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Abstract 

 

Applying whole exome sequencing (WES) to populations with unique genetic 

architecture has the potential to reveal novel genes and variants associated with traits 

and diseases. We sequenced and analyzed the exomes of 6,716 individuals from an 

American Indian population in Southwest US (Southwestern American Indian, or SWAI) 

with well-characterized metabolic traits. We found that individuals of SWAI have distinct 

allelic architecture compared to individuals with European and East Asian ancestry, with 

many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly 

enriched or private in SWAI. We evaluated gene-level associations with metabolic traits 

using pLOF and nonsynonymous variants in SWAI. Many of the candidate genes from 

previous GWAS studies for body mass index, type 2 diabetes, and plasma lipid levels 

were associated with respective traits in SWAI. Notably, these associations were mainly 

driven by pLOF and nonsynonymous variants that are unique or highly enriched in 

American Indians, many of which have not been observed in other populations or 

functionally characterized. Our study illustrates the utility and potential of WES in 

American Indians to prioritize candidate effector genes within GWAS loci and to find novel 

variants in known diseases genes with potential clinical impact.  
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Introduction 

 

The genetic architecture of a population is influenced by the specific demographic 

history that the population has undergone. Founder and bottleneck events and 

subsequent reproductive isolation can result in a dramatic change in the allele frequency 

spectrum, potentially increasing the frequency of rare functional variants due to random 

genetic drift, thus allowing greater statistical power to detect the association of such 

variants with traits of interest1-7. American Indians are predicted to have gone through a 

series of founder and bottleneck events. One such bottleneck occurred around 15,000 

years ago, when a small number of Eurasians are thought to have migrated across the 

Bering Strait and settled into the American continent8. In addition, the European 

colonization of the Americas led to other bottleneck events around 500 years ago9. 

Consistent with this history, American Indians have distinct genetic background compared 

to several cosmopolitan populations10; 11. 

The specific population of the study consists of American Indians from the 

Southwestern region of the United States (SWAI). This population has very high 

prevalence of obesity and type 2 diabetes and has been deeply characterized for 

metabolic traits12-14. Previously, genetic studies have been conducted in this population 

with specific focus on metabolic traits, including genome-wide linkage analyses15, 

genome-wide association studies (GWAS)16-20, assessment of genes and/or variants 

found in GWAS studies in other ancestry groups21-26, and targeted sequencing of 

physiologic candidate genes27-32. These approaches have found common and rare 

variants that are associated with metabolic traits and disease status in this population; 
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however, a systematic examination of coding variation across the genome and its 

potential impact has not been fully explored. 

In this study, we sequenced the whole exomes of 6,716 American Indians and 

found a total of ~1.2 million variants including 16,880 predicted loss-of-function variants 

and 258,306 nonsynonymous variants, many of which have not been described before. 

The goal of our study was to characterize the exome architecture of American Indians in 

comparison to cosmopolitan populations and examine the phenotypic impact of rare 

coding variants that are either private or enriched in this population.   
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Subjects and Methods 

 

Study Subjects 

The study participants were individuals with American Indian ancestry from the 

Southwestern region of the United States (referred to as “SWAI”) who enrolled in a 

longitudinal study described previously14; 33. Measurements included height and weight 

for body mass index (BMI) calculation and fasting lipid levels. Type 2 diabetes (T2D) 

status was determined based on the criteria of the American Diabetes Association or the 

review of the medical records. The self-reported number of great grandparents that were 

American Indian was recorded as a measure of admixture. Individuals with all eight 

American Indian great grandparents are herein referred to as “full American Indians”. 

DNA from blood of the participants was collected to evaluate the genetic etiology of 

metabolic disorders. The study protocol was approved by the Institutional Review Board 

(IRB) of the National Institute of Diabetes and Digestive and Kidney Diseases. Informed 

consent was obtained from all participants.  

Individuals from two additional studies were included as references for comparison. 

The DiscovEHR study is a collaborative project between the Regeneron Genetics Center 

and Geisinger Health System based in Pennsylvania with participants who enrolled in 

Geisinger’s MyCode Community Health Initiative34. The study was approved by the IRB 

at the Geisinger Health System. The TAICHI study is a collaborative study with 

participants recruited at several academic centers in Taiwan35. The study was approved 

by the IRBs at all participating centers (Taichung Veteran’s General Hospital, Tri-Service 

General Hospital, the National Taiwan University Hospital, and the National Health 
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Research Institute of Taiwan) and the Institutional Review Board of the Los Angeles 

Biomedical Research Institute. All participants provided written informed consent. 

 

Exome Sequencing, Variant calling, and QC 

DNA samples from 6,809 SWAI individuals were exome sequenced at the 

Regeneron Genetics Center, using sequencing methodology, genome alignment, and 

genotype calling approaches as previously describe36. Briefly, exonic regions were 

targeted using an xGEN probe library with slight modifications. Targeted DNA was 

sequenced on the Illumina HiSeq 2500 platform with v4 chemistry using 75bp paired-end 

reads. Sequencing was performed such that >85% of the bases were covered at ³20x 

depth. Read alignment to human genome reference GRCh38 and variant calling were 

performed using BWA-MEM and GATK, respectively. 93 samples were removed based 

on QC metrics including low coverage (<75% of targeted bases with at least 20x depth), 

low quality, sex mismatch, sample duplicates, and high discordance with array genotypes, 

resulting in the final count of 6,716 exomes for analysis. Variants were further filtered by 

missing call rates (<10%) and Hardy-Weinberg equilibrium p-values (>1x10-15). 

DNA samples from 29,575 individuals of European ancestry from the DiscovEHR 

study were exome sequenced by the same method. DNA samples from 13,947 

individuals of East Asian ancestry from the TAICHI study were exome sequenced by an 

analogous method as previously described34, with the major difference being the use of 

VCRome reagent for exome targeting instead of xGEN reagent.  

 

Variant annotation 
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Variants were annotated for their predicted effects on all protein-coding transcripts 

with annotated start and stop in Ensembl85 (54,214 transcripts corresponding to 19,467 

genes) using snpEff37. Variants were annotated as predicted loss-of-function (pLOF) 

when they were predicted to incur frameshift, premature stop codon, loss of start or stop 

codon, or disruption of canonical splice dinucleotides. Nonsynonymous variants included 

missense SNVs and inframe indels. When a variant had different predicted effects among 

different transcripts, a more deleterious effect was prioritized. The variants detected in 

the American Indian exomes were compared to dbSNP (v151)38 and gnomAD exomes 

(r2.1)39. 

 

Principal Component Analysis 

Reference genomes were downloaded from 1000 Genomes project server40. The 

analysis was limited to autosomal biallelic variants with MAF ³ 5% and r2 < 0.2 outside of 

the major histocompatibility complex region that were detected in both the reference 

genomes and the SWAI exomes. We first calculated the principal components from the 

reference genomes and projected individuals from the SWAI study on to the PC space 

using PLINK241.  

 

Comparison of allelic architecture 

The allelic architecture of SWAI exomes was compared to European ancestry 

exomes from the DiscovEHR study and East Asian exomes, predominantly of Han 

Chinese from Taiwan, from the TAICHI study. All studies were exome sequenced at the 

Regeneron Genetics Center, but two different exome targeting reagents were used 
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(xGEN and VCRome). To account for the difference in the exome targeting reagents, all 

comparisons were made among the subset of variants that map to the intersection of 

consistently covered regions of each targeting reagent. Consistently covered regions are 

defined as having ³20x read depth in ³90% of a randomly sampled set of 1,000 exomes 

sequenced using the targeting reagent. 

For the comparison of proportional site frequency spectra with 6,716 European 

exomes, 6,716 East Asian exomes were randomly extracted from DiscovEHR and 

TAICHI studies, respectively. The number of pLOF and nonsynonymous variants were 

counted according to the minor allele count bins and the proportion was calculated. 

For comparisons of allele frequency, we included only self-reported full American 

Indians from the SWAI study, to minimize the impact of admixture. To avoid situations 

where the minor allele of the same variant differs between studies, all allele frequencies 

refer to the alternate allele frequencies (AAF) of the variant compared to the human 

genome reference. For any study, if no alternate alleles were observed within a 

consistently covered region (as described above), the allele frequency of the variant in 

that study was inferred to be 0. SWAI allele frequencies were also compared to the 

population frequencies from gnomAD exomes r2.1. When a variant was not listed in 

gnomAD exomes, but the genomic position was called with mean read depth ³20, the 

allele frequency of the variant in gnomAD was inferred to be 0. 

 

Association Tests 

We derived the set of GWAS candidate effector genes from previous GWAS 

studies for body mass index42, type 2 diabetes43, and plasma lipid levels44. Sentinel 
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variants of independent association signals were derived using GCTA-COJO45 using 

individuals of European ancestry from DiscovEHR as reference. The genes that are 

closest to the variants were derived using BEDTools and tested for association with 

corresponding traits in the American Indians. 

For gene-burden tests, pLOF and missense variants were grouped into eight 

masks using two allele frequency cutoffs (AAF <1% and <5%) and four functional effect 

criteria: 1) M1 - pLOF variants only, 2) M2 - pLOF and all missense variants, 3) M3 - pLOF 

and missense variants predicted to be deleterious by all five prediction algorithms used 

(SIFT46, LRT47, MutationTaster48, PolyPhen2-HumDiv, PolyPhen2-HumVar49), 4) M4 - 

pLOF and missense variants predicted to be deleterious by at least one of the five 

prediction algorithms. If different masks of a gene are comprised of the same variants, 

they are collapsed to one mask with most stringent definition, so that only unique masks 

were tested for association. The Bonferroni corrected P-values were calculated as 0.05 / 

total number of unique masks tested. For masks with significant associations, the 

individual variants that were included in those masks were also tested for associations. 

Only the masks and variants with at least 10 alternate allele counts were tested. 

Associations were tested under linear mixed model using SAIGE50 for diabetes 

status and BOLT51 for quantitative traits to adjust for population structure and cryptic 

relatedness. For diabetes, age, age2, sex, and 5 principal components of ancestry were 

included as covariates. For age of diabetes onset, sex and 5 principal components were 

included as covariates. Triglyceride measures were natural log transformed. For BMI and 

lipid traits, residuals were derived adjusting for age, age2, sex, 5 principal components, 

and transformed to normality by rank-based inverse normal transformation.    
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Results 

 

Characterization of exome variants 

We detected a total of 1,208,812 variants from the exomes of 6,716 SWAI (Table 

1, Figure 1A), of which 1,130,961 (93.6%) were single nucleotide variants (SNVs) and 

77,851 (6.4%) were indels. When annotated for predicted effects, 16,880 (1.4%) were 

predicted loss-of-function (pLOF) variants (frameshift, stop-gain, start-loss, splice 

acceptor, splice donor, and stop-loss) and 258,306 (21.4%) were nonsynonymous 

variants (inframe indels and missense). The majority of variants were rare, i.e., less than 

10 alternate allele counts (corresponding to the alternate allele frequency of <0.07%) in 

SWAI. 

When compared to dbSNP and gnomAD exome databases, 241,042 variants 

(19.9%) were novel and were not listed in either database (20.3% not in dbSNP and 45.2% 

not in gnomAD exome). The novel variants tended to be rarer (Figure 1B) and more 

enriched among pLOF variants than among nonsynonymous or synonymous variants 

(Figure 1C).  

 

Population structure 

SWAI study population has considerable admixture according to the self-reported 

American Indian ancestry of the study subjects: 72.8% of the subjects were full American 

Indians (all eight great grandparents were American Indian) while the rest had varying 

degrees of admixture (Figure S1A). To evaluate the population structure and admixture 

of SWAI based on the genetic data, we constructed principal components from three 
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ancestral super populations (EUR, EAS, AFR) from the 1000 Genomes Project and 

projected SWAI study subjects onto the principal component space. When only the self-

reported full American Indians were plotted, they clustered about an axis between 

European and East Asian clusters (Figure S1B). When all individuals from SWAI study 

were plotted, we observed that individuals with greater self-reported admixture tended to 

deviate further from the full American Indian cluster towards European and African 

clusters (Figure S1C). These results are consistent with study population being comprised 

of individuals with complete or partial American Indian ancestry. 

 

Comparison of allelic architecture and frequency 

We compared the allelic architecture of SWAI exomes to European ancestry 

exomes from the DiscovEHR study and East Asian exomes from the TAICHI study that 

served as the extant proxies for ancestral European and East Asian genomes that 

influenced the American Indian genome. To account for the difference in exome targeting 

reagents across the studies (SWAI and DiscovEHR studies with xGEN and TAICHI study 

with VCRome), analyses were restricted to variants that reside in the consistently covered 

regions by both targeting reagents. We compared the proportional site frequency spectra 

of SWAI exomes to the same number of European and East Asian ancestry exomes that 

were randomly sampled. SWAI exomes were relatively depleted of ultra-rare pLOF and 

nonsynonymous variants (MAC £3) compared to European ancestry exomes but were 

enriched for moderately rare pLOF and nonsynonymous variants (3< MAC £1000) 

compared to both European and East Asian ancestry exomes (Figure 2A and 2B). 
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To examine how many of the variants that were detected in SWAI are private or 

enriched in SWAI, we compared the allele frequency of pLOF and nonsynonymous 

variants in full American Indians from SWAI to individuals with European and East Asian 

ancestries. The analysis was restricted to variants with minimum alternate allele count of 

10 in SWAI, considering the power for statistical inference, within the consistently covered 

regions. Among the total of 1,456 pLOF variants, 548 (38.4%) were only detected in 

American Indians and 689 (48.3%) were more than 10 times more enriched in American 

Indians compared to both the individuals of European ancestry and the individuals of East 

Asian ancestries (Figure 2C). Among the total of 32,577 nonsynonymous variants, 7,640 

(23.7%) were only detected in American Indians and 11,649 (36.1%) were more than 10 

times more enriched in American Indians compared to individuals with European and East 

Asian ancestries (Figure 2D). 

 

Genes with pLOF variation 

As predicted loss-of-function variants can provide a valuable insight on the 

biological connection between genes and traits, we examined how many genes carried 

pLOF variation in SWAI exomes. Of the 19,467 genes annotated, 9,015 genes (46.3%) 

had at least one heterozygous carrier of pLOF variants and 3,398 genes (17.5%) had at 

least 10 heterozygous carriers (Table 2, Figure 2A). 907 genes (4.7%) had at least one 

homozygous carrier of pLOF variants, and 466 genes (2.4%) had at least 10 homozygous 

carriers. 

To see whether population history impacted the number and distribution of pLOF 

variation, we compared the number of genes with pLOF carriers in the same number of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.21.938936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.938936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

13 

samples randomly drawn from American Indian, European, and East Asian exomes from 

SWAI, DiscovEHR and TAICHI studies. The analysis was again restricted to variants in 

the consistently covered regions across the studies for comparison. Consistent with 

founder effect, the number of genes with heterozygous pLOF carriers was lower in SWAI 

exomes than in European and East Asian exomes (Figure 2B, top). On the other hand, 

the number of genes with homozygous pLOF carriers was greater in SWAI exomes 

(Figure 2B, bottom), potentially due to the fact that SWAI population underwent 

reproductive isolation with small population size. 

pLOF variation may accumulate due to random genetic drift or specific 

environmental pressure that populations face which could increase tolerance to loss-of-

function of certain genes. We investigated the overlap among the set of genes with ³10 

pLOF carriers in the SWAI (N = 6,716), European (N = 29,575) and East Asian exomes 

(N = 13,947). We set the minimum number of carriers at 10 considering the power for 

downstream statistical inference. While the total sample size of SWAI exomes was 

smaller than those of European and East Asian exomes, there were 275 genes with ³10 

heterozygous pLOF carriers and 87 genes with ³10 homozygous carriers only in SWAI 

exomes and not others (Figure S2). Of all the genes with ³10 heterozygous and ³10 

homozygous pLOF carriers in SWAI exomes, ~11.8% and 27.7% were unique to SWAI 

exomes, respectively. 

 

Association with metabolic traits 

Genetic associations in American Indians using exome variants can not only 

provide additional evidence for the candidate effector genes in GWAS loci, but also find 
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novel variants, with potential clinical impact, that are unique or enriched in American 

Indians. We derived the list of candidate effector genes from the latest and largest GWAS 

studies for body mass index (BMI), type 2 diabetes, and plasma lipid levels and tested 

their association with respective traits in American Indians. We used gene-burden 

approach, aggregating pLOF and nonsynonymous variants into eight masks, using two 

allele frequency cutoffs (<1% and <5%, indicated as 1 and 5 following ‘.’ in the name of 

the mask) and four functional effect criteria: 1) M1 - pLOF variants only, 2) M2 - pLOF 

and all missense variants, 3) M3 - pLOF and missense variants predicted to be 

deleterious by all five prediction algorithms used (see methods for detail), 4) M4 - pLOF 

and missense variants predicted to be deleterious by at least one of the five prediction 

algorithms. If different masks of a gene are comprised of the same variants, they are 

collapsed to one mask with most stringent definition, so that only unique masks were 

tested for association. The Bonferroni corrected P-values were calculated by dividing 0.05 

by the number of unique masks tested. 

 

Body mass index 

774 genes that were closest to the independent association signals in the latest 

BMI GWAS study42 were analyzed for association with maximum BMI measured in 

American Indians (Bonferroni P < 0.05 / 1922 unique masks = 2.6 x10-5). The M3.1 mask 

of MC4R [OMIM: 155541], a known gene for early-onset obesity, was the only one 

significantly associated with increased maximum BMI in SWAI (Table 3, Beta = 0.56sd, 

P = 5.2x10-9). The M3 mask consisted of seven variants, including the previously 

described frameshift variant (p.Gly34fs), and missense variants (p.Arg165Gly, 
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p.Ala303Pro, and p.Arg165Gln) that are either private or enriched in American Indians 

and were associated with maximum BMI individually (Table S1)27. These variants were 

previously identified by targeted sequencing of MC4R in SWAI and were found to impair 

the activity of MC4R in vitro, suggesting their functional impact27. 

 

Type 2 diabetes 

269 genes that were closest to the independent association signals in the latest 

T2D GWAS study43 were analyzed for association with T2D in American Indians 

(Bonferroni P < 0.05 / 772 unique masks = 6.5x10-5). Two masks were significantly 

associated with T2D risk: M3.1 mask of MC4R and M3.5 mask of ABCC8 [OMIM: 600509], 

a known gene for maturity onset diabetes of young (MODY) [OMIM: 606391] (Table 3). 

The same M3.1 mask of MC4R, which was associated with maximum BMI, was 

also associated with T2D (OR = 2.6, P = 1.2x10-5). When adjusted for maximum BMI, the 

association was only partially mitigated (OR = 2.2, P = 5.8x10-4), suggesting that MC4R 

may affect T2D independent of its effect on obesity. Again, individual variants in the mask 

that are unique or highly enriched in American Indians, p.Gly34fs, p.Arg165Gly, and 

p.Arg165Gln, were associated with increased T2D risk (Table S2). The mask was also 

associated with earlier onset of T2D (Beta = -4.3years, P = 5.5x10-3), with all three 

homozygous carriers developing T2D under the age of 30 years (Figure S3A). 

The M3.5 mask of ABCC8 was associated with diabetes (OR = 2.2, P = 9.3x10-6). 

Among the 17 variants included in the M3.5 mask of ABCC8, p.Arg1420His was most 

strongly associated with diabetes risk (OR = 2.2, P = 1.5x10-5), which was previously 

reported30. Notably, this variant was ~489-fold and ~115-fold enriched in full American 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2020. ; https://doi.org/10.1101/2020.02.21.938936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.938936
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

16 

Indians compared to individuals with European ancestry and those with East Asian 

ancestry, respectively (Table S2). Consistent with the known role of ABCC8 in MODY, 

early-onset form of diabetes, and what was previously reported for p.Arg1420His alone, 

the M3.5 mask was associated with earlier age of onset (Beta = -6.9years, P = 1.8x10-7), 

with the one homozygous carrier developing diabetes before the age of 10 (Figure S3B). 

ABCC8 encodes sulfonylurea receptor 1 protein (SUR1) that constitutes ATP-sensitive 

potassium (KATP) channel and it was previously shown that the p.Arg1420His mutation in 

SUR1 protein leads to impaired activity of KATP channel in vitro30, suggesting the 

functional impact of the variant. 

 

Plasma lipids 

 Up to 115 genes that were closest to the independent association signals in the 

latest GWAS study for plasma lipid traits44 were analyzed for association with fasting total 

cholesterol, HDL cholesterol, LDL cholesterol, and triglyceride levels in American Indians 

(Bonferroni P < 0.05 / up to 391 unique masks = 1.28 x10-4). Seven genes were 

significantly associated with at least one lipid trait (Table 3), among which six genes, 

APOB, APOE, PCSK9, TM6SF2, LIPC, and LIPG, have well characterized roles in lipid 

metabolism. On the other hand, GPAM gene, which encodes mitochondrial glycerol-3-

phosphate acyltransferase with no previously known role in HDL metabolism, was 

associated with increased HDL cholesterol levels under M3.5 mask (Beta = 0.58sd, P = 

5.1x10-15). Among 15 variants included in the M3.5 mask, p.Ser611Arg variant was most 

strongly associated with HDL cholesterol levels (Beta = 0.57sd, P = 3.8x10-14). The 

p.Ser611Arg variant is present in American Indians at AAF of 0.025, but not detected in 
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individuals with European ancestry and ~383-fold enriched compared to individuals with 

East Asian ancestry (Table S3). This finding complements the previously identified 

association of a common missense variant of GPAM, p.Ile43Val, with HDL cholesterol 

levels in European populations44.  

Notably, the APOB, APOE, PCSK9, and TM6SF2 masks that were associated with 

LDL cholesterol levels included many variants that are enriched or private in SWAI and 

have large effect sizes on LDL cholesterol levels (Table S3), suggesting clinical impacts 

of these variants. A frameshift pLOF variant of APOB, p.Ala3175fs, is private in SWAI 

(AAF = 0.001) and was associated with lower LDL cholesterol levels (Beta = -2.30sd, P 

= 1.8x10-13). A missense variant of APOE, p.Ala184Asp, is private in SWAI (AAF = 0.007) 

and was associated with lower LDL cholesterol levels (Beta = -1.18sd, P = 2.3x10-20). 

This variant was in linkage equilibrium with the common variants of APOE e2 and e4 

haplotypes (r2 < 0.05). A missense variant of PCSK9, p.Gly244Asp, is highly enriched in 

SWAI (AAF = 0.024) and was associated with lower LDL cholesterol levels (Beta = -

0.46sd, P=4.7x10-10). A missense variant of TM6SF2, p.Arg138Trp, is highly enriched in 

SWAI (AAF = 0.046) and was associated with lower LDL cholesterol levels (Beta = -

0.20sd, P=1.2x10-4). Further studies are needed to demonstrate the functional impacts of 

these variants and evaluate their implications in cardiovascular health.   
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Discussion 

 

Our study illustrates that exome sequencing applied to founder populations such 

as American Indians can uncover novel genetic variations that are associated with clinical 

and quantitative traits and expand our understanding of the genetic contribution to these 

traits. This is enabled by the distinct allelic architecture of American Indians with rare 

functional variants drifted to higher frequency, increasing the statistical power to detect 

their associations with traits. In addition, gene-burden approaches, aggregating rare 

pLOF and nonsynonymous variants affecting the same gene, further enhanced the power 

to evaluate the relationship between genes and traits of interest. 

The genetic architecture of the SWAI is influenced by their unique population 

history involving bottleneck events followed by isolation. Consistent with the expectation 

that bottleneck events reduce overall genetic diversity, we observed fewer numbers of 

pLOF and nonsynonymous variants in SWAI exomes compared to European and East 

Asian exomes that underwent rapid population growth. Isolation subsequent to bottleneck 

events can randomly increase the frequency of rare variants. When we compared the 

proportion of pLOF and nonsynonymous variants across minor allele count bins, we 

observed selective enrichment of moderately rare variants in American Indian exomes 

compared to European and East Asian ancestry exomes, similar to the observation in 

Finnish populations that also underwent a series of bottleneck events and isolation5. In 

addition, reproductive isolation in small populations can increase the homozygosity of 

genetic variants. As expected, SWAI had greater number of pLOF and nonsynonymous 
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variants in homozygosis compared to equivalent numbers of more cosmopolitan 

European and East Asian ancestry populations. 

Genome-wide association studies have traditionally focused on common variants 

that are captured by genotyping arrays or imputation and, as a result, many association 

signals are noncoding, making it challenging to pinpoint the effector genes that mediate 

the association. In our study, we took the candidate genes from large GWAS studies 

conducted for BMI, type 2 diabetes, and plasma lipid traits in European populations and 

tested their association in American Indians using gene-burden approach. We found 

significant associations for a handful of these genes, providing additional evidence for the 

connection between these candidate genes and the traits. Of note, gene-burden 

associations tended to have stronger effects on traits compared to associations found in 

GWAS, consistent with the expectation that rare pLOF and nonsynonymous variants have 

greater impacts than common noncoding variants (Table 3). Most of the associations 

were with genes that have well characterized roles in the regulation of the respective traits. 

One exception was the association of GPAM gene, which encodes mitochondrial glycerol-

3-phosphate acyltransferase, with plasma HDL-cholesterol levels, implicating a potential 

novel role of GPAM in HDL metabolism. Notably, a previous study on Gpam knockout 

mice observed reduced hepatic triglyceride content and plasma total cholesterol and 

triglyceride levels, but no significant difference in plasma HDL cholesterol levels52, 

suggesting that the effect of GPAM on HDL cholesterol may be specific to humans. 

The current study using the whole exome sequence of SWAI complements and 

extends previous genetic studies that have been conducted in SWAI using targeted 

sequencing or genotyping of candidate genes and variants and high-density genotyping 
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arrays. The whole-exome sequence enabled the systemic examination of all candidate 

genes for their association with metabolic traits at the gene-level, which confirmed 

significant associations of MC4R and ABCC8 for BMI and T2D that were previously found 

in SWAI by targeted sequencing of these specific genes27; 30. In addition, the whole exome 

sequence allowed the identification of rare coding variants beyond the common variants 

that have been captured by targeted genotyping or genotyping arrays22; 23; 26, leading to 

a more comprehensive understanding of the impact of genetic variation in the candidate 

genes on traits. A previous GWAS study for T2D performed in SWAI using a genotyping 

array found genome-wide significant associations of two common intronic variants in 

KCNQ1 and DNER with T2D risk17; 21. We did not find additional association of pLOF or 

nonsynonymous variants of KCNQ1 and DNER with T2D risk, suggesting that the 

previously observed GWAS association signals are likely mediated by alteration in 

transcriptional regulation. 

It is worth noting that most gene-burden associations that we found were driven by 

pLOF and/or nonsynonymous variants that are unique or highly enriched in American 

Indians. Many of these variants were associated with traits with strong effects, warranting 

further investigation on the clinical implications of these variants in American Indians. In 

addition, further characterization of the functional impact of these protein-sequence 

altering variants can broaden our understanding of the structure and regulation of the 

proteins. While the current study specifically focused on the exome variants within the 

GWAS candidate genes, more studies are ongoing to identify novel genetic associations 

utilizing exome variants across the genome and could shed light on additional genetic 

underpinnings of the high prevalence of metabolic disorders in this population.  
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Supplemental Data Description 

 

Supplemental data include 3 figures and 3 tables.  
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Figure Titles and Legends 

 

Figure 1: Summary statistics and annotation of variants captured by whole exome 

sequencing of 6,716 American Indians 

 

(A) Site frequency distribution of 1,208,812 autosomal variants according to predicted 

functional effects. (B) The number of variants that are novel or previously listed in 

gnomAD or dbSNP databases as a function of alternate allele count. (C) The proportion 

of variants that are novel or previously listed in gnomAD or dbSNP databases stratified 

by predicted functional effect. pLOF: predicted loss-of-function, NONSYN: 

nonsynonymous, SYN: synonymous. 

 

Figure 2: Comparison of the distribution and frequency of pLOF and 

nonsynonymous variants among SWAI, European, and East Asian exomes 

 

(A-B) Comparison of the distribution of pLOF (A) and nonsynonymous (B) variants at 

different minor allele count (MAC) bins among American Indian, European, and East 

Asian exomes from SWAI, DiscovEHR, and TAICHI studies, respectively. (C-D) The 

number and percentage of pLOF (C) and nonsynonymous (D) variants that are enriched 

in full American Indian exomes from SWAI compared to European or East Asian exomes, 

or both European and East Asian exomes. The analysis is restricted to variants with 

alternate allele count ³10 in full American Indians from SWAI. All analyses were restricted 
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to variants in consistently covered regions to account for the difference in exome targeting 

reagents among the studies. 

 

Figure 3: Comparison of the number of genes with predicted loss-of-function 

carriers among SWAI, European, and East Asian exomes 

 

(A) The number and percentage of genes among 19,467 annotated autosomal genes with 

at least X number of heterozygous and homozygous pLOF carriers in SWAI study alone. 

(B) The comparison of the number of genes with at least X number of heterozygous (top) 

and homozygous (bottom) pLOF carriers at fixed sample sizes randomly extracted from 

SWAI, European, and East Asian exomes. The analysis was restricted to the variants in 

consistently covered regions to account for the difference in exome targeting reagents 

among the studies.  
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Table Titles and Legends 

 

Table 1: Summary statistics and annotation of variants captured by whole exome 

sequencing of 6,716 American Indians 

 

Variant type All Alternate allele count ³10 

Total 

Number 

Number 

(%) not 

in 

dbSNPa 

Number 

(%) not in 

gnomADb 

Total 

Number 

Number 

(%) not 

in 

dbSNPa 

Number 

(%) not in 

gnomADb 

All 1,208,812 245,039 

(20.3%) 

545,979 

(45.2%) 

393,548 76,966 

(19.6%) 

175,318 

(44.5%) 

SNVs 1,130,961 228,981 

(20.2%) 

505,888 

(44.7%) 

366,309 72,909 

(19.9%) 

162,486 

(44.4%) 

Indels 77,851 16,058 

(20.6%) 

40,091 

(51.5%) 

27,239 4,057 

(14.9%) 

12,832 

(47.1%) 

Variant effect All Alternate allele count ³10 

Total 

Number 

Number 

(%) not 

in 

dbSNPa 

Number 

(%) not in 

gnomADb 

Total 

Number 

Number 

(%) not 

in 

dbSNPa 

Number 

(%) not in 

gnomADb 

pLOF 

(N=16,880) 

Frameshift 6,881 2,456 

(35.7%) 

2,552 

(37.1%) 

1,474 401 

(27.2%) 

418 

(28.4%) 

Stop 

gained 

5,288 1,427 

(27.0%) 

1,659 

(31.4%) 

1,016 315 

(31.0%) 

354 

(34.8%) 

Start lost 668 125 

(18.7%) 

159 

(23.8%) 

177 33 

(18.6%) 

43 

(24.3%) 

Splice 

acceptor 

1,858 675 

(36.3%) 

750 

(40.4%) 

596 185 

(31.0%) 

198 

(33.2%) 

Splice 

donor 

1,858 612 

(32.9%) 

741 

(39.9%) 

465 175 

(37.6%) 

209 

(44.9%) 

Stop lost 327 117 

(35.8%) 

123 

(37.6%) 

123 59 

(48.0%) 

61 

(49.6%) 
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Nonsynonymous 

(N=258,306) 

Inframe 

indel 

4,157 591 

(14.2%) 

801 

(19.3%) 

1,323 119 

(9.0%) 

173 

(13.1%) 

Missense 254,149 40,529 

(15.9%) 

49,061 

(19.3%) 

68,494 11,088 

(16.2%) 

12,631 

(18.4%) 

Synonymous 164,772 16,650 

(10.1%) 

20,898 

(12.7%) 

54,952 4,551 

(8.3%) 

5,357 

(9.7%) 

 

a dbSNP  v151 was used for comparison. 

b gnomAD exomes r2.1 was used for comparison. 

 

Variants detected in SWAI exomes were categorized by their type and predicted 

functional effect. The number of variants were counted based on whether they have 

alternate allele count ³10 in SWAI exomes and whether they are not present in dbSNP or 

gnomAD exomes.  
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Table 2: Number and percentage of genes with at least X number of carriers of 

predicted loss-of-function variants in 6,716 SWAI exomes 

 

Number of carriers 
Number (%) of genes 

with any carriers 

Number (%) of genes 

with heterozygous 

carriers 

Number (%) of genes 

with homozygous 

carriers 

³1 9,016 (46.3%) 9,015 (46.3%) 907 (4.7%) 

³3 5,910 (30.4%) 5,907 (30.3%) 593 (3.0%) 

³10 3,407 (17.5%) 3,398 (17.5%) 466 (2.4%) 

³30 1,948 (10.0%) 1,936 (9.9%) 389 (2.0%) 

³100 953 (4.9%) 939 (4.8%) 327 (1.7%) 
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Table 3: Gene-burden associations of candidate GWAS effector genes for body mass index, type2 diabetes, and 

plasma lipid levels with respective traits in American Indians  

 Association results from GWAS42 Gene-level associations in SWAI 

Trait Body mass index Maximum BMI 

Gene Top variant 
Variant 
effect 

AAFa Betab P value Top maskd Freq Betab P value 

MC4R rs6567160 intergenic 0.23 0.055 1.8E-178 M3.1 0.011 0.562 5.2E-09 

Trait Type 2 diabetes 

Gene Top variant 
Variant 

effect 
AAF ORc P value Top mask Freq ORc P value 

MC4R rs523288 intergenic 0.238 1.05 7.6E-13 M3.1 0.010 2.62 1.2E-05 

ABCC8 rs67254669 missense 0.001 1.89 1.1E-08 M3.5 0.018 2.21 9.3E-06 

Trait Plasma lipid levels 

Gene Top variant 
Variant 

effect 
AAF Trait Beta P value Top mask Freq Beta P value 

APOB rs541041 intergenic 0.81 TC 0.11 5.3E-237 M4.5 0.062 -0.208 1.4E-06 

    LDLC 0.12 1.3E-287   -0.286 1.6E-09 

APOE rs445925 downstream 0.11 TC -0.21 0 M4.1 0.014 -0.630 9.4E-14 

    LDLC -0.32 0   -0.860 4.7E-20 

PCSK9 rs11591147 missense 0.015 TC -0.41 0 M2.5 0.057 -0.202 6.2E-06 

    LDLC -0.48 0 M3.5 0.028 -0.443 9.1E-11 

TM6SF2 rs58542926 missense 0.074 TC -0.13 7.0E-155 M4.5 0.067 -0.256 4.6E-10 

    LDLC -0.10 6.5E-93   -0.223 7.9E-07 

    TG -0.12 3.7E-125   -0.283 2.5E-11 

GPAM rs2792751 missense 0.73 HDLC -0.03 3.8E-21 M3.5 0.026 0.583 5.1E-15 
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LIPC rs1800588 upstream 0.24 HDLC 0.12 0 M4.1 0.013 0.466 9.8E-6 

LIPG rs7241918 intergenic 0.85 HDLC 0.08 1.2E-104 M3.1 0.002 1.279 2.7E-5 
 

a AAF: alternate allele frequency 

b The unit is standard deviation of normalized traits. 

c OR: odds ratio 

d The mask with strongest trait association is displayed. Refer to the methods for detailed mask definition. 
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