interactions from metabarcoding 

data because statistical associations between sequence counts do not directly reflect ecological 

interactions (e.g. competition, parasitism) between microorganisms (Weiss et al. 2016; Derocles et 

al. 2018; Röttgers and Faust 2018). For instance, the compositional nature of metabarcoding data 

induces statistical associations between sequence counts that are not related to any ecological 

process (Friedman and Alm 2012; Gloor et al. 2017). Environmental filtering may also generate 

statistical associations between microbial taxa abundances that are not triggered by ecological 

interactions but environmental variations (Berry and Widder 2014; Vacher et al. 2016; Derocles et 

al. 2018; Röttgers and Faust 2018). Several recent methods of network inference deal explicitly with 

these two issues, including HMSC (Hierarchical Modelling of Species Communities; Ovaskainen et 

al. 2017) and PLN (Poisson LogNormal Model; Chiquet et al. 2018; 2019). However, their relevance 

to pathobiome research has yet to be demonstrated. 

The aim of this study was to deepen our knowledge of the dynamics of species and interactions 

within plant pathobiomes. We tested the following hypotheses: (H1) successful infection events 

destabilize plant-associated microbial communities and increase their heterogeneity (Anna Karenina 

principle); (H2) interactions among microorganisms within pathobiomes can be detected by inferring 

microbial networks from metabarcoding data and environmental covariates; and, (H3) cropping 

system influences the abundance of microorganisms forming pathobiomes. These hypotheses were 

tested using grapevine, Vitis vinifera, and the fungal obligate biotroph pathogen causing powdery 

mildew, Erysiphe necator (Armijo et al. 2016, Gadoury et al. 2012), as a model system. To maximize 

the diversity of grapevine-associated microbial communities and thus the possibility of discovering 

microorganisms interacting with the pathogen, we conducted the study in an untreated vineyard plot 

(Figure 1). We inoculated the pathogen species on several plants at the beginning of the growing 

season and then collected sporulating and visually  healthy leaves on three dates (40, 62 and 77 

days post-inoculation). Illumina MiSeq sequencing was used to characterize fungal communities in 
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three tissue types: visually healthy leaf blade of non-sporulating leaves (HNI); visually healthy leaf 

blades of sporulating leaves (HI); and, disease spots (DI). We used the PLN model (Chiquet et al. 

2018; 2019) to construct a network of associations between foliar fungal species from the 

metabarcoding dataset, and then used a combination of co-cultures and text-mining to test whether 

these statistical associations represented ecological interactions. The ecology of pathobiome 

species was characterized by searching for their presence in bark, ground cover and upper soil, and 

by assessing their response to cover cropping (CC) and weed removal (NCC; Figure 1).  

 

RESULTS 

Pathogen abundance and fungal load tend to be lower in visually healthy tissues 

The grapevine foliar fungal community was composed of 4148 fungal amplicon sequence variants 

(ASVs; Callahan et al. 2017), representing 10195266 sequences. 1454 of these ASVs, representing 

71.4% of the sequences, were assigned at the species level using the UNITE database (UNITE 

Community 2019). These ASVs corresponded to 547 fungal species, of which 306 were 

Ascomycetes and 241 Basidiomycetes. The pathogen E. necator was among the three most 

abundant fungal species, even in visually healthy tissues. It ranked first in sporulating leaves, in both 

visually healthy tissues and disease spots. It ranked third in leaves with no visible symptom, after 

Mycosphaerella tassiana and Filobasidium wieringae (Table 1). The relative abundance of E. necator 

varied significantly through the vegetative season (Table 2A), although we collected leaves of the 

same age on the three sampling dates. On the first and second sampling dates (both in June), the 

pathogen represented 39% and 39.6% of all fungal sequences, respectively. As expected, it was 

significantly more abundant in disease spots than in visually healthy tissues (Table 2A and Figure 

S1A). The total fungal abundance, estimated with digital droplet PCR, was also higher in disease 

spots than visually healthy tissues (Table 2B and Figure S2). On the third date (July), the pathogen 

represented 65.5% of all fungal sequences. It was slightly more abundant in disease spots and in 

visually healthy tissues (Figure S1A), but this difference was not significant. Moreover, the total 

fungal abundance was similar in disease spots and visually healthy tissues (Figure S2), suggesting 

that the pathogen was widely dispersed on the third date.  
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Infection does not destabilize the fungal community (no Anna Karenina effect) 

In contrast to the expectations of hypothesis H1, fungal community composition was not found to 

differ between visually healthy tissues and disease spots, irrespective of the date. The composition 

changed significantly between cropping systems and, to a larger extent, between sampling dates 

(Table 2C and Figure S3). Community heterogeneity differed significantly among tissue types 

(ANOVA: df = 8; F = 37.7; p < 0.01), but contrary to the expectations of the Anna Karenina principle, 

community heterogeneity was not higher between infected tissues than between visually healthy 

ones. On the first sampling date, community heterogeneity was significantly lower in disease spots 

(Figure S1B), although the abundance of the pathogen was markedly higher (Figure S1A). The same 

results were obtained when E. necator was removed from the fungal community data (not shown), 

confirming the absence of Anna Karenina effect.   

Inferred microbial networks give relevant insights into the pathobiome 

In accordance with hypothesis H2, we were able to show experimentally that some fungal 

associations inferred from metabarcoding data and environmental covariates corresponded to 

ecological interactions. The fungal association network inferred using the PLN model (Chiquet et al. 

2018; 2019) was composed of 702 statistical associations between 61 fungal species, selected 

based on their prevalence (Figure S4A). Within this network, E. necator was negatively associated 

with 15 species and positively associated with 8 species (Figure 2); these 23 species were 

considered as the putative pathobiome of E. necator. All associations between E. necator and the 

pathobiome species, except two, were robust to subsampling (stability over 0.5; Table S1). None of 

these associations were known as ecological interactions in the literature. Literature-mining identified 

9 abstracts in which E. necator and at least one species of its putative pathobiome were mentioned 

(Table S2), but these articles provided no experimental evidence of an interaction between the 

species. As a partial validation of the putative pathobiome of E. necator (Figure 2), we analyzed 

experimentally its interactions with 3 yeast species, Buckleyzyma aurantiaca, Filobasidium wieringae 

and Vishniacozyma victoriae, which were negatively associated with the pathogen in the PLN 

network (Figure 2). Microbiological experiments supported the antagonistic effect of B. aurantiaca 

on E. necator. The centrifuge supernatant from a B. aurantiaca liquid culture reduced the growth of 

E. necator by about 30% (Table 3) and significantly increased the number of collapsed conidia (Table 
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S3 and Figure S5), when applied as a curative treatment. No effect was observed for the two other 

yeast species. 

We also analyzed experimentally the interactions between E. necator and 5 additional yeast species 

(Cystofilobasidium macerans, Dioszegia hungarica, Filobasidium oeirense, Udeniomyces pyricola 

and Sporobolomyces roseus) and all interactions between the 8 yeast species. All the yeast species 

were among the most abundant species in grapevine leaves and five belonged to the top ten (Table 

1). We found several discrepancies between the PLN association network and the ecological 

interactions revealed by the co-cultures. Spot-on-lawn experiments (Figure S4C) revealed 3 growth-

promoting interactions and 12 growth-inhibiting interactions among the yeast species (Figure S4D). 

This in vitro interaction network shared only two links with the PLN association network (Figure S4B), 

between C. macerans and U. pyricola and between F. oeirense and C. macerans. The positive 

association between C. macerans and U. pyricola was upheld by the spot-on-lawn assay as 

U. pyricola enhanced the growth of C. macerans. In contrast, the link between F. oeirense and C. 

macerans was found as a positive association with PLNnetwork, while the growth of C. macerans 

was inhibited by F. oeirense in the spot-on-lawn assay. Similarly, although there was no association 

between U. pyricola and E. necator in the PLN network, we found that the pellet of U. pyricola culture 

inhibited E. necator growth when applied as a curative treatment (Table 3).  

Cropping system influences the abundance of pathobiome members 

Cover cropping increased significantly the abundance of 9 species belonging to the putative 

pathobiome of E. necator, including the yeast B. aurantiaca (Figure 2 and Table S4). These 9 species 

were putative antagonists of E. necator  and eight of them, including B. aurantiaca, were generalist 

fungal species found in grapevine leaves but also in bark and ground cover (Figure 2 and Table S1). 

These findings suggest that cropping systems modulate pathobiomes, in accordance with 

hypothesis H3. Interestingly, only the pathogen E. necator was significantly favored by the absence 

of a cover crop according to differential abundance analyses (Table S4). This pattern, which might 

be accounted for by the significant increase in vine vigor in the absence of cover crop (Figure S6A), 

was however not confirmed by the visual disease severity assessment performed mid-July (Figure 

S6B).  
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DISCUSSION  

Plant pathologists have long believed that diseases result from interactions between pathogens, their 

hosts and the abiotic environment (the so-called ‘disease triangle’). A paradigm shift occurred in 

2014 with the integration of the microbiota into this framework (Vayssier-Taussat et al. 2014; Kemen 

et al. 2015; Vandenkoornhuyse et al. 2015). The new paradigm led to the concept of the pathobiome, 

which corresponds to all the microorganisms associated with a host that regulate disease (Vayssier-

Taussat et al. 2014; Brader et al. 2017; Bass et al. 2019). Contemporaneous meta-barcoding and 

meta-genomic approaches revealed the huge microbial diversity associated with soil and plants, 

including grapevine (Zarraonaindia et al. 2015). This paradigm shift increased the complexity of the 

studied systems and triggered an increase in the use of network approaches in plant pathology. To 

identify the microorganisms protecting plants against pathogens, several authors suggested 

considering the statistical associations within meta-barcoding datasets as a proxy for microbial 

interactions (Poudel et al. 2016; Vacher et al. 2016; Garett et al. 2018; Vannier et al. 2019), with the 

ultimate goal of identifying (groups of) microbial taxa that compete for space or resources with 

pathogens, parasitizes pathogens or have an antibiosis activity against them (Massart et al. 2005, 

Abdelfattah et al. 2018). In this study, we assessed the relevance of this novel line of research using 

grapevine powdery mildew (Erysiphe necator; Gadoury et al. 2012, Armijo et al. 2016) as a model 

system.  

We analyzed the microbiota of both healthy and diseased foliar tissues to discover microbial species 

with potential antagonistic activity against grapevine powdery mildew.  We then used a new statistical 

approach, the PLNnetwork variant of the PLN model family (Chiquet et al. 2018; 2019), to generate 

novel hypotheses of microbial interactions in the form of a network of positive and negative 

associations between microbial species. The network was inferred from a cross-sectional meta-

barcoding dataset including a large number of samples (276 in total) and several environmental 

variables associated with each sample. The number of samples was in line with the recent 

recommendation by Hirano and Takemoto (2019) of at least 200 samples per network, and the 

inferred associations were robust. Network analysis suggested that the pathogen species was 

associated with 23 other fungal species, forming its putative pathobiome. We tested some of the 

hypotheses of interaction using co-cultures. Interestingly, we found that the yeast Buckleyzyma 
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aurantiaca reduced pathogen growth and altered the shape of asexual reproduction organs, the 

conidia. These findings upheld the negative association between the abundances of B. aurantiaca 

and E. necator revealed by the network approach, and make this yeast a potential biocontrol 

candidate deserving further investigation. B. aurantiaca (ex Rhodotorula aurantiaca) has previously 

been reported as a leaf-colonizing yeast which, when isolated from disease-free plants, was able to 

protect melon plants against bacterial fruit blotch (de Melo et al. 2015). A hypothesised association 

involving two yeast species, Cystofilobasidium macerans and Udeniomyces pyricola, was also 

supported by co-cultures. These findings corroborate our expectation that network inference 

methods can detect signals of ecological interactions between microorganisms (Das et al. 2018; 

Durán et al. 2018; Gao et al. 2018) and are useful tools for developing future microbiome-based crop 

protection strategies.  

Our results also suggested that cover cropping promotes disease control. We found that cover 

cropping increased the abundance of B. aurantiaca and eight other putative antagonists of E. 

necator. All but one of these species were detected in the ground cover and on vine leaves. Cover 

cropping decreased significantly both the vigor of the vines and the abundance of the pathogen in 

the molecular dataset, confirming previous results (Valdés-Gómez et al. 2011). Hence, our findings 

suggest that cover cropping might regulate powdery mildew by both influencing vine physiology 

(Valdés-Gómez et al. 2011) and increasing the abundance of generalist fungal species that compete 

with E. necator. The same mechanisms could account for the reduced severity of black rot and 

downy mildew (Figure S6) in the presence of cover crops. Cover cropping is already widely used in 

vineyards to protect the soil, limit herbicide use (Pertot et al. 2017) and strengthen natural pest 

regulation by favoring predatory insects (Saenz-Romo et al. 2019). Our study provides additional 

support for the potential benefits of ground cover via the maintenance of generalist fungal species 

that can compete with foliar pathogens. 

Finally, our analyses revealed what distinguishes the microbiota of visually healthy tissues from that 

of infected tissues, which is an important step for understanding disease ecology and developing 

microbiome-based management strategies. Surprisingly, E. necator was among the dominant 

species of grapevine leaves in our study, even in visually healthy tissues. The relative abundance of 

the pathogen was much higher in our study (between 15 to 70% depending on the tissue type) than 
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in other studies of grapevine foliar fungal communities, where it represented less than 5% (Fort et 

al. 2016; Gobbi et al. 2020). Several factors, including leaf age and sampling date, might account for 

this difference as there is marked turnover in the grapevine foliar fungal community along the 

vegetative season (Pinto & Gomes 2016; Fort et al. 2016; Gobbi et al. 2020). The artificial inoculation 

of the pathogen on some vines at the beginning of the vegetative season is also probably responsible 

for the higher relative abundance of the pathogen in our study. As expected, the pathogen was 

significantly more abundant in disease spots than in visually healthy tissues of the same leaf, and 

was more abundant in visually healthy tissues of leaves harboring disease spots than in leaves that 

appeared completely healthy, except for the final sampling date when the abundance of the 

pathogen was high in all tissue types. The presence of pathogen spores on visually healthy tissues 

could account for this latter result. Moreover, we found that the composition of the fungal community 

was similar in visually healthy tissues and disease spots, in contrast to the results previously 

obtained for oak powdery mildew, Erysiphe alphitoides (Jakuschkin et al. 2016). This result would 

suggest that E. necator interacts with only a few fungal species, as revealed by the network 

approach, but that these interactions do not shape the whole fungal community. Furthermore, we 

found no evidence to support the Anna Karenina principle, which predicts higher heterogeneity in 

microbial community composition in infected tissues (Zaneveld et al. 2017). This suggests that the 

Anna Karenina principle is not ubiquitous and that the theoretical framework guiding pathobiome 

research needs further resolution. The absolute fungal load, which was estimated using microfluidic 

quantitative PCR, varied between visually healthy and infected tissues, in contrast to the composition 

of the fungal community. On the second sampling date, fungal load was significantly higher in 

infected tissues than in visually healthy tissues, corroborating the expectation that microbial absolute 

load is an important indicator of dysbiosis (Karasov et al. 2019). We suggest that the absolute 

quantification of microbial taxa abundance, which is often neglected in microbial community ecology 

studies based on meta-barcoding approaches, is necessary for understanding the pathobiome. 

Absolute quantification can be performed by coupling metabarcoding community data with total 

abundance data (Dannemiller et al. 2014; Vandeputte et al. 2017; Props et al. 2017), developing 

microfluidic quantitative chips targeting pathobiome members (Kleyer et al., 2017; Crane et al., 2018) 

and by using meta-genomic approaches (Karasov et al. 2019). These approaches will improve the 
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reliability of pathobiome networks because they help reduce compositionality bias, i.e. false 

associations generated by the comparison of relative abundances (Röttjers & Faust 2018). 

Overall, this study demonstrates that microbial networks give valuable insights into plant 

pathobiomes, can guide the search for novel biocontrol agents and suggest disease management 

approaches, such as the cover cropping systems shown here. To complete the pathobiome network 

of grapevine powdery mildew, future studies should collect data on the bacterial, oomycete, virus 

and even insect components of the vine community because inter-kingdom interactions may 

influence the structure and dynamics of microbial networks (Agler et al. 2016; Jakuschkin et al. 2016; 

Durán et al., 2018; Tipton et al. 2018). This additional information will also improve the inference of 

associations because missing species can generate apparent and indirect associations (e.g. Li et al. 

2016). The integration of prior information for certain interactions (reviewed by Panstruga & Kuhn 

2019 for powdery mildews) will also improve network inference (Lo and Marculescu 2017). The 

analysis of microbial networks associated with wild relatives of cultivated grapevine or hybrids could 

also be relevant, given that a recent study highlighted higher abundance of beneficial symbionts in 

wild vines (Kernaghan et al. 2017). Advances in culturomics (Lagier et al. 2018) and synthetic 

microbial communities (Kehe et al. 2019; Vannier et al. 2019) will also undoubtedly benefit the field 

of pathobiome research. In the present study, we did a partial validation of the pathobiome network 

using specific microbial cultures. In the future, microbiological experiments will enable the 

comparison and calibration of network inference methods based on synthetic microbial networks, 

which will allow us to select the method and the parameters of network reconstruction best suited to 

the features of the microbial system. 

 

EXPERIMENTAL PROCEDURE 

Study site and sampling design 

The sampling campaign occurred in spring and summer 2016 in an experimental vineyard located 

near Bordeaux (INRA, Villenave d’Ornon, France; 44°47'24.0"N 0°34'33.6"W; Figure 1A). This 

experimental vineyard was planted in 1991 with Vitis vinifera L. cv. Merlot grafted onto 101-14 

rootstock at a density of 5350 vines ha-1 (1.7m x 1.1m). Sampling was performed in a sub-plot of 5 
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largely untreated rows (Figure 1B) where very few chemical pesticides had been applied over the 

last ten years, and none in the last four years (Table S5). This sub-plot was composed of two 

cropping systems (Figure 1C): (i) perennial cover crop in the inter-rows (i.e. cover crop: CC) and (ii) 

chemical weed control with glyphosate (i.e. no cover crop: NCC). We defined eight experimental 

units across the sub-plot: four units in NCC areas and four units in CC areas, an experimental unit 

being defined as a group of 5 adjacent vines in the same row (Figure 1D). 

On April 22, we inoculated the central vine of each experimental unit with E. necator (Figure 1E). 

The inoculum was a monoconidial isolate (strain S16) collected that year in a greenhouse (INRA 

Villenave d’Ornon, Bordeaux, France) and bulked on Cabernet Sauvignon leaves from greenhouse 

grown cuttings (Cartolaro and Steva 1990). Leaves were then regularly checked for powdery mildew 

colonies. The first symptoms appeared on May 5 for the inoculated leaves, and May 18 for other 

leaves. Leaf age was monitored in all experimental units based on biweekly records of newly grown 

leaves. In addition, a weather station located on the edge of the vineyard allowed us to monitor local 

variations in air temperature and humidity throughout the experiment. 

Grapevine leaves were sampled on June 1, June 23 and July 5 (40, 62 and 77 days post-inoculation 

(dpi), respectively) (Figure 1F). On each date, we collected four infected (I) and four non-infected 

(NI) leaves of approximately 20-day old in each experimental unit by visual assessment (Figure 1G). 

In total, we collected 192 leaves, corresponding to 8 leaves × 3 dates × 8 experimental units. Based 

on current knowledge of the powdery mildew cycle (Calonnec et al. 2006, 2009), all sampled leaves 

had received secondary inoculum at their optimum leaf age susceptibility, i.e. between 6 to 9 days 

old (Calonnec et al. 2018). They were also old enough to harbor disease symptoms, knowing that 

the average latency period is between 7 and 10 days and that the symptoms are apparent 3-4 days 

after the beginning of sporulation. The percentage of lower leaf surface covered with powdery mildew 

was visually assessed for each visually infected leaf. We also measured the distance between each 

sampled leaf and three potential environmental sources of microorganisms: the ground, the cordons 

and the artificially inoculated leaf in the same experimental unit. 

We placed leaves in individual sterile plastic bags (Whirl-Pak®, USA) and took them to the laboratory 

in a cooler with ice. We processed the leaves on the day of sampling in the sterile environment of a 
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MICROBIO electric burner (MSEI, France). Tissues were collected from visually healthy leaf blade 

of non-infected leaves (HNI), visually healthy leaf blade of infected leaves (HI) and disease spots 

(DI) (Figure 1E). We collected two foliar discs of 6 mm diameter in each tissue type available and 

then placed the two disks together in a collection microtube of a 96-well plate (QIAGEN), with two 

autoclaved glass beads. The processed leaves were stored on ice in individual closed plastic bags 

to avoid water loss until we had measured leaf fresh weight and surface area using the WinFOLIA® 

software (Regent Instrument, Canada). Dry weight was measured after drying the leaves in an oven 

at 65°C for 72h.  

On July 5, additional environmental samples were collected in each experimental unit. We collected 

two old leaves (approximately 70 days old) from the central vine of each experimental unit, close to 

the place where the inoculation had been performed, and placed them in a sterile plastic bag (Whirl-

Pak®, USA). The inoculated leaf was also collected if it was still attached to the vine. We collected 

small pieces of bark (including mosses and lichens) on three vines of each experimental unit and 

stored them in 50mL sterile Falcon tubes. Finally, we collected fragments of ground cover (including 

the upper soil) beneath three vines of each experimental unit, and these were stored in 50mL sterile 

Falcon tubes. 

On July 11, we assessed the sub-plot phytosanitary status and canopy vigor. The severity (% of 

diseased lower leaf surface) of four diseases, i.e. powdery mildew (E. necator), downy mildew 

(Plasmopara viticola), black rot (Guignardia bidwellii) and grape erineum mite (Colomerus vitis), was 

visually evaluated on 12 randomly chosen leaves on each vine of each experimental unit. We 

estimated vine canopy vigor as the product of the number of shoots per vine by the number of leaves 

on the longest shoot.  

DNA extraction and sequencing 

Leaf discs were cold ground at 1500 rpm with the Geno/Grinder® twice for 30 s, with manual shaking 

between each grinding step. Then, plates were centrifuged for 1 min at 6200 rpm. Total DNA was 

extracted using the DNeasy Plant Mini Kit (Qiagen, USA) following the manufacturer’s instructions. 

The ITS1 region of the fungal ITS rDNA gene (Schoch et al. 2012) was amplified using the primers 

ITS1F-ITS2 (White et al. 1990; Gardes and Bruns 1993). To avoid a two-stage PCR protocol, each 
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primer contained the Illumina adaptor sequence and a tag (ITS1F: 5’- 

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTxxxxxx

xxxxxxCTTGGTCATTTAGAGGAAGTAA-3’; ITS2: 5’- 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxxxxx

xxxxxGCTGCGTTCTTCATCGATGC-3’, where “x” is the 12 nucleotides tag). The PCR mixture (20 

µL of final volume) consisted of 10 µL of 2X QIAGEN Multiplex PCR Master Mix (1X final), 2 µL each 

of the forward and reverse primers (1 µM), 4 µl of water, 1 µL of 10 mg.ml-1 BSA and 1 µL of DNA 

template. PCR cycling reactions were conducted on a Veriti 96-well Thermal Cycler (Applied 

Biosystems) using the following conditions: initial denaturation at 95°C for 15 min followed by 35 

cycles at 94°C for 30 s, 57°C for 90 s, 72°C for 90 s with final extension of 72°C for 10 min. ITS1 

amplification was confirmed by electrophoresis on a 2% agarose gel. Each PCR plate contained one 

negative extraction control, one negative PCR control, and one positive control. The negative 

extraction control corresponded to an empty microtube left on the collection plate. The negative PCR 

control corresponded to PCR mix without any DNA template. The positive PCR control was 

composed of an equimolar mixture of the DNA of two marine fungal strains, Candida oceani and 

Yamadazyma barbieri (Burgaud et al. 2011, 2016). These strains were chosen as positive controls 

as they were unlikely to be found in or on grapevine leaves. PCR products were purified, quantified 

(Quant-it PicoGreen dsDNA assay kit ; Thermo Fisher Scientific) and equimolarly pooled (Hamilton 

Microlab STAR robot). Average size fragment was checked using Tapestation instrument (Agilent 

Technologies). Libraries were sequenced on the MiSeq Instrument (Illumina) with the reagent kit v2 

(500-cycles). Sequence demultiplexing (with exact index search) was performed at the PGTB 

sequencing facility (Genome Transcriptome Facility of Bordeaux, Pierroton, France) using 

DoubleTagDemultiplexer. Additional environmental samples collected on July 5 were processed 

separately following the protocols described in Fort et al. (2019). They were manually ground in liquid 

nitrogen, amplified using a two-step PCR and then sequenced on a separate MiSeq run at the 

GetPlaGe sequencing facility (Toulouse, France). 

Fungal DNA quantification  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.21.958033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.958033
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
                                          Pauvert et al. 2020. Pathobiome networks 

 

15 

 

Fungal DNA was quantified with digital droplet PCR assays (ddPCR™; Hindson et al. 2011) using 

the universal fungal primer pair ITS1F (5’-TCCGTAGGTGAACCTGCGG-3’) and 5.8S (5’-

CGCTGCGTTCTTCATCG-3’) validated by Fierer et al. (2005). Assays were carried out with the 

QX200 Droplet Digital PCR (ddPCR™) System from Bio-Rad at the PGTB sequencing facility 

(Pierroton, France). The PCR reactions were carried out in a final volume of 20 μl using the ddPCR™ 

EvaGreen Supermix (Bio-Rad, USA). The reaction mix consisted of 10 µl of 2X EvaGreen Supermix, 

2.5 μL of each primer at 1.2 μM and 3 μL of DNA template or ultrapure water in the negative control. 

The mix containing the sample was partitioned into droplets with the QX200 Droplet Generator and 

then transferred to 96-well PCR plates. A thermocycling protocol [95 °C × 5 min; 40 cycles of (95°C 

× 30 s, 53°C × 1 min 30 s), 4 °C × 5 min, 90°C × 5 min] was undertaken in a Bio-Rad C1000 (Bio-

Rad, USA). QX200 droplet reader analyzed each droplet individually to detect the fluorescence 

signal. The number of copies of the target DNA sequence per μl of sample was determined from the 

number of positive droplets (out of an average of ~20k droplets per sample) estimated from 

fluorescence signals of both samples and negative controls using the Umbrella procedure 

implemented in R (Jacobs et al. 2017). Total fungal abundance was then obtained by multiplying the 

obtained concentration by the mix volume and after adjusting for the 1/100 dilution of the DNA 

extract. 

Bioinformatic analysis 

We used DADA2 v1.8 (Callahan et al. 2016) to describe fungal communities in terms of Amplicon 

Sequence Variants (ASVs, Callahan et al. 2017) because bioinformatic approaches based on 

DADA2 have been found to recover accurately the composition of an artificial fungal community 

(Pauvert et al. 2019). We followed the DADA2 ITS workflow 

(https://benjjneb.github.io/dada2/ITS_workflow.html) except on the read assembly step. Only 

forward reads in which the primer sequence was found exactly by cutadapt (Martin 2011) were 

processed with DADA2. Quality filtering retained sequences with less than one expected error and 

longer than 50 bp. ASVs were subsequently inferred for each sample. Chimeric sequences were 

then identified using the consensus method of the removeBimeras function. ASVs identical in 

sequence but not in length were finally combined with the collapseNoMismatch function. Taxonomic 
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assignments were then performed using the RDP classifier (Wang et al. 2007) implemented in 

DADA2 and trained with the latest UNITE database (UNITE Community 2019). ASV table and 

taxonomic assignments were imported in R through the phyloseq package (McMurdie et al. 2013). 

Only ASVs assigned to a fungal phylum were kept.  

Positive and negative controls were used to remove contaminants, as described by Galan et al. 

2016. The ASVs corresponding to positive control strains (Candida oceani and Yamadazyma 

barbieri) were identified by aligning the ASV sequences with the Genbank reference sequences of 

control strains (C. oceani KY102240 and Y. barbieri LT547714) using a similarity threshold of 100% 

with usearch_global function of VSEARCH (Rognes et al. 2016). The cross-contamination threshold 

(TCC) was defined as the maximal number of sequences of each ASV found in negative or positive 

control samples. The false-assignment threshold (TFA) was defined as TFA = N × Rfa  where Rfa is the 

highest sequence count of a positive control strain in a non-control sample, divided by the total 

number of sequences of the strain in the whole run and N is  the total number of sequences of each 

ASV. ASVs were removed from all samples where they harbored fewer sequences than either 

threshold (TFA or TCC) using a custom script 

(https://gist.github.com/cpauvert/1ba6a97b01ea6cde4398a8d531fa62f9). The ASV table was finally 

aggregated at the species level and ASVs that could not be assigned at the species level were 

removed. All analyses were performed on the resulting species × sample matrix. 

Hypothesis testing 

All statistical analyses were performed in R (R core Team 2018). To validate the sampling design, 

we first checked that disease spots (DI) had a higher fungal load and a higher relative abundance of 

E. necator than visually healthy tissues (HNI and HI). Variations in fungal total abundance (log-

transformed) and in E. necator sequence counts (CLR-transformed) were analyzed using linear 

regressions performed with the lm function. The models had tissue type (HNI, HI or DI), cropping 

system (CC or NCC), sampling date (40, 62 or 77 dpi) and their interactions as fixed effects. F-tests 

were used to assess the significance of the fixed effects and post-hoc pairwise comparisons were 

performed for the significant interactions using Tukey’s adjustment method with the emmeans R 

package (Lenth 2018). Then, we tested hypotheses H1, H2 and H3. 
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H1: Successful infection events destabilize plant-associated microbial communities and 

increase their heterogeneity (Anna Karenina principle) 

To test hypothesis H1, we investigated whether infection altered the composition of foliar fungal 

communities using permutational analysis of variance (PERMANOVA; Anderson et al. 2001) 

performed with the adonis function of the vegan R package (Oksanen et al. 2018). The model had 

tissue type (HNI, HI or DI), cropping system (CC or NCC), sampling date (40, 62 or 77 dpi) and their 

interactions as fixed effects. The analysis was performed using CLR-transformed community data, 

as advised by Gloor et al. (2017). A total of 128 CLR-transformed species × sample matrices were 

generated using the aldex.clr function of ALDEx2 (Fernandes et al. 2014) and averaged. Euclidean 

distances among samples of the average matrix were then used to test differences in community 

composition among conditions. These analyses were performed twice, with and without E. necator. 

We then investigated whether compositional heterogeneity was larger among diseased samples (DI) 

than among healthy ones (HI and HNI), by performing tests of homogeneity of multivariate dispersion 

(Anderson 2006) with the betadisper function of the R vegan package (Oksanen et al. 2018). We 

defined community heterogeneity within a group of samples as the average distance between 

samples and the group centroid, and calculated it for every combination of sampling date and tissue 

type. Differences in heterogeneity between groups were tested using F-tests. Post-hoc pairwise 

comparisons were performed with Tukey’s adjustment method with the emmeans R package (Lenth 

2018). 

H2: Interactions among microorganisms within pathobiomes can be detected by inferring 

microbial networks from metabarcoding data and environmental covariates 

To test hypothesis H2, we inferred the foliar microbial network the species × sample matrix and then 

tested some of the associations using co-culture experiments and text-mining.  

Network inference - Species included in the network reconstruction were selected based on their 

prevalence (Röttjers & Faust, 2018; Cougoul et al. 2019a). Only species present in more than 20% 

of the samples of any experimental unit were kept. Joint variations in sequence counts between 

fungal species were modelled with the PLNmodels R package (Chiquet et al, 2019) to account for 

uneven sequencing depth among samples and for environmental covariates potentially explaining 
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covariation in fungal species abundances across samples. Direct statistical associations between 

species were inferred with the PLNnetwork function. First, the extended BIC criteria (Chen and Chen 

2008) was used to perform model selection among a 40-size grid of penalties controlling the sparsity 

of the underlying network (Chiquet et al. 2018; 2019). Then, the stability of each association of the 

selected network was calculated as its selection frequency in the bootstrap subsamples of the StARS 

procedure (Liu et al. 2010). Environmental covariates included several foliar traits and climate 

variables that may influence fungal development: leaf age, leaf water content, specific leaf area and 

average vapor pressure deficit experienced by the leaf since unfolding. These covariates were 

introduced in the model to get rid of fungal species associations triggered by similar habitat 

requirements. The distance between the sampled leaf and environmental sources of microorganisms 

was also included as a covariate to get rid of fungal associations triggered by joint colonization 

events. Only the distance between the sampled leaf and old leaves was introduced in the model as 

the three distances measured were significantly correlated. To account for additional, non-measured 

environmental variations associated with the experimental design, we also included the three main 

factors of the experiment (sampling date, experimental unit and tissue type) as covariates. Finally, 

sequencing depth (log-transformed) was included as an offset in the model to control for spurious 

associations triggered by compositionality.  

Network validation using co-cultures - We then used co-cultures to test whether the statistical 

associations among fungal species revealed by the PLN model corresponded to ecological 

interactions. We tested the pairwise interactions among eight yeast strains present in the PLN 

network. These eight yeast strains, which all belonged to the most abundant fungal species of the 

dataset, were bought from the CBS collection (Westerdjik Fungal Biodiversity Institute, Utrecht, The 

Netherlands). The strains were Buckleyzyma aurantiaca CBS 8074, Cystofilobasidium macerans 

CBS 9032, Dioszegia hungarica CBS 7091, Filobasidium oeirense CBS 8681, Filobasidium 

wieringae CBS 1937, Udeniomyces pyricola CBS 6754, Sporobolomyces roseus CBS 486 and 

Vishniacozyma victoriae CBS 9000. Strains were revived following the CBS instructions and further 

maintained in collection on MEA or PDA media [Malt Extract Agar (Malt 15 g.l-1, Agar 20 g.l-1); Potato 

Dextrose Agar, Biokar diagnostics, France (Potato extract 4 g.l-1, Glucose 20 g.l-1, Agar 15 g.l-1)]. To 

produce inoculum for the co-culture experiments, yeast strains were grown in liquid ME medium 
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(Malt Extract, 15 g.l-1) at 22°C for 48h. The number of yeast cells was then counted using a 

hemacytometer before being homogenized at the same concentration. The eight yeast strains were 

confronted to one another using a spot-on-lawn assay (Polonelli et Morace, 1986; Addis et al., 2001). 

Inoculations were performed on MEA medium buffered at pH 4.5 with 0.5 M phosphate-citrate buffer 

(Heard and Fleet, 1987). Approximately 105 cfu.ml-1 of each strain was suspended in 15 ml of sterile 

MEA medium (pH 4.5) maintained at 45°C and then poured into sterile Petri dishes. For each strain, 

five replicates were made, totaling 40 plates. Each of the eight strains was then drop-inoculated (50 

µl at 105 cfu.ml-1) onto the surface of a Petri dish. Once the drops dried, the plates were sealed with 

Parafilm® and incubated at 22°C. Yeast growth was visually assessed 4 and 7 days after inoculation. 

We considered that the MEA-included strain either inhibited or promoted the growth of a drop-

inoculated strain, if the latter had either a reduced or increased growth relative to its own MEA-

included confrontation.  

Then we tested the pairwise interactions between the eight yeast strains and one isolate of the 

pathogen E. necator. This latter was a monoconidial isolate (strain S19) collected in 2019 in a 

greenhouse (INRA Villenave d’Ornon, Bordeaux, France) and bulked on Cabernet Sauvignon leaves 

(Cartolaro and Steva 1990). Liquid yeast cultures incubated in ME for 48h were centrifuged at 5000 

rpm and 4°C for 15 min. Supernatant (liquid medium) and pellet (yeast cells) were then separated. 

Pellets were resuspended in sterile distilled water at a concentration of 106 cfu.ml-1. Powdery mildew 

isolate S19 was inoculated under sterile conditions on sterilized grape leaf discs (eight 2-cm discs 

per plate, each coming from a different leaf). Both components, i.e. supernatants and resuspended 

pellets, were tested against E. necator in a preventive assay (applied 24h before E. necator) and a 

curative one (applied 6h after E. necator). In total, we inoculated 320 foliar discs, corresponding to 

8 foliar discs per plate x 10 plates (8 plates, one for each yeast strain + 1 negative control + 1 positive 

control) x 2 assays (preventive and curative) x 2 components tested (medium supernatant and yeast 

cells). Negative controls were treated either with sterile distilled water or sterile ME respectively in 

the pellet and supernatant conditions. Positive controls were treated with BTH (S-methyl 

benzo[1,2,3]thiadiazole-7-carbothioate, Bion®, 50WG, Syngenta) at a concentration of 0.1% active 

ingredient, a growth inhibitor of powdery mildew (Dufour et al. 2013). After incubation for 12 days at 

22°C with a 16 h day/8 h night photoperiod, E. necator growth was evaluated on each foliar disc by 
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assessing visually the diseased leaf area (DLA, in %). The effect of each yeast strain on E. necator 

growth was estimated relative to the negative control using trt.vs.ctrl contrasts in emmeans (Lenth 

2018). Moreover, the number of foliar discs with altered conidia in the presence of a yeast strain was 

measured and compared to that of the negative control using a Fisher exact test with the alternative 

= “greater” option. 

Network validation using text-mining - Finally, we investigated whether the subset of the 

association network involving E. necator corresponded to interactions described in the literature. 

Using a custom R script (Methods S1), we investigated whether fungal species names associated 

in the network co-occurred in articles of the Scopus database (that includes article titles, abstracts, 

keywords and references) using its API through the rscopus R package (Muschelli 2019). Obligate 

and anamorph synonyms of fungal species names were queried from the MycoBank webservice 

(Robert et al. 2013). The resulting articles were searched for experimental evidence of ecological 

interaction between the selected species. 

H3: Cropping systems influence the abundance of microorganisms forming pathobiomes. 

To test hypothesis H3, we investigated whether the fungal species statistically associated with E. 

necator in the PLN association network (i.e. its putative pathobiome) differed in abundance between 

CC and NCC cropping systems. ALDEx2 (Fernandes et al. 2014) was used to detect differentially 

abundant species as this method is suitable for compositional data (Gloor et al. 2017) and outputs 

very few false-positives with default values (Thorsen et al. 2016). Species with a false discovery rate 

below 0.1 after Benjamini-Hochberg adjustment were considered as differentially abundant. To 

unravel the ecology of the fungal species belonging to the pathobiome of E. necator, we searched 

for their presence in the environmental samples. Finally, to better understand the effects of cropping 

systems, we compared grapevine vigor and disease severity between CC and NCC experimental 

units using t-tests. 
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FIGURES AND TABLES 
 
Figure 1 – Experimental design. The study took place (A) in an experimental vineyard located near 
Bordeaux, France, (B) in a sub-plot of 5 untreated vine rows, (C) with two cropping systems differing 
in the presence or not of cover crop (CC versus NCC) in the inter-rows. (D) Sampling occurred in 
eight experimental units each composed of five adjacent vines (underlined in green). (E) The causal 
agent of grape powdery mildew, Erysiphe necator, was inoculated on the central vine of each 
experimental unit at the beginning of the vegetative season. (F) We performed three sampling 
campaigns on June 1, 23 and July 5 (corresponding to 40, 62 and 77 days post inoculation (dpi), 
respectively). (G) For each campaign, leaves with and without visible symptoms were collected to 
analyze healthy foliar tissues and foliar tissue from diseased spots.  
 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.21.958033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.958033
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
                                          Pauvert et al. 2020. Pathobiome networks 

 

27 

 

Figure 2 – Putative pathobiome of grapevine powdery mildew, Erysiphe necator, consisting of 
25 species with positive (blue link) or negative (red link) associations with the pathogen. Node shape 
indicates whether these species were significantly favored by cover cropping (black circles), by the 
absence of cover (white circle) or neither (cross). Green, yellow and brown circles indicate whether 
the species were detected in other microbial environments (old leaves, ground cover and bark, 
respectively). The interactions between E. necator and 3 potential antagonists (B. aurantiaca, F. 
wieringae and V. victoriae) were tested experimentally. 
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Table 1 - Most abundant fungal species in grapevine foliar samples visually infected or not 
by the pathogen Erysiphe necator. The relative abundances (RA, in % of sequences) and ranks 
of species were calculated for all leaf samples (TOTAL; n = 276) and for samples collected from 
visually healthy leaf blade of non-infected leaves (HNI; n = 93), visually healthy leaf blade of infected 
leaves (HI; n = 92) leaves, and disease spots (DI; n = 91) (Figure 1). Fungal sequences not assigned 
at the species level were not taken into account.  
 

Species 
TOTAL HNI HI DI 

Rank RA Rank RA Rank RA Rank RA 

Erysiphe necator 1 35.1 3 14.9 1 22 1 68.9 

Mycosphaerella tassiana 2 17.8 1 26.2 2 20.2 3 7 

Filobasidium wieringae 3 13.9 2 15.5 3 19.8 4 6.2 

Sporobolomyces roseus 4 9.2 4 9.9 4 10.3 2 7.4 

Udeniomyces pyricola 5 4.4 5 6.3 5 5.3 5 1.6 

Vishniacozyma victoriae 6 1.9 7 1.9 6 2.6 6 1.2 

Erysiphe euonymicola 7 1.6 6 2.3 7 1.7 8 0.6 

Dioszegia hungarica 8 1.2 8 1.6 8 1.3 9 0.6 

Itersonilia pannonica 9 1 10 1.2 9 1.2 7 0.7 

Symmetrospora coprosmae 10 0.8 11 1.2 11 1 16 0.2 
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Table 2 – Effects of date, cropping system (CS) and tissue type (TT) on (A) E. necator relative 
abundance, (B) total fungal abundance and (C) fungal community composition of grapevine 
leaves. Foliar samples were collected on three dates (June 1, 23 and July 5), in two cropping 
systems (with cover crop or without cover crop), and in three tissue types (visually healthy leaf blade 
of non-infected leaves, visually healthy leaf blade of infected leaves, and disease spots; Figure 1). 
Linear models were used to analyze variations in pathogen abundance and total fungal abundance, 
while permutational analyses of variance were used to analyze community composition. Significant 
effects (p < 0.05) are in bold. 
 

  

A. E. necator 
relative abundance  

B. Total fungal 
abundance  

C. Fungal community 
composition 

Variable Df F Pr(>F)  F Pr(>F)  F R2 Pr(>F) 

Date 2 55.29 1.00E-20  54.27 2.10E-20  5.1 0.0336 0.001 

CS 1 0.1 7.50E-01  0.76 3.90E-01  1.5 0.005 0.021 

TT 2 70.82 3.10E-25  50.87 2.40E-19  1 0.0068 0.377 

Date × CS 2 0.29 7.50E-01  1.42 2.40E-01  9.7 0.0642 0.001 

Date × TT 4 6.89 2.80E-05  17.9 5.50E-13  1.1 0.0148 0.13 

CS × TT 2 1.08 3.40E-01  0.34 7.10E-01  1.2 0.0079 0.114 

Date × CS × TT 4 1.11 3.50E-01  1.72 1.50E-01  1.1 0.0148 0.13 

Residuals 258    NA NA  NA 0.8529 NA 

Total 275       NA 1 NA 
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Table 3 – Percent increase in Erysiphe necator (En) growth triggered by preventive or curative 
treatments with yeast strains in controlled conditions. Significant effects of the treatments (p < 
0.05) are in bold. Benzothiadiazole (BTH) is a growth inhibitor that was used as a positive control. 
 

 Preventive treatment Curative treatment 

 Pellet Supernatant Pellet Supernatant 

Yeast strain 
En growth 

(in %) 
p-value 

En growth 
(in %) 

p-value 
En growth 

(in %) 
p-value 

En growth 
(in %) 

p-value 

Control (BTH) -98.62 0 -90.62 0 -85.62 1.70E-14 -86.25 0 

B. aurantiaca -1.87 0.33 2.25 0.99 -19.63 0.18 -31.25 0 

U. pyricola -1 0.85 6 0.83 -32.5 0 -3.75 0.97 

V. victoriae -0.37 0.99 7.63 0.67 -10 0.79 3.88 0.97 

D. hungarica 0.25 1 0.63 1 -5 0.98 -10.62 0.44 

F. wieringae 0.5 0.98 6.38 0.8 -10.63 0.75 -1.87 1 

S. roseus 0.88 0.9 0.13 1 -6.88 0.93 -5.25 0.91 

F. oeirense 1.13 0.78 -4.5 0.93 -19.38 0.19 -0.87 1 

C. macerans 1.38 0.64 6.25 0.81 -10.63 0.75 5 0.93 
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SUPPLEMENTARY MATERIALS 

Figure S1 – Variations in (A) pathogen relative abundance and (B) fungal community 
heterogeneity among tissue types over time. Pathogen abundance is the number of sequences 
assigned to E. necator (clr-transformed), while community heterogeneity represents the 
compositional similarity between each sample and the centroid of its group.  HNI corresponds to the 
visually healthy leaf blade of non-infected leaves, while HI and DI corresponds to the visually healthy 
leaf blade and disease spots of infected leaves, respectively. Different letters indicate significant 
post-hoc comparisons. 
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Figure S2 – Variations in fungal total abundance among tissue types over time. Fungal total 
abundance is the number of fungal ITS1F copies (log-transformed) estimated by ddPCR. HNI 
corresponds to the visually healthy leaf blade of non-infected leaves, while HI and DI corresponds 
to the visually healthy leaf blade and disease spots of infected leaves, respectively. Different letters 
indicate significant post-hoc comparisons. 
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Figure S3– Variations in fungal community composition of grapevine leaves between dates, 
cropping systems and tissue type. Dissimilarities in composition among foliar samples were 
estimated with the Aitchison distance and represented with a principal coordinate analysis. 
Percentage variance explained by the two first axes (PC1 and PC2) are indicated. Foliar samples 
were collected after 40, 62 and 77 days post-inoculation (DPI), in experimental units with cover crop 
(CC) or without cover crop (NCC), and in three tissue types. HNI corresponds to the visually healthy 
leaf blade of non-infected leaves, while HI and DI corresponds to the visually healthy leaf blade and 
disease spots of infected leaves, respectively (Figure 1). Date and cropping system had significant 
effects on community composition but not tissue type (Table 1C). 
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Figure S4 – Association network versus in vitro interaction network among eight yeast 
species. The yeast species selected for the comparison were Buckleyzyma aurantiaca (B), 
Cystofilobasidium macerans (C), Dioszegia hungarica (D), Filobasidium oeirense (Fo), Filobasidium 
wieringae (Fw), Udeniomyces pyricola (P), Sporobolomyces roseus (S) and Vishniacozyma victoriae 
(V). (A) Association network of fungal species on grapevine leaves inferred with PLN from 
metabarcoding data and environmental covariates. The node corresponding to the pathogen 
Erysiphe necator is labelled En. (B) Subset of the association network involving the eight selected 
yeast species. This subset consisted in only positive associations (blue links). (C) Picture of the spot-
on-lawn experiment used to evaluate pairwise interactions among the yeast species. A single yeast 
species was seeded in each Petri dish and further inoculated by spots of 8 yeast species to evaluate 
interactions. (D) In vitro interaction network among the yeast species, formed of growth-promoting 
(blue links) and growth-inhibiting (red links) interactions. The yeast D did not grow in the conditions 
of the spot-on-lawn experiment and was not included in the interaction network. 
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Figure S5 - Pictures of E. necator conidia in the E. necator-yeast strains confrontation test. 
Unaltered conidial chains on control foliar discs treated with sterile distilled water (A), collapsed 
conidia on foliar discs treated with B. aurantiaca in the preventive assay (B).  
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Figure S6 – Grapevine canopy vigor and disease severity in two cropping systems (CS), with 
cover crop (CC) or without  cover crop (NCC). (A) Vigor was estimated on ~20 grapevines per 
cropping system. (B) Disease severity was monitored on 468 leaves randomly distributed among the 
two cropping systems (* p<0.05; **p<0.01; ***p<0.001). 
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Table S1 - List of the species significantly associated with Erysiphe necator. Statistical 
associations are described with the value of the partial correlation provided by PLN and with their 
stability, which is the fraction of bootstrap subsamples that contained this association. The detection 
of the species in other microbial environments (ME) such as old leaves (OL), ground cover (GC) or 
bark (BK) is indicated. Significant increase in abundance of the species in a cropping system (CS) 
is indicated in the last column. Nine species were favored by cover cropping (CC) but no no species 
was favored by weed removal (NCC). 
 

Species Correlation Stability Other ME CS 

Dioszegia butyracea -0.087 0.96 OL / GC CC 

Cladosporium ramotenellum -0.074 0.94 OL / GC / BK  

Sawadaea bicornis -0.071 0.96 OL  

Taphrina carpini -0.059 0.96 OL / GC / BK CC 

Stereum hirsutum -0.043 0.84   

Buckleyzyma aurantiaca -0.035 0.82 OL / GC / BK CC 

Erythrobasidium hasegawianum -0.03 0.76 OL / GC / BK CC 

Taphrina deformans -0.02 0.56 OL / GC CC 

Erysiphe euonymicola -0.015 0.58  CC 

Fomes fomentarius -0.011 0.6 BK  

Bullera crocea -0.011 0.68 OL / GC / BK CC 

Filobasidium wieringae -0.01 0.52 OL / GC / BK  

Neodevriesia capensis -0.01 0.38 OL / GC / BK CC 

Vishniacozyma victoriae -0.005 0.62 OL / GC / BK CC 

Itersonilia perplexans -0.003 0.38   

Ascochyta manawaorae 0.011 0.52 OL / GC / BK  

Taphrina inositophila 0.017 0.68 OL / GC / BK  

Vishniacozyma dimennae 0.02 0.64 OL / GC / BK  

Botrytis caroliniana 0.035 0.86 OL / GC / BK  

Apiotrichum domesticum 0.038 0.8   

Filobasidium stepposum 0.055 1   

Bulleromyces albus 0.149 1 OL / GC / BK  

Pseudopithomyces chartarum 0.158 1 OL / GC / BK  
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Table S2 – List of articles recovered by the text-mining approach from the Scopus database. 
These articles had both Erysiphe necator and the species name of a putative antagonist in the 
abstract, title, keywords or references. The search included species synonyms through a custom 
script (Methods S1). 

Pathogen 
Putative antagonist 

searched for 
Result 

Erysiphe 
necator 

Erythrobasidium 
hasegawianum 

Mueller, G. M., Bills, G. F., & Foster, M. S. (Eds.). 
(2004). Biodiversity of fungi: inventory and 
monitoring methods. Amsterdam ; Boston: Elsevier. 

Erysiphe 
necator 

Fomes fomentarius 

Tabata, J., De Moraes, C. M., & Mescher, M. C. 
(2011). Olfactory Cues from Plants Infected by 
Powdery Mildew Guide Foraging by a Mycophagous 
Ladybird Beetle. PLoS ONE, 6(8), e23799. doi: 
10.1371/journal.pone.0023799 

Erysiphe 
necator 

Sawadaea bicornis 

Kiss, L. (1998). Natural occurrence of Ampelomyces 
intracellular mycoparasites in mycelia of powdery 
mildew fungi. New Phytologist, 140(4), 709–714. doi: 

10.1046/j.1469-8137.1998.00316.x 

Erysiphe 
necator 

Taphrina deformans 

Chang, H.-X., Noel, Z. A., Sang, H., & Chilvers, M. I. 
(2018). Annotation resource of tandem repeat-
containing secretory proteins in sixty fungi. Fungal 
Genetics and Biology, 119, 7–19. doi: 
10.1016/j.fgb.2018.07.004 

Erysiphe 
necator 

Taphrina deformans 
Kües, U., Khonsuntia, W., & Subba, S. (2018). 
Complex fungi. Fungal Biology Reviews, 32(4), 205–
218. doi: 10.1016/j.fbr.2018.08.001 

Erysiphe 
necator 

Taphrina deformans 

Caubel, J., Launay, M., Lannou, C., & Brisson, N. 
(2012). Generic response functions to simulate 
climate-based processes in models for the 
development of airborne fungal crop pathogens. 
Ecological Modelling, 242, 92–104. doi: 
10.1016/j.ecolmodel.2012.05.012 

Erysiphe 
necator 

Taphrina deformans 

Weete, J. D., Abril, M., & Blackwell, M. (2010). 
Phylogenetic Distribution of Fungal Sterols. PLoS 
ONE, 5(5), e10899. doi: 
10.1371/journal.pone.0010899 

Erysiphe 
necator 

Taphrina deformans 

Mysyakina, I. S., & Funtikova, N. S. (2007). The role 
of sterols in morphogenetic processes and 
dimorphism in fungi. Microbiology, 76(1), 1–13. doi: 

10.1134/S0026261707010018 

Erysiphe 
necator 

Taphrina deformans 

Hernandez, A., Cooke, D. T., Lewis, M., & Clarkson, 
D. T. (1997). Fungicides and sterol-deficient mutants 
of Ustilago maydis: plasma membrane physico-
chemical characteristics do not explain growth 
inhibition. Microbiology, 143(10), 3165–3174. doi: 
10.1099/00221287-143-10-3165 
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Table S3 - Effect of preventive or curative treatments with yeast strains on the conidia of E. 
necator in controlled conditions. The number of foliar discs (out of 8) with altered conidia were 
counted for each treatment. Bold entries indicate significant differences in the number of altered 
conidia relative to the negative control using Fisher exact test. No conidia were observed with the 
positive control (benzothiadiazole) which was thus not included. 

 

 Preventive treatment Curative treatment 

 Pellet Supernatant Pellet Supernatant 

Yeast strain 

Disks 
with 

altered 
conidia 

p-value 

Disks 
with 

altered 
conidia 

p-value 

Disks 
with 

altered 
conidia 

p-value 

Disks 
with 

altered 
conidia 

p-value 

V. victoriae 4 0.141 4 0.141 1 0.7667 1 0.7667 

B. aurantiaca 3 0.2846 5 0.0594 5 0.0594 8 0.0007 

D. hungarica 1 0.7667 1 0.7667 4 0.141 0 1 

U. pyricola 1 0.7667 0 1 5 0.0594 0 1 

S. roseus 1 0.7667 1 0.7667 5 0.0594 1 0.7667 

C. macerans 0 1 2 0.5 3 0.2846 0 1 

F. oeirense 0 1 5 0.0594 3 0.2846 0 1 

F. wieringae 0 1 0 1 3 0.2846 1 0.7667 

Negative control 1  1  1  1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.21.958033doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.958033
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
                                          Pauvert et al. 2020. Pathobiome networks 

 

40 

 

Table S4 - List of the species differentially abundant between cropping systems (CS), 
according to ALDEX2 analysis. The table indicates the most favorable cropping system for each 
species (with cover crop (CC) or without cover crop (NCC)), the effect size and the Benjamini-
Hochberg corrected p-value. 
 

Species CS Effect size p-value 

Erysiphe necator NCC 0.45 2.80E-07 

Udeniomyces pyricola CC -0.17 6.90E-02 

Taphrina caerulescens CC -0.17 7.10E-02 

Blumeria graminis CC -0.18 6.10E-02 

Symmetrospora gracilis CC -0.21 4.00E-02 

Filobasidium oeirense CC -0.22 9.30E-02 

Articulospora proliferata CC -0.25 2.60E-02 

Gelidatrema spencermartinsiae CC -0.26 3.10E-02 

Dioszegia butyracea CC -0.26 3.50E-02 

Erythrobasidium hasegawianum CC -0.26 1.30E-02 

Limonomyces culmigenus CC -0.27 1.60E-02 

Vishniacozyma victoriae CC -0.3 4.90E-04 

Dioszegia hungarica CC -0.3 4.80E-04 

Neodevriesia capensis CC -0.3 3.00E-02 

Taphrina deformans CC -0.31 1.60E-03 

Bullera crocea CC -0.32 6.10E-03 

Erysiphe euonymicola CC -0.39 1.70E-07 

Buckleyzyma aurantiaca CC -0.46 2.30E-05 

Curvibasidium cygneicollum CC -0.46 5.60E-05 

Mycosphaerella tassiana CC -0.51 6.80E-08 

Taphrina carpini CC -0.51 7.20E-06 

Cystofilobasidium macerans CC -0.55 5.10E-07 

Mycosphaerella punctiformis CC -0.57 3.50E-07 

Angustimassarina acerina CC -0.62 1.70E-08 

Itersonilia pannonica CC -0.74 5.40E-12 
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Table S5 – Pesticides applied in the study site since 2006 according to the pest targeted. D: 
Downy mildew (Plasmopara viticola); P: Powdery mildew (Erysiphe necator), E: European grapevine 
moth (Lobesia botrana) and S: Flavescence dorée vector (Scaphoideus titanus). Application dates 
(month/day) are given into brackets. 
 

Pesticide active 
compounds 

Target 
pest 

Year (month/day) 

Chlorpyriphos-ethyl T, S 2006 (7/3); 2009 (5/20, 7/6) 

Copper compounds D 2008 (7/30) 

Fosetyl + Folpet D 2008 (7/21) 

Lambda-cyhalothrin S 2009 (6/16) 

Mancozeb + 
Cymoxanil 

D 2006 (5/23, 6/9); 2007 (6/11); 2008 (5/28, 6/6, 6/26); 2009 
(6/26); 2011 (5/19); 2012 (6/22, 7/2) 

Quinoxyfen P 2008 (6/6); 2011 (5/19) 

Spiroxamin P 2008 (6/26, 7/21) 
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Methods S1 - R code for searching fungal species names co-occurrences in the literature  

### TEXT-MINING OF PUTATIVE ASSOCIATIONS WITH SYNONYMS SEARCH 
### Charlie Pauvert 
### 2019-05-31 
 
### SYNONYMS SEARCH 
 
# Extracting fungal synonyms from MycoBank (unpublished) 
# based on the API documented here 
# http://www.mycobank.org/Services/ 
#  Generic/Help.aspx?s=searchservice 
get_synonyms<-function(species){ 
  require(xml2) 
  base_url<-paste("http://www.mycobank.org/", 
                  "Services/Generic/SearchService.svc/", 
                  "rest/xml?layout=14682616000000161&filter=name CONTAINS") 
  # Sanitize species name and url 
  url<-paste0(base_url,' "',gsub("_"," ",species),'"') # Add the quotes! 
  url<-gsub(" ","%20", url) 
  message("Checking for ", species) 
  # Fetch XML from MycoBank 
  x<-read_xml(url) 
  # Get the obligate synonyms 
  oblig<-xml_text(xml_find_first(x,"//obligatesynonyms_pt_")) 
  anamo<-xml_text(xml_find_first(x,"//anamorph_pt_")) 
  # Extract the name 
  f<-function(x) gsub(".*<Name>([A-Z][a-z]+ [a-z]+)</Name>.*","\\1",x)  
  # Output 
  c("CurrentName"=gsub("_"," ",species), 
    "ObligateSyn"=f(oblig), 
    "AnamorphSyn"=f(anamo) 
  ) 
}  
# List of lists of synonyms! Empty strings when unavailable 
# The fungal name can have space or underscore 
 
(examples.syn<-lapply( 
 c("Erysiphe_necator","Mycosphaerella tassiana"), get_synonyms)) 
# [[1]] 
# CurrentName        ObligateSyn        AnamorphSyn  
# "Erysiphe necator" "Uncinula necator"   "Oidium tuckeri"  
#  
# [[2]] 
# CurrentName                ObligateSyn                AnamorphSyn  
# "Mycosphaerella tassiana"      "Davidiella tassiana" "Helmisporium vesiculosum"  
 
# Function to restore the current name if looking at a synonym 
get_current<-function(sp,synonyms){ 
  # Find in which sublists the species belongs 
  i<-sapply(synonyms, function(bar) sp %in% bar) 
  # and get its name 
  synonyms[i][[1]][["CurrentName"]] 
} 
get_current("Oidium tuckeri",examples.syn) 
# [1] "Erysiphe necator" 
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### TEXT-MINING OF PUTATIVE ASSOCIATIONS 
# Construct a List of lists of synonyms!  
# Empty strings when unavailable 
patho.syn<-lapply(V(patho.net)$name, get_synonyms) 
# Reduce to a single vector 
patho.syn.vec<-Reduce(c,patho.syn) %>% unique() %>% .[.!=""]  
# Generate pairs between (Erysiphe necator and its synonyms) AND the others  
patho.pairs<-expand.grid(patho.syn.vec[1:3],patho.syn.vec[-c(1:3)], 
                         KEEP.OUT.ATTRS = F,stringsAsFactors = F) 
 
# Basd on rscopus library 
# to be installed using devtools::install_github("muschellij2/rscopus") 
library(rscopus) 
rscopus::set_api_key("INSERT SCOPUS API KEY HERE") 
# Needs a data.frame Var1 Var2 with all the combinations  
#  of species wanted to be searched for 
text_cooccurrence<-function(pair){ 
  # Abbreviate the species name like E. necator 
  i<-function(x) gsub("([A-Z])[a-z]+ ([a-z]+)","\\1. \\2",x) 
  # Build query 
  query<-paste0('ALL("',pair$Var1,'" OR "',i(pair$Var1),'") ', 
               'AND ALL("',pair$Var2,'" OR "',i(pair$Var2),'")') 
  message("Querying ",pair$Var1," vs. ",pair$Var2) 
  r_search <- scopus_search(query = query,view = "STANDARD", 
                  field = "dc:title,prism:doi",verbose = F, 
                  max_count = 25,count = 25) 
  gen_entries_to_df(r_search$entries)$df 
} 
# Apply the search function to all pairs constructed earlier 
patho.tm.scopus<-adply(patho.pairs,1, text_cooccurrence) 
# Rename back the species to current name to build a summary of the search 
patho.tm.scopus %>% 
  mutate( 
    Var1 = gsub(" ","_",sapply(Var1,get_current,synonyms = patho.syn)), 
    Var2 = gsub(" ","_",sapply(Var2,get_current,synonyms = patho.syn)) 
    ) %>% group_by(Var1,Var2) %>% 
    dplyr::summarise(  n = length(na.omit(unique(`prism:doi`)))) %>% 
  ungroup() %>% filter(n > 0) %>% data.frame() 
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