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Abstract 45 
Host genetics has recently been shown to be a driver of plant microbiome composition. However, 46 
identifying the underlying genetic loci controlling microbial selection remains challenging. 47 
Genome wide association studies (GWAS) represent a potentially powerful, unbiased method to 48 
identify microbes sensitive to host genotype, and to connect them with the genetic loci that 49 
influence their colonization. Here, we conducted a population-level microbiome analysis of the 50 
rhizospheres of 200 sorghum genotypes. Using 16S rRNA amplicon sequencing, we identify 51 
rhizosphere-associated bacteria exhibiting heritable associations with plant genotype, and identify 52 
significant overlap between these lineages and heritable taxa recently identified in maize. 53 
Furthermore, we demonstrate that GWAS can identify host loci that correlate with the abundance 54 
of specific subsets of the rhizosphere microbiome. Finally, we demonstrate that these results can 55 
be used to predict rhizosphere microbiome structure for an independent panel of sorghum 56 
genotypes based solely on knowledge of host genotypic information.  57 
 58 
Keywords: Rhizosphere, host genetics, microbiome, GWAS, heritability, amplicon sequencing, 59 
sorghum 60 
 61 
Introduction 62 
Recent work has shown that root-associated microbial communities are in part shaped by host 63 
genetics1–4. A study comparing the root microbiomes of a broad range of cereal crops has 64 
demonstrated a strong correlation between host genetic differences and microbiome composition4, 65 
suggesting that a subset of the plant microbiome may be influenced by host genotype across a 66 
range of plant hosts. In maize, these genotype-sensitive, or “heritable”, microbes are 67 
phylogenetically clustered within specific taxonomic groups5; however, it is unclear whether the 68 
increased genotype sensitivity in these lineages is unique to the maize microbiome or is common 69 
to other plant hosts as well.   70 
 71 
Despite consistent evidence of the interaction between host genetics and plant microbiome 72 
composition, identifying specific genetic elements driving host-genotype dependent microbiome 73 
acquisition and assembly in plants remains a challenge. Recent efforts guided by a priori 74 
hypotheses of gene involvement have begun to dissect the impact of individual genes on 75 
microbiome composition6,7. However, these studies are limited to a small fraction of plant genes 76 
predicted to function in microbiome-related processes. Additionally, many plant traits expected to 77 
impact microbiome composition and activity, such as root exudation8 and root system architecture9, 78 
are inherently complex and potentially governed by a very large number of genes. For these 79 
reasons, there is a need for alternative, large-scale and unbiased methods for identifying the genes 80 
that regulate host-mediated selection of the microbiome. 81 
 82 
Genome-wide association studies (GWAS) represent a powerful approach to map loci that are 83 
associated with complex traits in a genetically diverse population. Though pioneered for use in 84 
human genetics, to date the majority of GWAS have been conducted in plants10, and it has become 85 
an increasingly popular tool for studying the genetic basis of natural variation and traits of 86 
agricultural importance. When inbred lines are available, GWAS can be particularly useful; once 87 
genotyped, these lines can be phenotyped multiple times, making it possible to study many 88 
different traits in many different environments11. While GWAS is typically used in the context of 89 
a single quantitative phenotypic trait, analyses of multivariate molecular traits, such as 90 
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transcriptomic or metabolomic data, have also been conducted12,13. More recently, several attempts 91 
have been made to use host-associated microbiome census data as an input to GWAS, which in 92 
theory will allow for the identification of host genetic loci controlling microbiome composition14,15.  93 
 94 
In plants, a recent study in Arabidopsis thaliana used phyllosphere microbial community data as 95 
the phenotypic trait in a GWAS to demonstrate that plant loci responsible for defense and cell wall 96 
integrity affect microbial community variation16. Several other recent phyllosphere studies 97 
performed GWAS to identify genetic factors controlling microbiome associations with mixed 98 
degrees of success16–18. However, to our knowledge, use of GWAS in conjunction with the root 99 
associated microbiome has yet to be explored. In the context of the root microbiome, selection of 100 
sample type (rhizosphere or endosphere) and host system may be critical factors that determine 101 
the success of such effort. Previous work comparing the root microbiomes of diverse cereal crops 102 
have offered conflicting evidence as to whether host genotypic distance correlates most strongly 103 
with microbial communities distance within root endospheres or rhizospheres3,4. These data suggest 104 
that the sample type exhibiting the strongest correlation between genotype and microbiome 105 
composition may differ for each host, and that an initial evaluation of the degree of correlation 106 
between genotype and microbiome phenotype across sample types may be informative.  107 
 108 
In the context of the root microbiome, we propose Sorghum bicolor (L.) as an ideal plant system 109 
for GWAS-based dissection of host-genetic control of microbiome composition. Sorghum is a 110 
heavy producer of root exudates19, and the sorghum microbiome has been shown to house an 111 
unusually large number of host-specific microbes4. Additionally, there is a wide range of natural 112 
adaptation in traditional sorghum varieties from across Africa and Asia, and a collection of 113 
breeding lines generated from U.S. sorghum breeding programs, both of which provide a rich 114 
source of phenotypic and genotypic variation20. Several genome sequences of sorghum varieties 115 
have been completed, and variation in nucleotide diversity, linkage disequilibrium, and 116 
recombination rates across the genome have been quantified21, providing an understanding of the 117 
genomic patterns of diversification in sorghum. Finally, sorghum is an important cereal crop grown 118 
throughout the world as a food, feedstock, and biofuel, enabling direct integration of resulting 119 
discoveries into an agriculturally-relevant system.  120 
 121 
In this study, we dissect the host-genetic control of bacterial microbiome composition in the 122 
sorghum rhizosphere. Using 16S rRNA sequencing, we profiled the microbiome of a panel of 200 123 
diverse genotypes of field grown sorghum. We aim to demonstrate that a large fraction of the plant 124 
microbiome responds to host genotype, and that this subset shares considerable overlap with 125 
lineages shown to be susceptible to host genetic control in another plant host. Additionally, we 126 
tested whether GWAS can be used to identify specific genetic loci within the host genome that are 127 
correlated with the abundance of specific heritable lineages, and whether differences in 128 
microbiome composition can be predicted solely from genotypic information. Collectively, this 129 
work demonstrates the utility of GWAS for analysis of host-mediated control of rhizosphere 130 
microbiome phenotypes. 131 
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Results 132 
Diverse sorghum germplasm show rhizosphere is ideal for microbiome-based GWAS.  In this 133 
study, the relationship between host genotype and microbiome composition was explored through 134 
a field experiment involving 200 genotypes selected from the Sorghum Association Panel (SAP) 135 
germplasm collection20 (Supplemental Table 1). As prior studies suggest that the strength of the 136 
correlation between host genotype and microbiome composition may vary by sample type in a 137 
host-dependent manner 3,4, we first sought to determine whether leaf, root, or rhizosphere samples 138 
were most suitable for downstream GWAS in sorghum. Using a subset of 24 genotypes from our 139 
collection of 200 (Figure 1a, Supplemental Table 1), the microbiome composition of leaf, root, 140 
and rhizosphere sample types was analyzed using paired-end sequencing of the V3–V4 region of 141 
the ribosomal 16S rRNA on the Illumina MiSeq platform (Illumina Inc., San Diego, CA, USA). 142 
The resulting dataset demonstrated comparatively high levels of microbial diversity within both 143 
root and rhizosphere samples (Figure 1b) and strong clustering of above and below ground sample 144 
types (Figure 1c). Three independent Mantel’s tests (9,999 permutations) were used to evaluate 145 
the degree of correlation between host genotypic distance and microbiome composition for leaf, 146 
root, and rhizosphere sample types (Figure 1d); of the three compartments, only rhizosphere 147 
exhibited a significant Mantel’s correlation (R2=0.13, Df=1, p=0.02). Based on these results, 148 
subsequent investigation of the microbiomes of the full panel of 200 lines, including heritability 149 
and GWAS analyses, was performed using rhizosphere samples.   150 

 151 
To investigate host genotype dependent variation in the sorghum rhizosphere microbiome, the 152 
rhizospheres of 600 field grown plants (including three replicates of each of 200 genotypes) were 153 
profiled using V3-V4 16S rRNA amplicon sequencing. After removing rare OTUs with less than 154 
3 reads in at least 20% of the samples and normalizing to an even read depth of 18,000 reads per 155 
sample, the data set included 1,189 high-abundance OTUs representing 29 bacterial phyla. 156 
Compositional analysis of the resulting microbiome dataset exhibited profiles consistent with 157 
recent microbiome studies involving the sorghum rhizosphere4,22,23 from a variety of field sites, with 158 
Proteobacteria, Actinobacteria and Acidobacteria comprising the top three dominant phyla 159 
(Supplemental Figure 1).  160 
 161 
Sorghum and maize rhizospheres exhibit strong overlap in heritable taxa. A recent study of 162 
two separate maize microbiome datasets suggests that specific bacterial lineages are more sensitive 163 
to the effect of host genotype than others5. To determine if a bacterial lineage’s responsiveness to 164 
host genetics is a trait conserved across different plant hosts that diverged more than 11 million 165 
years ago24, the broad sense heritability (H2) of individual OTUs in our sorghum dataset was 166 
evaluated. H2, which quantifies the proportion of variance that is explained by genetic rather than 167 
environmental effects, ranged from 0 to 66% for individual OTUs (Supplemental Table 2). By 168 
comparison, H2 for individual OTUs in the first of two experiments across 27 inbred maize lines 169 
had a maximum of 23% (performed in 2010), while the second exhibited a maximum of 54% 170 
(performed in 2015)5.  171 
 172 
To explore whether microbes with high heritability in the sorghum dataset are phylogenetically 173 
clustered, we partitioned the 1,189 OTUs into heritable (n=347) and non-heritable fractions 174 
(n=842) using an H2 cutoff score of 0.15 (Figure 2a, Supplemental Table 3). Several bacterial 175 
orders, including Verrucomicrobiales, Flavobacteriales, Planctomycetales, and Burkholderiales, 176 
were observed to have significantly greater numbers of OTUs that are heritable, as compared to 177 
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the non-heritable OTU fraction (Fisher’s exact test, p<0.05, Figure 2a, Supplemental Table 3). 178 
Notably, all 6 Flavobacteriales OTUs were present in the heritable fraction (Figure 2b); by 179 
contrast, 40 other bacterial orders were only observed within the non-heritable fraction.  Another 180 
bacterial order, Bacillalles, contained a smaller number of OTUs in the heritable than non-heritable 181 
fraction, but the percentage of read counts attributable to its heritable OTUs was approximately 182 
eight-fold greater than those in the non-heritable fraction, suggesting that its heritable members 183 
are abundant organisms within the rhizosphere (Figure 2b). Collectively, these data demonstrate 184 
that a specific subset of bacterial lineages are enriched for members susceptible to host genotypic 185 
selection.   186 
  187 
We hypothesized that despite the considerable evolutionary distance between maize and sorghum, 188 
the bacterial lineages containing OTUs most responsive to host genotypic effects in maize would 189 
likely also contain OTUs exhibiting such susceptibility within sorghum. To test this, we compared 190 
the top 100 most heritable OTUs from both maize datasets (referred to as NAM 2010 and NAM 191 
2015) and the sorghum dataset described above, resulting in a combined dataset of 300 OTUs 192 
spanning 65 bacterial orders. After removing bacterial orders not observed in the sorghum dataset 193 
(n=18), we noted that more than half were observed in at least two of the datasets, and 194 
approximately one third (n=15) contained heritable OTUs in all three datasets (Figure 3a). To 195 
determine if this overlap was significantly greater than is expected by chance, we performed 196 
permutational resampling of 10,000 sets of randomly chosen sorghum OTUs for comparison. 197 
Notably, we found that the overlap between the heritable sorghum fraction with both the individual 198 
maize heritable fractions and the combined heritable maize OTUs to be significant, compared with 199 
the resampled sorghum OTUs (NAM 2010 n=17, p=0.0099, NAM 2015 n=19, p=0.0016, 200 
combined n=15, p=0.0344)(Figure 3a). Collectively, these results demonstrate that there is a 201 
conservation between the bacterial orders most sensitive to genotype across both maize and 202 
sorghum.  203 
 204 
In an effort to identify the bacterial lineages with the greatest propensity for high heritability, we 205 
calculated the number of heritable OTUs in each of the shared heritable bacterial orders identified 206 
above. We noted that among bacterial orders containing the greatest number of heritable OTUs 207 
across all three datasets were several that represent large lineages frequently observed within the 208 
root microbiome; (e.g.  Actinomycetales) (Figure 3b). We hypothesized that this result is likely 209 
driven in part by the overall frequency of these lineages within the rhizosphere microbiome, with 210 
more common lineages resulting in a greater fraction of heritable microbes due to their ubiquity. 211 
To help account for this, we normalized the frequency of heritable sorghum OTUs (n=100) by 212 
total sorghum OTU counts (n=1,189) belonging to each order (Figure 3c, Supplemental Table 4). 213 
These results demonstrate that while the prevalence of Actinomycetales and Myxococcales among 214 
heritable microbes is consistent with their general prevalence in the overall dataset, 215 
Burkholderiales and two other lineages, including the Verrucomicrobia and Planctomycetes, 216 
exhibited a significant enrichment (Fisher’s exact test, p<0.001) in the heritable fraction not 217 
expected to be influenced by abundance alone.   218 
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Genome-wide association reveals genetic loci correlated with rhizosphere microbial 219 
abundance. Recent work in the leaf microbiome has demonstrated the potential utility of GWAS 220 
for uncovering host loci correlated with microbiome composition18. Here, we sought to use GWAS 221 
with rhizosphere microbiome datasets using both global properties of the OTU dataset and the 222 
abundances of individual OTUs. For overall community composition, a subset of principal 223 
components (PCs) were selected from an analysis of the abundance patterns of the 1,189 OTUs. 224 
To prioritize individual PCs for inclusion in our GWAS analysis, we determined the heritability 225 
scores of each of the top ten PCs, which explained 75% of the total variance in our dataset 226 
(Supplemental Figure 2a). PCs with H2 equal to or greater than 0.25 (PC1, PC3, PC5, PC9, and 227 
PC10, Supplemental Figure 2a) were subjected to GWAS (Supplemental Figure 2b). The GWAS 228 
analysis performed for PC1, which explained 21% percent of total variance and had the second 229 
highest heritability (H2=0.35), revealed a significant correlation between community composition 230 
and a locus of approximately 1.15 Mb on chromosome 4 with a moderately stringent threshold of 231 
–log10 (p=10–4) (Figure 4a, Supplemental Figure 2b). Additionally,  GWAS analyses that used PC5 232 
and PC10 as inputs, both revealed an identifiable peak on chromosome 6, though it was slightly 233 
below the threshold of significance (Supplemental Figure 2b).  234 
 235 
As principal components are derived from linear combinations of the abundance of individual 236 
OTUs within the dataset, it is unclear whether the correlations observed on chromosomes 4 and 6 237 
are driven by one common or two different sets of microbial lineages. To address this, we 238 
performed separate GWAS analyses using the abundances of each single OTU in our dataset as 239 
input (Figure 4b, Supplemental Figure 2c). From these analyses, we identified two distinct sets of 240 
39 and 10 OTUs with significant correlations with the loci on chromosomes 4 and 6, respectively, 241 
and only a single OTU belonging the the order Burkholderiales that was shared between the two 242 
loci (Supplemental Figure 2c), demonstrating that different sorghum loci influence the abundance 243 
patterns of different groups of microbes.  244 
 245 
To explore the relationship between the identified peak on chromosome 4 (Figure 4a) and the 246 
bacterial taxa with significant GWAS correlations at this locus (Figure 4b), we first sought to 247 
understand how relative abundance for these 40 OTUs varied across the sorghum panel. An 248 
analysis of the SNP data at this locus revealed two allele groups, the major allele containing 343 249 
sorghum genotypes and the minor allele containing 14 genotypes. Next, we observed that the 250 
majority of OTUs that were more prevalent in sorghum genotypes containing the major allele 251 
belonged to monoderm lineages, while the majority of OTUs more prevalent in the minor allele 252 
group belonged to diderm lineages (Figure 4b), suggesting that host genetic mechanisms at this 253 
locus are interacting with basal bacterial traits.  254 
 255 
To explore which genetic mechanisms might be driving the correlations observed on Chromosome 256 
4, we examined tissue specific expression patterns from publicly available RNA-Seq datasets 257 
obtained from phytozome v12.125 for all 27 genes in the 1.15 Mb interval (Figure 4c, Supplemental 258 
Table 5).  Of these candidates, several were observed to exhibit strong root specific expression 259 
patterns, including three annotated candidates: gamma carbonic anhydrase-like 2, a putative Beta-260 
1,4 endoxylanase, and disease resistance protein RGA2 (Figure 4c).  261 
 262 
Sorghum genotypic data can predict microbiome composition. To validate that allelic variation 263 
at the candidate locus on chromosome 4 contributes to differences in rhizosphere composition, we 264 
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conducted a follow up experiment with eighteen additional sorghum lines, including genotypes 265 
not present in the original study. To help disentangle phylogenetic-relatedness from locus-specific 266 
effects, we selected sorghum genotypes that spanned the diversity panel; additionally, for each 267 
minor allele genotype (n=9), we included a phylogenetically related major allele line (n=9) (Figure 268 
1a). Following two weeks of growth in a mixture of calcined clay and field soil in the growth 269 
chamber, we collected  the rhizosphere microbiomes of each genotype and microbiome 270 
composition was analyzed using 16S rRNA amplicon sequencing as in the main study. A canonical 271 
analysis of principal coordinates (CAP) ordination constrained on genotypic group separated the 272 
rhizospheres of genotypes belonging to major and minor allele groups into distinct clusters (Figure 273 
5a, PERMAnova F=2.66, Df=1, p=0.0061), with genotype explaining approximately 7.5% (CAP1) 274 
of variance in the dataset.  275 
 276 
To identify which taxa drive the clustering observed in our CAPs analysis, and to compare this to 277 
taxa responsive to the chromosome 4 allele group in our main experiment, we performed an 278 
indicator species analysis on the validation dataset. A comparison of the significant indicator 279 
OTUs (p<0.05) from each allele group in the validation dataset (n=65) demonstrated similar trends 280 
in abundance of indicator OTUs as observed in the main experiment (Figure 4b), with OTUs 281 
belonging to monoderm and diderm lineages enriched in the major and minor allele-containing 282 
lines, respectively. Interestingly, while most diderm lineages were more prevalent in the minor 283 
allele-containing lines, several diderm lineages including Gemmatimonadales, Acidobacteriales, 284 
and Sphingobacteriales contained OTUs that were more abundant within major allele lines. 285 
Notably, this pattern was observed in both the main experiment (Figure 4b) and validation 286 
experiment (Figure 5b). Collectively, this experiment supports the findings of our main 287 
experiment, in which allelic variation at a locus located on chromosome 4 was shown to correlate 288 
with the abundance of specific bacterial lineages. 289 
 290 
Discussion 291 
Host selection of plant rhizosphere microbiomes. Previous GWAS of plant-associated 292 
microbiome traits have often been conducted with leaf samples, and have not always been 293 
successful in identifying loci that correlate with microbiome phenotypes16–18. In this study, we 294 
compared the overall correlation between host genotype and bacterial microbiome distances across 295 
leaf, root, and rhizosphere of Sorghum bicolor, and demonstrate that of the three, the rhizosphere 296 
represents the most promising compartment for conducting experiments to untangle the heritability 297 
of the sorghum microbiome. Notably, the degree of correlation between sorghum phylogenetic 298 
distance and microbiome distance was highest in the rhizosphere and lowest in the leaves. This 299 
greater correlation observed in the rhizosphere could be in part due to the phyllosphere’s relative 300 
compositional simplicity. Even Arabidopsis rosette leaves, which are in close proximity to soil, 301 
harbor a distinct and relatively simple bacterial community compared to the root26. By contrast, the 302 
rhizosphere represents a highly diverse and populated subset of the soil microbiome, and 303 
potentially offers a greater pool of microbes upon which the host may exert influence27. 304 
Alternatively, the rhizosphere’s greater correlation with microbiome composition could be caused 305 
by the plant’s relatively weaker ability to select epiphytes in its aboveground microbiome; while 306 
the arrival of phyllosphere colonists is largely thought to be driven by wind and rainfall dispersal28, 307 
root exudation is known to control chemotaxis and other colonization activities of select members 308 
of the surrounding soil environment. This provides an additional mechanism for host selection of 309 
its microbial inhabitants prior to direct interaction with the plant surface8,29,30. It is worth noting that 310 
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sorghum is known to be an atypically strong producer of root exudates19, and consequently it is 311 
possible that other plant hosts may demonstrate the greatest selective influence within tissues other 312 
than the rhizosphere. Future efforts to investigate host control of the microbiome through GWAS 313 
or related techniques would benefit from careful selection of sample type following pilot studies 314 
designed to explore heritability across different host tissues.  315 

Heritable rhizosphere microbes are phylogenetically clustered and similar across hosts. 316 
Within the rhizosphere, we demonstrate that microbiome constituents vary in broad sense 317 
heritability, and heritable taxa show a strong overlap with heritable lineages identified in maize, 318 
spanning fifteen different bacterial orders5. In particular, three of these orders, Verrucomicrobiales, 319 
Burkholderiales, and Planctomycetales were significantly enriched in the heritable fraction of our 320 
dataset. As members of Burkholderiales can form symbioses with both plant and animal hosts31,32, 321 
and some colonize specific members of a host genus or species33, it is feasible that such strong 322 
relationships necesitated additional genetic discrimination between hosts. Within Burkholderia 323 
spp., this could be facilitated by their relatively large pan-genome, with diversity driven by large 324 
multi-replicon genomes and abundant genomic islands 34.  325 
 326 
These observations suggest that evaluating bacterial heritability may identify new lineages for 327 
which close or symbiotic but previously undetected associations with plant hosts exist. For 328 
example, we observed several lineages with high heritability that are common in soil, yet prior 329 
evidence of plant-microbe interactions in the literature is lacking, including Verrucomicrobiales 330 
and Planctomycetales. Interestingly, heritability in these lineages might be facilitated by the 331 
presence of a recently discovered shared bacterial microcompartment gene cluster present in both 332 
Planctomycetes and Verrucomicrobia, which confers the ability to degrade certain plant 333 
polysaccharides35. Indeed, microbiome composition is known to be driven in part by variations in 334 
polysaccharide containing sources including plant cell wall components and root exudates36.  335 
Additional experimentation with bacterial mutants lacking this genetic cluster could be useful for 336 
revealing its role in shaping plant microbe interactions.  337 

Sorghum loci are responsible for controlling the rhizobiome. Our GWAS correlated host 338 
genetic loci and the abundance of specific bacteria within the host microbiome, as well as overall 339 
rhizosphere community structure. To our knowledge, this is the first example of such work in a 340 
crop rhizosphere. We identified two loci with strong associations with the microbiome structure. 341 
The most significant maps to a locus on chromosome 4 containing several candidate genes with 342 
root specific expression.  343 
 344 
One candidate gene located near the center of this locus encodes a beta 1,4 endo xylanase. 345 
Xylanases are responsible for the degradation of xylan into xylose, and are one of the primary 346 
catabolizers of hemicellulose, a major component of the plant cell wall37. As a result, beta 1,4 endo 347 
xylanases may play a role in shaping the degree of plasticity in the barrier between the root and 348 
surrounding rhizosphere environments, in turn influencing the release of cell wall or apoplast 349 
derived metabolites into the rhizosphere environment38. Alternatively, altered xylanase activity 350 
could lead to shifts in carbohydrate profiles within the cell wall, leading to heightened plant 351 
immune responses39,40; the catabolic byproducts of microbially-produced xylanase used in pathogen 352 
invasion are in part responsible for triggering innate immune responses in plants, and various 353 
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components of the plant immune signalling network have been shown to influence microbiome 354 
structure6,7.  355 
 356 
Another candidate gene within the chromosome 4 locus, that also displays root-specific 357 
expression, is predicted to encode gamma carbonic anhydrase-like 2. In plants, carbonic 358 
anhydrases (CA) participate in aerobic respiration, and facilitate the reversible hydration of CO2 to 359 
bicarbonate41,42. Previous studies have implicated CA activity in plant-microbe interactions43; an 360 
important role for CA was first observed in root nodules of legumes inoculated with Rhizobium44,45. 361 
CAs have since been implicated in disease resistance as well, having both antioxidant activity and 362 
salicylic acid binding capability46–48. Collectively, these studies suggest that a loss or alteration of 363 
function of CA could impact the composition of the rhizosphere microbiome. Future validation 364 
experiments using genetic mutants within this and other candidate genes can be used to help 365 
elucidate the underlying genetic element(s) responsible for modulation of the rhizosphere 366 
microbiome.  367 

Conclusion 368 
Although the underlying host genetic causes of shifts in the microbiome are not well understood, 369 
candidate driven approaches have implicated disease resistance6,7, nutrient status7,49,50, sugar 370 
signaling51, and plant age52,53 as major factors. Non-candidate approaches to link host genetics and 371 
microbiome composition, such as GWAS, have the potential to discover novel mechanisms that 372 
can be added to this list.  Here we show that GWAS can predict microbiome structure based on 373 
host genetic information, building on previous studies that have observed inter- and intra-species 374 
variation in microbiomes1,4,5,16,36,54–56. Collectively, our study adds to a growing list of evidence that 375 
genetic variation within plant host genomes modulates their associated microbiome. We anticipate 376 
that GWAS of plant microbiome association will promote a comprehensive understanding of the 377 
host molecular mechanisms underlying the assembly of microbiomes and facilitate breeding 378 
efforts to promote beneficial microbiomes and improve plant yield. 379 
 380 
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Methods 381 
Germplasm selection. In order to ensure that microbiome profiling was performed on a 382 
representative subset of the broad genetic diversity present in the 378 member Sorghum 383 
Association Panel (SAP)20, subsets of 200 genotypes were randomly sampled from the SAP 10,000 384 
times and an aggregate nucleotide diversity score was calculated for each using the R package 385 
“PopGenome”57. From these data, the subset of 200 lines with the maximum diversity value was 386 
selected (Figure 1a, Supplemental Table 1). For the pilot experiment used to determine the 387 
appropriate sample type for GWAS, a subset of 24 lines was selected that included genotypes from 388 
a wide range of phylogenetic distances (Figure 1a, Supplemental Table 1). The phylogenetic tree 389 
of sorghum accessions was generated using the online tool: Interactive Tree Of Life (iTOL) v558.  390 

Field experimental design and root microbiome sample collection. The experimental field used 391 
in this study is an agricultural field site located in Albany, California (37.8864°N, 122.2982°W), 392 
characterized by a silty loam soil with pH 5.24. Germplasm for the US SAP panel used in this 393 
study20 were obtained from GRIN (www.ars-grin.gov). To ensure a uniform starting soil 394 
microbiome for all sorghum seedlings and to control their planting density, seeds were first sown 395 
into a thoroughly homogenized field soil mix in a growth chamber with controlled environmental 396 
factors (25 °C, 16hr photoperiods) followed by transplantation to the field site. To prepare the soil 397 
for seed germination, 0.54 cubic meters of soil was collected at a depth of 0 to 20 cm from the 398 
field site subsequently used for planting, and homogenized by separately mixing 4 equally sized 399 
batches with irrigation water in a sterilized cement mixer followed by manual homogenization on 400 
a sterilized tarp surface. Soil was then transferred to sterilized 72-cell plant trays. To prepare seeds 401 
for planting, seeds were surface-sterilized through soaking 10 min in 10% bleach + 0.1% Tween-402 
20, followed by 4 washes in sterile water. Following planting, sorghum seedlings were watered 403 
with approximately 5 ml of water using a mist nozzle every 24 hrs for the first three days, and 404 
bottom watered every three days until the 12th day, then transplanted to the field.  405 
 406 
The field consisted of three replicate blocks, with each block containing 200 plots for each of 200 407 
selected genotypes. Six healthy sorghum seedlings of each genotype were transplanted to their 408 
respective plots, separated by 15.2cm, and thinning to three seedlings per plot was performed at 409 
two weeks post transplanting. Plots were organized in an alternating pattern with respect to the 410 
irrigation line to maximize the distance between each plant (Supplemental Figure 3). Plants were 411 
watered for one hour, three times per week, using drip irrigation with 1.89 L/hour rate flow 412 
emitters. Manual weeding was performed three times per week throughout the growing season. To 413 
ensure that the genotypes were at a similar stage of development and that the host-associated 414 
microbiome had sufficient time to develop, collection of plant-associated samples was performed 415 
nine weeks post germination. Only the middle plant within each plot was harvested to help mitigate 416 
potential confounding plant-plant interaction effects resulting from contact with roots from 417 
neighboring plants of other genotypes. Rhizosphere, leaf, and root samples were collected as 418 
described previously59.  419 
 420 
DNA extraction, PCR amplification, and Illumina sequencing. DNA extractions, PCR 421 
amplification of the V3-V4 region of the 16S rRNA gene, and amplicon pooling were performed 422 
as described previously59. In brief, DNA extractions for all samples were performed using 423 
extraction kits (MoBio PowerSoil DNA Isolation Kit, MoBio Inc., Carlsbad, CA) following the 424 
manufacturer’s protocol. Amplification of the V3-V4 region of the 16S rRNA gene was performed 425 
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using dual-indexed 16s rRNA Illumina iTags primers 341F (5’-CCTACGGGNBGCASCAG-3’) 426 
and 785R (5’-GACTACNVGGGTATCTAATCC-3’). An aliquot of the pooled amplicons was 427 
diluted to 10 nM in 30μL total volume before submitting to the QB3 Vincent J. Coates Genomics 428 
Sequencing Laboratory facility at the University of California, Berkeley for sequencing using 429 
Illumina Miseq 300bp pair-end with v3 chemistry. Sequences were returned demultiplexed, with 430 
adaptors removed. 431 
  432 
Amplicon sequence processing, OTU classification, and taxonomic assignment. Sequencing 433 
data were analyzed using the iTagger pipeline to obtain OTUs60. In brief, after filtering 81,416,218 434 
16S rRNA raw reads for known contaminants (Illumina adapter sequence and PhiX), primer 435 
sequences were trimmed from the 5’ ends of both forward and reverse reads. Low-quality bases 436 
were trimmed from the 3’ ends prior to assembly of forward and reverse reads with FLASH61. The 437 
remaining 66,524,451 high-quality merged reads were clustered with simultaneous chimera 438 
removal using UPARSE62. After clustering, 37,867,921 read counts mapped to operational 439 
taxonomic units (OTUs) at 97% identity (Supplemental Table 6). Taxonomies were assigned to 440 
each OTU using the RDP Naïve Bayesian Classifier with custom reference databases63. For the 16S 441 
rRNA V3-V4 data, this database was compiled from the May 2013 version of the GreenGenes 16S 442 
database v13, trimmed to the V3-V4 region. After taxonomies were assigned to each OTU, OTUs 443 
were discarded if they were not assigned a Kingdom level RDP classification score of at least 0.5, 444 
or if they were not assigned to Kingdom Bacteria, which yielded 10,006 OTUs. In the downstream 445 
analyses, we removed low abundance OTUs because in many cases they are artifacts generated 446 
through the sequencing process. Samples with low read counts were also removed. To account for 447 
differences in sequencing read depth across samples, all samples were normalized to an even read 448 
depth of reads per sample random subsampling for specific analyses, or alternatively, by dividing 449 
the reads per OTU in a sample by the sum of usable reads in that sample, resulting in a table of 450 
relative abundance frequencies. 451 
 452 
Estimates of broad sense heritability of OTU abundance in rhizosphere. To calculate the 453 
broad-sense heritability (H2) for individual OTU abundances, we fitted the following linear mixed 454 
model to OTU abundances of each individual OTU (n=1,189) following a cumulative sum scaling64 455 
normalization procedure that adjusted for differences in sequencing depth and fit a normal 456 
distribution: 457 
 458 
Yijk = u + Gi + Rj + Bjk + e 459 
 460 
In this model for a given OTU, Yijk denotes the OTU abundance of the ith genotype evaluated in the 461 
kth block of the jth replicate; u denotes the overall mean; Gi is the random effect of the ith 462 
genotype;  Rj is the random effect of the jth replicate; Bjk is the random effect of the kth block 463 
nested within the jth replicate;  e denotes the residual error. To account for the spatial effects in 464 
the field, additional spatial variables were fitted as random effects using 2-dimensional splines in 465 
the above model using an R add-on package “sommer”65. H2 was estimated as the amount of 466 
variance explained by the genotype term (VG) relative to the total variance (VG + VE/j). Here j is the 467 
number of replications. To get the null distribution of H2, each OTU was randomly shuffled 1,000 468 
times and then fitted to the same model as described above. Permutation p-value was calculated as 469 
the probability of the permuted H2 values bigger than the observed H2 value.  470 
 471 
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Comparative analysis of heritable taxa between sorghum and maize datasets. To identify the 472 
degree to which heritable taxa were shared between maize and sorghum, we compared the top 100 473 
most heritable OTUs from both maize datasets (referred to as NAM 2010 and NAM 2015) and the 474 
sorghum dataset generated in this study, resulting in a combined dataset of 300 OTUs spanning 65 475 
bacterial orders. As these three experiments were conducted at different field sites, a subset of the 476 
orders (n=18) containing heritable OTUs in the maize dataset were not detected in either the 477 
heritable or non-heritable fractions of the sorghum dataset and were excluded from subsequent 478 
comparative analyses. Of the remaining bacterial orders represented by these heritable OTUs, we 479 
determined the number (n=26) that contained heritable OTUs in at least two of the datasets, and 480 
the number (n=15) that contained heritable OTUs in all three datasets (Figure 3a). To evaluate 481 
whether the degree of overlap in heritable lineages is greater than what would be expected by 482 
chance, we performed a permutation test (n=10,000) in which we resampled 100 random OTUs 483 
from the 1,189 total sorghum OTUs and recomputed intersections with the two maize datasets. P-484 
values are reported as the number of instances that these permutations returned a greater degree of 485 
overlap  in these permutations divided by total number of permutations.  486 
 487 
GWAS. For each OTU, GWAS was conducted separately using the best linear unbiased predictors 488 
(BLUPs) obtained from the linear mixed model. Population structure was accounted for using 489 
statistical methods that allow us to detect both population structure (Q) and relative kinship (K) to 490 
control spurious association. The Q model (y = Sα + Qν + e), the K model (y = Sα + Zu + e), and 491 
the Q + K model (y = Xβ + Sα + Qν + Zu + e) described previously66, were used in our study. In 492 
the model equations, y is a vector of phenotypic observation; α is a vector of allelic effects; e is a 493 
vector of residual effects; ν is a vector of population effects; β is a vector of fixed effects other 494 
than allelic or population group effects; u is a vector of polygenic background effects; Q is the 495 
matrix relating y to ν; and X, S, and Z are incidence matrices of 1s and 0s relating y to β, α, and 496 
u, respectively. To account for the population structure and genetic relatedness, the first three 497 
principal components (PCs) and kinship matrix were calculated using the SNPs obtained from21 498 
and fitted into the MLM-based GWAS pipeline for each OTU using GEMMA67.  499 

GWAS validation experiment. For the GWAS validation experiment, the 378 genotypes of the 500 
SAP were first subset into lines containing the major (n=343) and minor (n=14) allele for the two 501 
haplotypes found at the peak on chromosome 4 described in the text. Including the 178 genotypes 502 
not selected for the GWAS, a total of nine sorghum genotypes belonging to the minor allele were 503 
selected, with an effort to include genotypes spanning the phylogenetic tree. For each of these nine 504 
minor allele lines, another genotype containing the major allele with close overall genetic 505 
relatedness was selected, resulting in nine major and nine minor allele containing lines. Two 506 
replicates of each line were grown in growth chambers (33°C/28°C, 16h light/ 8h dark, 60% 507 
humidity) in a 10% vermiculite/ 90% calcined clay mixture rinsed with a soil wash prepared from 508 
a 2:1 ratio of field soil to water from the field site used in the GWAS. Plants were watered daily 509 
with approximately 5 ml of autoclaved Milli-Q water using a spray bottle for the first three days, 510 
followed by top watering with 15 ml of water every three days. An additional misting was 511 
performed to the soil surface every 24 hrs to prevent drying. Following two weeks of growth, 512 
plants were harvested and rhizosphere microbiomes extracted as described for the field 513 
experiment.  514 
 515 
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Microbiome statistical analyses. All statistical analyses of the amplicon datasets were performed 516 
in R using the normalized reduced dataset, unless stated otherwise. For alpha-diversity 517 
measurement, Shannon’s Diversity was calculated as eX, where X is Shannon’s Entropy as 518 
determined with the diversity function in the R package vegan68. Principal coordinate analyses were 519 
performed with the function pcoa in the R package ape69, using the Bray-Curtis distance obtained 520 
from function vegdist in the R package vegan68.  Mantel’s tests were used to determine the 521 
correlation between host phylogenetic distances and microbiome distances using the mantel 522 
function in the R package vegan68 with 9,999 permutations, and using Spearman’s correlations to 523 
reduce the effect of outliers. Indicator species analyses were performed using the function indval 524 
in the R package labdsv70, with p-values based on permutation tests run with 10,000 permutations. 525 
To account for multiple testing performed for all 430 genera in our dataset, multiple testing 526 
correction was performed with an FDR of 0.05 using the p.adjust function in the base R package 527 
stats. Canonical Analysis of Principal Coordinates (CAP) was performed for the final validation 528 
experiment to test the amount of variance explained by genotypic group using the capscale 529 
function in the R package vegan68; an ANOVA like permutation test using the sum of all 530 
constrained eigenvalues was performed to determine the percent variance explained by each factor 531 
using the function anova.cca in the R package vegan68.  532 
 533 
Analysis of sorghum RNA-seq datasets. Publicly available sorghum RNA-Seq data for 27 534 
annotated genes in the 1.15 Mb interval of chromosome 4 (Sobic.004G153000 - 535 
Sobic.004G155900), were downloaded from phytozome v12.125 (Figure 4c, Supplemental Table 536 
5). Expression datasets were broadly grouped based on the tissue-type from which they were 537 
derived (root, leaf, or reproductive). To aid in the visualization of tissue specific expression of 538 
genes exhibiting large differences in absolute levels of gene expression, we normalized the 539 
Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values for each gene in 540 
each tissue type by dividing by the average value of gene expression for that gene across all tissue 541 
types. We defined root-specific expression as genes that had a normalized FPKM less than 1 in no 542 
more than two root datasets, and a normalized FPKM greater than 1 in no more than two datasets 543 
of other tissue types (Figure 4c, Supplemental Table 5). 544 
 545 
Data availability. All datasets and scripts for analysis are available through github 546 
(https://github.com/colemanderr-lab/Deng-2020) and all short read data has been submitted to the 547 
NCBI SRA.  548 
 549 
Figure legends 550 
Figure 1. Sample type and population selection. A Phylogenetic tree representing the 378 551 
member sorghum association panel (SAP, inner ring), the subset of 200 lines selected for GWAS 552 
(2nd ring from the center, in blue), the 24 lines used for sample type selection (Pilot, 3rd ring from 553 
the center, in yellow), and the 18 genotypes used for GWAS validation containing either the 554 
Chromosome 4 minor allele (red) or major allele (brown) identified by GWAS (outer ring). B 555 
Shannon’s Diversity values from 16S rRNA amplicon datasets for the leaf (green), root (yellow), 556 
and rhizosphere (red) sample types across all 24 genotypes used in the pilot experiment. C 557 
Principal coordinate analysis generated using Bray-Curtis distance for the 24 genotypes across leaf 558 
(green), root (yellow), and rhizosphere (red). D Mantel’s R statistic plotted for each sample type 559 
indicating the degree of correlation between host genotypic distance and microbiome distance. 560 
 561 
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Figure 2. Taxonomic classification of heritable rhizosphere microbes. A The relative 562 
percentage of total OTUs belonging to each of the top 17 bacterial orders for all OTUs (left bar), 563 
non-heritable OTUs (middle bar), or heritable OTUs (right bar). Orders with significantly different 564 
numbers of OTUs in the heritable (H2>0.15) as compared to the non-heritable fraction (H2<0.15), 565 
as determined by Fisher’s exact test (p<0.05), are indicated with asterisks. B Order-level 566 
scatterplot of the log2 ratio between heritable and non-heritable OTU counts (x-axis) and read count 567 
abundance (y-axis). Circle sizes represent the total abundance represented by each bacterial order. 568 
Points within the dashed lines indicate merged bacterial orders that were present only in the 569 
heritable (upper right) or non-heritable (lower left) fractions.  570 
 571 
Figure 3. Heritability of rhizosphere microbes across maize and sorghum. A Proportional 572 
Venn diagram of bacterial orders containing heritable OTUs identified in this study (Sorghum 573 
SAP), compared with those found in a large-scale field study of maize nested association mapping 574 
(NAM) parental lines grown over two separate years, published in Walters et al., 20185. The top 575 
100 heritable OTUs (based on H2) from each dataset were classified at the taxonomic rank of order 576 
to generate the Venn diagram. NAM heritable orders only present in the SAP non-heritable fraction 577 
are represented by the blue sections. Superscript letters indicate the frequency that a random 578 
subsampling of 100 sorghum OTUs (10,000 permutations) produced greater overlap with maize 579 
OTUs from either single year (a/b) or both (c). B Stacked barplot displaying cumulative counts (y-580 
axis) of OTUs identified as heritable in any of the three datasets for all bacterial orders (x-axis) 581 
which have a total of at least three heritable OTUs. C The fraction of heritable sorghum OTUs 582 
relative to all sorghum OTUs within each order are displayed as a heatmap. Asterisks indicate 583 
orders enriched in heritable OTUs (Fisher’s exact test, p<0.001).  584 
 585 
Figure 4. A sorghum genetic locus is correlated with rhizosphere microbial abundance. A 586 
Manhattan plot of PC1 community analysis GWAS. B Individual OTU GWAS of all OTUs with 587 
at least 5 SNPs above a threshold of –log10 (p=10–2.5) in the 1.15 Mb window identified on the same 588 
chromosome 4 locus identified by PC1 GWAS (lower heatmap). Ratio of OTUs that associate with 589 
the sorghum major (red) or minor (blue) allele groups within this locus (upper heat map). OTUs 590 
were grouped based on the predicted presence of one or two membranes (monoderm or diderm) 591 
within each bacterial order and colored as in figure 2. C Tissue-specific gene expression data for 592 
sorghum genes within the chromosome 4 locus. Darker blue indicates higher expression 593 
(normalized FPKM). Asterisks indicate genes whose expression are predicted 594 
to be root-specific.  595 
 596 
Figure 5. Sorghum genetic information can be used to predict rhizosphere microbiome 597 
composition. A Canonical Analysis of Principal Coordinates of the rhizosphere microbiome for 598 
nine major allele genotypes (red) and nine minor allele genotypes (blue). B Ratio of indicator 599 
OTUs that associate with the sorghum major (red) or minor (blue) allele groups. OTUs were 600 
grouped based on the predicted presence of one or two membranes (monoderm or diderm), within 601 
each bacterial order, and colored as in figures 2 and 4.  602 
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