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Abstract

In the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic

acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the

nucleoside guanosine (Gua). Here, we report that Gua and not the other standard nucleosides

inhibits HCV replication in human hepatoma cells.  Gua did not directly inhibit  the  in vitro

polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-

phosphate  (NDPs  and  NTPs),  leading  to  deficient  HCV RNA replication  and reduction  of

infectious progeny virus production. Changes in the concentrations of NTP or NDP modified

NS5B RNA polymerase activity  in vitro,  in particular  de novo RNA synthesis and template

switching. Furthermore, the Gua-mediated changes were associated with a significant increase

in the number of indels in viral RNA, which may account for the reduction of the specific

infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper

NTP:NDP  balance  appears  to  be  critical  to  ensure  HCV  polymerase  fidelity  and  minimal

production of defective genomes.
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Author summary

Ribonucleoside  metabolism  is  essential  for  replication  of  RNA  viruses.  In  this  article  we

describe the antiviral activity of the natural ribonucleoside guanosine (Gua). We demonstrate

that hepatitis C virus (HCV) replication is inhibited in the presence of increasing concentrations

of  this  ribonucleoside  and that  this  inhibition does  not  occur  as  a  consequence  of  a  direct

inhibition  of  HCV  polymerase.  Cells  exposed  to  increasing  concentrations  of  Gua  show

imbalances in the intracellular concentrations of nucleoside-diphosphates and triphosphates and

as the virus is passaged in these cells, it accumulates mutations that reduce its infectivity and

decimate its normal spreading capacity.
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Introduction

Positive-sense  single-stranded  RNA  viruses  [(+)ssRNA  viruses]  are  the  most  abundant

pathogens  for  humans.  The  hepatitis  C  virus  (HCV)  is  a  hepacivirus  that  belongs  to  the

Flaviviridae family  of  (+)ssRNA  viruses.  The  HCV  genome  encodes  information  for  the

synthesis of ten proteins: core (C), envelope glycoproteins (E1 and E2), an ion channel (p7),

NS2 protease,  protease/helicase  NS3 (and its  cofactor  NS4A),  membrane-associated protein

NS4B, regulator of viral replication NS5A, and RNA-dependent RNA-polymerase NS5B [1].

There  are  several  ways  to  approach the  control  of  RNA viral  diseases.  Inhibition of  HCV

functions by direct-acting antiviral agents (DAAs) has yielded sustained virological responses

of about 98% [2,3]. Thus, HCV infection may be targeted for eradication by the combined use

of different DAAs directed to viral proteins. However, access to this treatment is not affordable

in countries with high prevalence rates, and an effective prophylactic vaccine is not available,

making  global  HCV  eradication  difficult.  Consequently,  treatment  with  a  combination  of

pegylated interferon-alpha (PEG-IFNα) plus ribavirin (Rib) is still in use in several countries

with high prevalence rates of HCV infection [4]. 

Rib displays several mechanisms of antiviral activity  [5], a major one being the inhibition of

inosine-5’-monophosphate (IMP) dehydrogenase (IMPDH), which converts IMP to xanthosine

monophosphate (XMP) and thus is involved in the de novo biosynthesis of GTP [6]. Rib also

exerts its antiviral activity through lethal mutagenesis [7-10]. In the course of our experiments

on  the  effect  of  mycophenolic  acid  and  Rib  on  HCV clonal  population  HCV p0  [11] we

observed that the presence of guanosine (Gua) during viral replication produced a decrease of

up to 100 times in infectious progeny production. Although there are Gua derivatives that have

antiviral  properties,  including  Rib  itself,  natural  Gua  has  never  been  identified  as  having

antiviral activity  [5]. The objective of the present study was to quantify the inhibitory role of

Gua  on  HCV,  its  specificity,  and  its  mechanism  of  action.  We  show that  i)  Gua  inhibits

infectious HCV progeny production but does not inhibit directly the HCV polymerase; ii) Gua

alters the intracellular pools of di- and triphosphate ribonucleosides (NDP and NTP); iii) the
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imbalance of the concentrations of NDP and NTP results in the inhibition of HCV polymerase

activity  in vitro,  and iv) Gua treatment is associated with an increase of indel  frequency in

progeny HCV RNA. The results provide evidence of a metabolism-dependent mechanism of

generation of defective HCV genomes.
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Results

Effect of ribonucleosides on HCV replication

Before  studying  the  possible  anti-HCV  effect  of  natural  nucleosides  we  determined  their

cytotoxicity  (CC50)  on  Huh-7.5  reporter  cells.  The  cytotoxicity  of  Gua,  adenosine  (Ade),

cytidine (Cyt) or uridine (Uri) was analyzed in semiconfluent cell monolayers by exposing cells

to  different  nucleoside  concentrations  (from  0  μM  to  800  μM).  Cell  viability  (CC50)  was

monitored after 72 h of treatment (Table 1) as described in Materials and Methods. Only Ade

showed a modest cytotoxicity in the range of concentrations tested.

To quantify the inhibition of HCV infectious progeny production in the presence of nucleosides

(IC50), Huh-7.5 reporter cells were infected with HCV p0 at a multiplicity of infection (m.o.i.) of

0.05-0.1  TCID50 per  cell  in  the  presence  of  increasing  concentrations  of  the  corresponding

nucleoside,  and  infectious  progeny production was  measured  as  described in  Materials  and

Methods. A decrease in the production of HCV infectious progeny was observed for Gua and

Ade, whereas Cyt and Uri did not show any effect (Table 1). These data yield a therapeutic

index (TI), defined as CC50/IC50, of 5.9 and ≥ 4.9 for Ade and Gua, respectively (Table 1). 

To further explore the effect of ribonucleosides on HCV replication, HCV p0 was subjected to 5

serial passages in Huh-7.5 reporter cells, using an initial m.o.i. of 0.05 TCID50 per cell, both in

the absence and in the presence of ribonucleosides at 500 μM and 800 μM (Fig 1). Results show

a consistent decrease in progeny infectivity as a result of Gua treatment (Fig 1A and 1B), but a

sustained viral replication in the presence of Ade, Cyt or Uri (Fig 1C, D). In the presence of 500

μM Gua, a decrease in infectivity was detected although only one of the four replicates yielded

values below the detection limit (Fig 1A). A sustained drop in HCV infectivity by Gua 800 μM

was achieved, which became undetectable between passages 2 and 4 in all replicates (Fig 1B).

Therefore, Gua was the only nucleoside that showed antiviral effect without cytotoxicity. 

Next, we analyzed the effect of treatment with Gua, Ade, Cyt, and Uri in a surrogate single

cycle infection model, taking advantage of spread-deficient bona fide HCV virions bearing a

luciferase  reporter  gene  (HCVtcp).  This  system  recapitulates  early  stages  of  the  infection
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including viral entry, primary translation and genome replication, overall efficiency of which is

proportional to reporter gene activity [12]. The results (Fig 2A) show that a selective HCV entry

inhibitor,  hydroxyzine,  strongly  interferes  with  reporter  gene  accumulation,  as  previously

documented  [13] (Figure 2A). Of the four natural nucleosides, only Gua exerted a significant

inhibitory role, as shown by reduced luciferase levels in these cells (Figure 2A), and suggesting

that an early step of the infection preceding viral assembly is significantly inhibited by Gua. To

further dissect the impact of Gua on HCV replication, we analyzed the effect of Gua, Ade, Cyt

and Uri treatment at different times in the replication of a dicistronic subgenomic genotype 2a

(JFH-1) replicon bearing a luciferase reporter gene  [12]. The objective was to analyze if the

effect took place at the level of IRES-dependent translation (5 h post-transfection) or during

RNA replication (24 and 48 h post-transfection) [13]. The results (Fig 2B) show that there are

no differences among the different treatment points at 5 h post-transfection, which excludes an

effect on HCV IRES-dependent RNA translation or any spurious interference with reporter gene

expression.  However,  Gua-treated  cells  showed  a  statistically  significant  12-  and  5-fold

reduction in RNA replication at 24 and 48 hours post-transfection respectively (Figure 2B). A

modest (±2-fold) but significant reduction was also observed in Ade-treated cells. The fact that

Ade treatment does not interfere with HCVtcp (trans-complemented HCV particles) infection

suggests that only Gua affects significantly with HCV infection by interfering with viral RNA

replication, downstream of viral entry and primary translation.

Effect of Gua on a high fitness HCV population

The HCV p100 virus [HCV p0 passaged 100 times in Huh-7.5 reporter cells], shows a relative

fitness that is 2.2 times higher than that of the HCV p0 parental population  [14]. Since viral

fitness can influence the response of the virus to antiviral agents [15-17], HCV p100 was used

to study the response of a high fitness HCV to Gua. For this, HCV p100 was subjected to 5

serial passages in Huh-7.5 reporter cells using an initial m.o.i. of 0.05 TCID50 per cell, both in

the absence and in the presence of Gua 500 or 800 μM. The results show a sustained drop in
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infectivity of 15 and 736 times along the passages as a result of treatment with 500 and 800 μM

Gua,  respectively.  However,  no  decrease  of  infectivity  below  the  limit  of  detection  was

observed throughout the five passages in any of the replicates (Fig 1E). Only the decrease in

progeny production in the presence of 800 µM reached statistical significance (Fig 1E). Thus,

the results showed increased resistance of HCV p100 to Gua compared to HCV p0 (compare

Fig 1A, 1B, and 1E) as was previously observed with several antiviral drugs [16,17].  

Effect of Gua on the replication of other RNA viruses

To determine the specificity of the antiviral action exerted by Gua on HCV and to rule out

nonspecific effects that could affect any virus, comparative experiments were conducted with

foot-and-mouth  disease  virus  (FMDV),  lymphocytic  choriomeningitis  virus  (LCMV),  and

vesicular  stomatitis  virus  (VSV).  First,  the  CC50 values  of  Gua,  Ade,  Cyt,  and  Uri  were

determined for  BHK-21 cells,  as  described in  Materials  and Methods.  The values  obtained

(Table 2) indicate no detectable cytotoxicity of Gua, Cyt and Uri, and a CC 50 value of 391 ± 68

μM for Ade. To determine the IC50 values of these nucleosides, BHK-21 cells were infected

with FMDV, LCMV, and VSV, at an initial m.o.i. of 0.05 TCDI50 per cell in the presence of

increased nucleoside concentrations and the production of infectious progeny was measured.

The values obtained (Table 2) show that all nucleosides lacked inhibitory profile for FMDV. In

contrast, purines were inhibitory for VSV, while all nucleosides were inhibitory for LCMV.

However, the IC50 values were very high and the therapeutic indexes (TI) were consequently

low (Table 2).

As an additional control for the specificity of HCV inhibition by Gua, the response of VSV,

FMDV and LCMV to nucleoside treatment in serial infections was studied. BHK-21 cells were

infected with FMDV, LCMV, and VSV with an initial m.o.i. of 0.05 TCDI 50 per cell, and were

subjected to 3 passages both in the absence and presence of nucleosides at a final concentration

of 800 μM. The analysis of the viral populations in passage 3 showed no statistically significant

difference from the viral titer obtained in the absence of treatment (Fig 3A-C). Therefore, the
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results show that the only differences found were those of HCV treatment with Gua at 800 μM

(Fig 1A-B). Finally, to rule out that the inhibitory effect of Gua on HCV was solely due to the

action of the nucleoside on the human hepatoma cells used in the experiments, we examined the

production of VSV viral progeny in Huh-7.5 reporter cells which this virus also productively

infects. High viral titers in the presence of 800 μM Gua were obtained for VSV, confirming a

lack of antiviral activity of Gua against this virus also in Huh-7.5 reporter cells (Fig 3D).

Effect of guanosine on HCV NS5B activity

To analyze the mechanism by which Gua inhibits  HCV replication we  tested the effect  of

increasing Gua concentrations on HCV polymerase activity  in vitro. A 570 nt RNA fragment

corresponding  to  the  E1/E2  region  of  the  HCV  genome  [18] was  replicated  by  HCV

recombinant  NS5B∆21 in  the  presence  of  ATP,  CTP,  GTP,  and  UTP,  and  at  increasing

concentrations of Gua (Fig 4A). NS5B polymerase activity increased with Gua concentration up

to 500 μM. Even at 1 mM Gua, the RNA polymerase activity was similar to that obtained in

absence of Gua. Only at very high Gua concentration (10 mM) the RNA polymerase activity

showed  a  significant  reduction  (Fig  4A).  Similar  results  were  obtained  using  the  19-mer

oligonucleotide LE19 (Fig 4B). Therefore, according to this in vitro RNA synthesis assay, the

inhibition of HCV progeny production by Gua cannot be attributed to direct inhibition of the

HCV RNA polymerase.

Effect of guanosine on intracellular nucleotide pools

To investigate whether HCV replication inhibition by Gua could be related to alterations in di-

and triphosphate ribonucleoside intracellular concentrations, the level of NTPs and NDPs in

Huh-7.5 reporter cells was determined in the absence of Gua and after 72 h of treatment with

500 or 800 μM Gua. Intracellular nucleoside triphosphate concentrations did not change when

the  cells  were  treated  with  500  μM  Gua.  However,  800  μM  Gua  treatment  resulted  in  a
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statistically significant 2-fold increase (range from 2- to 2.2-fold) in intracellular concentration

of all NTPs (Fig 5A). In the case of NDPs a significant increase of 1.7- to 4.1-fold was observed

in cells treated with 500 μM Gua (Fig 5B). Treatment with 800 μM Gua resulted in an increase

of the concentration (2.1- to 5.4-fold) of all NDP’s (Fig 5B). Therefore, the presence of Gua in

the  culture  medium  increased  the  intracellular  levels  of  nucleoside  di-  and  tri-phosphates

(Supplementary Table).  The lowest nucleotide concentration was obtained for CDP and CTP

independently of the treatment with Gua.

Effect of nucleoside di- and triphosphate imbalance on HCV NS5B activity in vitro

To explore if changes in nucleotide concentrations might affect HCV polymerase activity, we

performed  in  vitro RNA  polymerization  experiments  with  recombinant  NS5B∆21 in  the

presence of increasing concentrations of NTPs or NDPs. CTP and CDP were not included in the

analyses because they showed small intracellular variations (Supplementary Table) and CTP

was  chosen  as  the  carrier  of  the  radioisotope.  De  novo (DN),  primer  extension  (PE)  and

template  switching (TS)  polymerase activities  were measured in  the  presence  of  increasing

concentrations of the corresponding triphosphate nucleosides (Fig 6). A high UTP concentration

of 1 mM slightly but significantly decreased primer extension activity (Fig 6A). However, the

main  effect  of  NTP  concentration  was  on  the  de  novo RNA  synthesis,  with  a  significant

decrease  at  high  ATP  concentration  (Fig  6B),  and  a  significant  increase  at  high  GTP

concentration (Fig 6C). The increase in the  de novo RNA synthesis was accompanied by an

increase of template switching (Fig 6C). 

Since increasing concentrations of Gua also altered the intracellular NDP concentrations (Fig 5),

we investigated if the presence of increasing concentration of NDPs might affect the NS5B

RNA polymerase activity  in vitro.  DN, PE, TS activities were measured in the presence of

increasing concentrations of the corresponding diphosphate nucleosides at a fixed nucleoside-

triphosphate concentration (Fig 7). The main effect of the presence of NDP was on the de novo
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RNA synthesis, with a significant decrease at high ADP and GDP concentrations. Differences in

primer extension and template switching did not reach statistical significance (Fig 7).

Mutational effects of guanosine

To determine if Gua-related nucleotide pool effects were associated with the mutation repertoire

exhibited by HCV during replication in Huh-7.5 cells,  the mutant  spectrum of the genomic

region spanning the last 49 nucleotides of the NS4B gene and the first 490 nucleotides of the

NS5A gene,  was analyzed using molecular cloning and Sanger sequencing. Following three

passages  in  absence  or  presence  of  Gua,  the  maximum  mutation  frequency  resulted  in  a

significant increase in the HCV populations passaged in the presence of Gua (p<0.0001 and

p=0.01 for Gua 500 µM, and Gua 800 µM, respectively; χ2 test) (Table 3). A hallmark of virus

extinction by lethal mutagenesis is the decrease of specific infectivity (the ratio between viral

infectivity and the amount of genomic viral RNA) [7]. Extinction by Gua occurred with a 2.8-

fold to 11.8-fold decrease of specific infectivity in the first two passages in the presence of the

compared  drug,  as  quantified  by  infectivity  and  viral  RNA  in  samples  of  the  cell  culture

supernatants (Fig 8), suggesting that an increase in polymerase error rate was involved. The

most remarkable change was that replication in the presence of Gua increased significantly the

number of indels in the heteropolymeric genomic regions of the mutant spectrum (Table 4).

Indels in homopolymeric regions ─consisting of at least three successive identical nucleotides─

were  not  considered  because  control  experiments  revealed  that  they  can  be  amplification

artifacts [19]. No indels were detected in the 53 molecular clones derived from the population

passaged in the absence of Gua. In sharp contrast, 10 deletions and 2 insertions were present in

the 64 molecular clones retrieved from the population passaged in the presence of 500 µM Gua,

and 5 deletions in 68 molecular clones from the population passaged in the presence of 800 µM

Gua  (Table  4).  The  difference  in  the  number  of  deletions  is  highly  significant  for  the

populations passaged in the presence of 500 µM and 800 µM Gua (p<0.001; test χ2). The size

of the deletions ranged from 1 to 46 nucleotides, some were found in a single clone, others in
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several clones, and none of the deletions and insertions were in phase; they all  generated a

premature STOP codon (Table 4 and Fig 9). Therefore, the anti-HCV effect of Gua, exerted via

nucleotide-mediated  alterations  of  polymerase  activity,  is  associated  with  the  generation  of

multiple deletions during HCV replication.
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Discussion

Nucleoside derivatives are the most important family of drugs targeting viral polymerases, but

the  antiviral  capacity  of  natural  nucleosides  has  not  been  described  [5].  Interestingly,  we

observed an inhibitory effect of Gua when it was used in experiments to analyze the impact of

mycophenolic  acid  and  ribavirin  on  HCV  progeny  production  [11].  Here,  we  document

inhibition of HCV replication by Gua in single and serial infections of Huh-7.5 cells that led to

loss of infectivity without significant toxicity for the host cells. The antiviral action of Gua was

also exerted on high fitness HCV, albeit  without  loss  of infectivity  after  5 passages in  the

presence of Gua, in agreement with the drug resistance phenotype displayed by high fitness

HCV (Fig 1) [14-17]. The antiviral effect of Gua was not observed for FMDV in BHK-21 cells

or for LCMV and VSV in Huh-7.5 cells (Fig 3). 

RNA synthesis by NS5BΔ21 was not significantly affected by Gua concentrations up to 1 mM.

Therefore,  the  inhibition  of  virus  progeny  production  is  unlikely  to  be  the  result  of  direct

polymerase inhibition by Gua.  This result  is  consistent with previous work that  showed the

ability of NS5B to initiate RNA synthesis with this nucleoside [20]. In contrast to Gua, altered

intracellular nucleotide concentrations affected the activity of NS5B, in particular an alteration

of the de novo RNA synthesis by the GTP/GDP and/or ATP/ADP balances (Fig 7). The NS5B

protein has an allosteric binding site of GTP and the balance between NDP and NTP might

modulate RNA synthesis through this site [21-23].

Some GTP-dependent proteins play a role in the HCV replication cycle. They include proteins

involved in virus entry into the cells (i.e HRas), proteins involved in translation (i.e.the eIF5B

factor),  or  in  replication  (i.e.  GBF1)  [24-26].  The GTP-dependent  Rab18 protein,  which  is

located in the lipid droplets, is involved in capturing proteins such as viral protein NS5A into

the replication complex [27]. The observed increase in GTP concentration in Gua-treated cells

would not adversely affect the functionality of these proteins.

Some antiviral drugs exert their activity through alterations in the intracellular nucleotide pools

[6,28].  Treatment  of  Huh-7.5  reporter  cells  with  Gua  produced  an  overall  increase  of
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intracellular nucleoside di- and tri-phosphate concentrations (Fig 5). An increase of ATP would

be beneficial for virus replication as ATP increments have been associated with the formation of

the HCV replication complex  [29]. Using previously reported cell volume values for HepG2

cell line  (20) (ranging from 2.54 pL to 2.96 pL), the intracellular ATP concentration in Gua-

treated Huh7.5-reporter cells would be in the range of 2 mM (Supplementary Table), similar to

the previously described values in the HCV replication sites [29]. 

Intracellular  concentration of  mono-  and di-phosphate  nucleotides  also modulates  metabolic

pathways critical for virus replication. For example, HCV proteins NS4B and NS5A inhibit the

cellular protein AMP-activated protein kinase (AMPK) [30]. Inhibition of AMPK induces the

synthesis of fatty acids and cholesterol that are of vital importance in the HCV replication sites.

ADP activates AMPK [31,32], and the inactivation of AMPK by NS4B and NS5A is ineffective

when ADP is increased  [30]. As a result, there is no longer accumulation of fatty acids and

cholesterol,  and viral replication stops. Metformin activates AMPK by increasing AMP and

ADP, and this effect has been associated with inhibition of HCV replication.  [31,33,34]. The

AMPK dissociation constant for ADP is in the range of 1.3-1.5 μM [32]. Therefore, the increase

of the ADP concentration from 40 μM to 200 μM (Fig 4 and Supplementary Table) could be

preventing, at least in part, inactivation of AMPK. Whether ATP acts only as a substrate or it

also exerts some regulatory role needs to be further analyzed.

Defective  viral  genomes  are  increasingly  recognized  as  players  in  virus-host  interactions

(reviewed in  [35]).  They are associated with multiple types of genetic lesions ranging from

point mutations to large deletions. Deletions can result from polymerase slippage over one or

several  nucleotides,  but  the  environmental  factors  that  may  trigger  their  occurrence  are

unknown. Generation of RNA deletions has been documented during in vitro replicase copying

of viral RNAs  [36], and deletions have been observed in many viruses  [35,37-40]. Template

switching is considered as the primary mechanism of copy-choice recombination of poliovirus

in cells [41], and the primary mechanism of poly(rU) RNA synthesis by poliovirus polymerase

[42]. The observed increase of indels in the presence of high GTP concentrations may be linked
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to the enhanced template switching observed with the HCV polymerase in vitro. Despite limited

information on the origin of HCV defective genomes, there is solid evidence of the implication

of  defective  viral  genomes  in  the  interference  with  replication  of  their  standard  infectious

counterparts  [43], including a contribution to viral  extinction by lethal mutagenesis  [44,45].

They also  play  a  role  as  stimulators  of  antiviral  responses  [46],  and as  mediators  of  virus

attenuation and persistence [40,47,48], among other functions [35]. 

Defective genomes have been described for HCV, including in-frame deletion mutants. They

are present in patient plasma, exosomes and liver biopsies and they may play regulatory roles

during viral replication [49-53]. Little is known about the molecular mechanisms of generation

of defective genomes despite detailed accounts of their high m.o.i.-dependent selection based on

molecular  complementation with standard genomes  [35].  Our  results  provide evidence of  a

mechanism of generation of defective HCV genomes fuelled by nucleoside pool effects on HCV

polymerase activity. This is accompanied by a significant reduction of the specific infectivity of

the passaged viral pools, demonstrating the increasing presence of non-infectious viral genomes

in  the  supernatants  of  Gua-treated  cells.  In  addition  to  unveiling  a  possible  mechanism of

generation of defective HCV genomes, our results open the possibility that the alteration of

cellular metabolic pathways may be a complementary strategy to the action of antiviral agents

to produce reductions in viral load and promote the extinction of HCV.
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Material and methods.

Reagents and plasmids.

Nucleosides  Ade,  Cyt,  Gua,  and  Uri,  as  well  as  nucleoside  di-  and  tri-phosphates  were

purchased from Sigma-Aldrich. Plasmid pNS5BΔ21 encoding the HCV NS5B that lacks the C-

terminal 21 hydrophobic amino acids to enhance solubility has been described previously [54].

The resulting expression vector allows the expression of a tagged NS5BΔ21 with six histidine

residues at its C terminus to aid in protein purification.

Cells and viruses.

The origin of Huh 7.5, Huh 7-Lunet, Huh-7.5 reporter cell lines and procedures used for cell

growth in Dulbecco's modification of Eagle's medium (DMEM), have been described [11]. Cell

lines were incubated at 37°C and 5% CO2. We used the following viruses in the experiments:

HCV  p0,  obtained  from  HCVcc  [Jc1FLAG2(p7-nsGluc2A)]  (genotype  2a)  and  GNN

[GNNFLAG2(p7-nsGluc2A)] (a replication-defective virus with a mutation in the NS5B RNA-

dependent  RNA  polymerase)  [11,55].  Mock-infected  cells  maintained  in  parallel  with  the

infected cultures were prepared to control the absence of contaminations; no infectivity in the

mock-infected cultures was identified in the experiments.

Trans-encapsidated HCV virions (HCVtcp) were produced by electroporation into packaging

cells  of  a  subgenomic,  dicistronic  HCV  replicon  bearing  a  luciferase  gene,  as  previously

described  [12]. Supernatants of the electroporated cells were titrated to determine the optimal

dose rendering detectable luciferase activity at 48 hours post-inoculation. The same subgenomic

replicon was used for lipofection experiments, using lipofectamine2000 transfection reagent as

previously described [13]. 

Production of viral progeny and titration of infectivity.

The procedures used to obtain the initial virus HCV p0 and for serial infections of the hepatoma

Huh-7.5 reporter cells have been described [14]. Briefly, electroporation of Huh-7 Lunet cells
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was performed with 10 μg of the transcript of HCVcc (Jc1 or the negative control GNN) (260

volts, 950 μF). Then, electroporated cells were passaged every 3–4 days before cells became

confluent; passages were continued until 30 days post-electroporation. Subsequently, the cell

culture supernatants were pooled to concentrate the virus 20 times using 10,000 MWCO spin

columns (Millipore), and aliquots were stored at −70°C [14]. For titration of HCV infectivity,

cell culture supernatants were serially diluted and applied to Huh-7.5 cells. After 3 days post-

infection the cell monolayers were washed with PBS, fixed with ice-cold methanol, and stained

with anti-NS5A monoclonal antibody 9E10 [14].

Toxicity test and inhibitory concentration.

The CC50 was calculated by seeding 96-well plates with Huh-7.5 cells and exposing them to the

compound  under  study  during  72  hours.  MTT  [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide] was added at 500 μg/ml; after 4 h crystals were dissolved with

100 μl of DMSO and the O.D. measured at 550 nm; 50% cytotoxicity was calculated from

quadruplicate determinations [11].

IC50 values  were  calculated  relative  to  the  controls  without  treatment  (defined  as  100%

infectivity) [56]. Determinations were performed in triplicate.

RNA extraction, cDNA synthesis, PCR amplification, and nucleotide sequencing. 

Intracellular  RNA was  obtained  from infected  cells  using  the  Qiagen RNeasy  kit  (Qiagen,

Valencia, CA, USA). RNA from cell lysates or cell culture supernatants was extracted using the

Qiagen QIAamp viral RNA mini kit (Qiagen, Valencia, CA, USA). Reverse transcription (RT)

of  different  HCV genomic regions was performed using avian myeloblastosis virus  (AMV)

reverse  transcriptase  (Promega),  and  subsequent  PCR  amplification  was  carried  out  using

AccuScript (Agilent Technologies), with specific primers. Primers for the HCV amplification

and the sequencing have been described [11,14,17,19]. Agarose gel electrophoresis was used to

analyze the amplification products,  using HindIII-digested Φ-29 DNA as  a  molecular  mass

standard. In parallel, mixtures without template RNA were reverse transcribed and amplified to

monitor the absence of cross-contamination by template nucleic acids. Nucleotide sequences of
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HCV RNA were determined on the two strands of the cDNA copies  [11,55]; only mutations

detected in the two strands were considered. To analyze the complexity of mutant spectra by

molecular cloning and Sanger sequencing, HCV RNA was extracted and subjected to RT-PCR

to amplify the NS5A-coding regions,  as has been previously described  [11]. Amplifications

with template preparations diluted 1:10 and 1:100 were performed to ensure that an excess of

template in the amplifications was used in the mutant spectrum analysis; the molecular cloning

was performed from the undiluted template only when the 1:100-diluted template produced also

a DNA band; this procedure avoids complexity biases due to redundant amplifications of the

same initial RNA templates  [11]. Control analyses to confirm that mutation frequencies were

not affected by the basal error rate during amplification have been previously described  [57].

Amplified  DNA  was  ligated  to  the  vector  pGEM-T  (Amersham)  and  used  to  transform

Escherichia coli DH5α; individual colonies were taken for PCR amplification and nucleotide

sequencing, as previously described [56].

NDP and NTP pool analysis.

The procedure used has been previously described  [11]. Briefly, Huh-7.5 cells (2×106 cells)

were washed with PBS and incubated with 900 μl of 0.6 M trichloroacetic acid on ice for 10

min. A precooled mixture of 180 µl of Tri-n-octylamine (Sigma) and 720 µl of Uvasol® (1,1,2-

trichlorotrifluoroethane, Sigma) was added to the 900 µl extract, vortexed for 10 s, centrifuged

30 s at 12,000  g at 4 °C, and stored at −80 °C prior to analysis. One hundred µl samples were

applied to a Partisil 10 SAX analytical column (4.6 mm×250 mm) (Whatman) with a Partisil 10

SAX guard  cartridge  column (4.6×30 mm) (Capital  HPLC)  using  an  Alliance  2695 HPLC

system connected to a 2996 photodiode array detector (Waters). NDP and NTP were separated

at a eluent flow rate of 0.8 ml/min and detected with ultraviolet light at a wavelength of 254 nm.

The column was pre-equilibrated with 60 ml of  7 mM NH4H2PO4,  pH 3.8 (buffer  A).  The

separation program started with 22.5 min of an isocratic period with buffer A, continued with a

linear gradient of 112.5 min to the high concentration buffer 250 mM NH4H2PO4, 500 mM KCl,

pH 4.5 (buffer B) and ended with an isocratic period of 37.5 min with buffer B. A processing
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method was done using the Waters Empower™ Chromatography Data Software. To this end, 50

µl of 20 pmol/µl UTP, CTP, ATP and GTP (Jena Bioscience), were separated prior to sample

analysis.  The HPLC analysis  did not  separate rNTPs from dNTPs,  or  rNDPs from dNDPs.

However, since the absolute concentration of rNTPs and rNDPs is several orders of magnitude

greater  than that  of  dNTPs dNDPs,  we consider the value obtained as the concentration of

rNTPs and rNDPs. Determinations were carried out with two independent biological samples,

each one in triplicate for NDPs and NTPs. The amount of each nucleoside in cell extracts was

normalized relative to the number of cells.

Quantification of HCV RNA.

Real time quantitative RT-PCR was performed with the Light Cycler RNA Master SYBR Green

I kit (Roche), following the manufacturer's instructions, as previously described  [14]. The 5′-

UTR non-coding region of the HCV genome was amplified using as primers oligonucleotide

HCV-5UTR-F2 (5′-  TGAGGAACTACTGTCTTCACGCAGAAAG;  sense orientation;  the  5′

nucleotide corresponds to HCV genomic residue 47), and oligonucleotide HCV-5UTR-R2 (5′-

TGCTCATGGTGCACGGTCTACGAG; antisense orientation; the 5′ nucleotide corresponds to

HCV genomic  residue  347).  Quantification  was  relative  to  a  standard  curve  obtained  with

known amounts of HCV RNA, obtained by in vitro transcription of plasmid GNN DNA [55].

Reaction specificity  was  monitored  by  determining  the denaturation  curve of  the  amplified

DNAs. Mixture without template RNA and RNA from mock-infected cells were run in parallel

to ascertain absence of contamination with undesired templates.

NS5B∆21 polymerase expression and purification.

NS5B from strain pJ4-HC with a  deletion of  21 aa  at  the  C-terminal  end (NS5B∆21)  was

obtained as previously described [54,58]. This truncated protein displays polymerase activities

that were not distinguished from those of the full-length enzyme [59]. Briefly, NS5B∆21 was

overexpressed  in  BL21DE3  Rosetta  bacteria  by  IPTG  induction  and  purified  by  affinity

chromatography in a Ni-NTA column. Aliquots of the purest and most concentrated protein

samples were adjusted to 50% glycerol and stored at -80°C until use. All purification processes
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were monitored by SDS-PAGE and Coomassie brilliant blue staining. Protein was quantified by

SDS-PAGE gel imaging and protein determination using the Bradford assay.

In vitro RdRP replication assays.

RNA polymerase assays were carried out using two different RNA substrates, the symmetric

substrate LE-19 (sequence 5’ UGUUAUAAUAAUUGUAUAC 3’), which is capable of primer-

extension (PE),  de novo initiation (DN), and template switching (TS)  [54,58], and an RNA

fragment encompassing HCV E1/E2 region (570 nt)  [18]. Except when indicated otherwise,

template  RNA was  pre-incubated  for  15  minutes  in  a  reaction  mixture  containing  20  mM

MOPS,  pH  7.3,  35  mM  NaCl,  5  mM  MnCl2,  100  nM  NS5B  and  GTP  at  the  indicated

concentration for each experiment. Reactions were started by adding 1 µCi of [32P]CTP (3000

Ci  mmol,  PerkinElmer  Life  Sciences)  and  nucleoside-triphosphate  as  indicated  in  each

experiment.  When  appropriate,  reactions  were  performed  in  the  presence  of  increasing

concentrations of nucleotide diphosphates. Reactions were carried out in a final volume of 10

µl, at room temperature for 30 minutes, and stopped using EDTA/formamide loading buffer.

E1/E2 products were resolved using 1% agarose gel electrophoresis. Agarose gels were dried in

an  electrophoresis  gel  dryer  (BioRad).  LE19  products  were  resolved  using  denaturing

polyacrylamide  (23%  PAA,  7  M  urea)  gel  electrophoresis.  Gels  were  exposed  to

phosphorimager  screens  and  scanned  with  a  Typhoon  9600  phosphorimager  (Molecular

Dynamics).  Sample  quantification  was  performed  from  parallel  experiments.  Band  volume

values  were  obtained  by  using  the  ImageQuant  software  provided  with  the  apparatus  (GE

Healthcare). 

Statistical analyses.

The statistical significance of differences between mutation frequencies was evaluated by the

chi-square test. Statistical comparisons among groups were performed with Student’s T-tests.

Unless indicated otherwise, the statistical significance is indicated by asterisks: * p<0.05; **

p<0.005; *** p<0.0005. 
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Table  1. Effects  of  nucleosides  on  cell  viability  and  HCV  replication.  CC50,  IC50,  and

therapeutic  index  (TI,  CC50/IC50)  values  are  shown  for  Adenosine  (Ade),  Cytosine  (Cyt),

Guanosine (Gua), and Uridine (Uri) in Huh-7.5 reporter cells.

CC50 (μM) IC50 (μM) TI

Ade 641 ± 40 108 ± 7 5.9

Cit > 800 > 800 n.d.

Gua > 800 164 ± 2.4 ≥ 4.9

Uri > 800 > 800 n.d.
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Table  2. Effects  of  nucleosides  on  BHK-21  cells  viability  and  VSV,  FMDV,  and  LCMV

replication. CC50, IC50, and therapeutic index (TI, CC50/IC50) values are shown for Adenosine

(Ade), Cytosine (Cit), Guanosine (Gua), and Uridine (Uri) in BHK-21 cells.

IC50 (μM) (TI)

 CC50 (μM) VSV FMDV LCMV

Ade 391 ± 68 650 ± 105.4 (0.6) > 800 (n.d.) 213 ± 56.2 (1.8)

Cit > 800 > 800 (n.d.) > 800 (n.d.) 566.4 ± 216.7 (≥ 1.4)

Gua > 800 734 ± 59.4 (≤ 1.1) > 800 (n.d.) 348 ± 36 (≥ 2.3)

Uri > 800 > 800 (n.d.) > 800 (n.d.) 157.8 ± 7.6 (≥ 5.1)

n.d. Not Determined.
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Table 3. Mutant spectrum analysis of the hepatitis C virus populations passaged in the absence and presence of guanosine (Gua)

aThe

populations  analyzed are those schematically  represented in Fig 1,  and their  origin is  detailed in Materials  and Methods; [no drug] means
passages in absence of drug; [Gua 500 µM] means passages in the presence of 500 µM guanosine; [Gua 800 µM] means passages in the presence
of 800 µM guanosine; p indicates passage number. 

bThe genomic region analyzed by molecular cloning-Sanger sequencing spans residues 6220 to 6758 of the NS4B- and NS5A-coding region; the
residue numbering corresponds to the JFH-1 genome (GenBank accession number #AB047639). The values in parenthesis indicate the number
of clones analyzed followed by the number of haplotypes (number of different RNA sequences) found in the mutant spectrum.

cNumber of different and total mutations identified by comparing the sequence of each individual clone with the consensus sequence of the
corresponding population.

dData represent the average number of different mutations (counted relative to the consensus sequence of the corresponding population) per
nucleotide in the components of the mutant spectrum. The statistical significance of the differences between two populations (χ2 test) is the
following: HCV p0, [no drug] p3 versus HCV p0, [Gua 500 µM] p3: p = 0.0622; HCV p0, [no drug] p3 versus HCV p0, [Gua 800 µM] p3: p =
0.8257; HCV p0, [Gua 500 µM] p3 versus HCV p0, [Gua 800 µM] p3: p = 0.0977.

HCV populationa
N. of nucleotides analyzed

(clones/haplotypes)b

N. of different

(total) mutationsc

Mutation frequency

Minimumd Maximume

HCV p0, [no drug] p3 28,208 (53/21) 23 (25) 8.2 x 10-4 8.9 x 10-4

HCV p0, [Gua 500 µM] p3 33,339 (64/34) 45 (79) 1.4 x 10-3 2.4 x 10-3

HCV p0, [Gua 800 µM] p3 35,606 (68/30) 32 (59) 9.0 x 10-4 1.7 x 10-3
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eData  represent  the  average  number  of  total  mutations  (counted  relative  to  the  consensus  sequence  of  the  corresponding  population)  per
nucleotide  in  the  components  of  the  mutant  spectrum relative  to  the  consensus  sequence  of  the  corresponding  population.  The  statistical
significance of the differences between two populations (proportion test) is the following: HCV p0, [no drug] p3 versus HCV p0, [Gua 500 µM]
p3: p < 0.0001; HCV p0, [no drug] p3 versus HCV p0, [Gua 800 µM] p3: p = 0.0107; HCV p0, [Gua 500 µM] p3 versus HCV p0, [Gua 800 µM]
p3: p = 0.0452
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Table 4. Indels found in the mutant spectra of HCV p0 after 3 passages in the absence

and presence of Gua 500 µM and 800 µM.

HCV
populationa Indel Positionc

Number of
deleted or
inserted

nucleotides

Region
Premature

STOP
position

# of
clones

HCV p0,

no Gua

p3

- 0 - - -

HCV p0,

[Gua 500 µM]
p3

Deletion 1 6220 1 NS4B 6243 2

Deletion 2b 6278-6287 10 NS5A 6315 4

Deletion 3b 6289-6292 4 NS5A 6315 4

Deletion 4b 6294-6296 3 NS5A 6315 4

Deletion 5b 6298-6300 3 NS5A 6315 4

Deletion 6 6659-6704 46 NS5A 6864 1

Deletion 7 6744 1 NS5A 6864 1

Deletion 8 6751 1 NS5A 6864 1

Deletion 9 6753-6756 4 NS5A 6864 1

Deletion 10 6757 1 NS5A 6864 1

Insertion 1 6225 1 NS4B 6246 1

Insertion 2 6301 1 NS5A 6298 1

HCV p0,

[Gua 800 µM]
p3

Deletion 1 6220 1 NS4B 6243 13

Deletion 2 6231 1 NS4B 6243 1

Deletion 3 6748 1 NS5A 6864 3

Deletion 4 6749 1 NS5A 6864 1

Deletion 5 6757 1 NS5A 6864 2

aThe populations analyzed are those schematically represented in Fig 1, and their origin
is detailed in Materials and Methods; [Gua 500 µM] means passages in the presence of
500  µM  guanosine;  [Gua  800  µM]  means  passages  in  the  presence  of  800  µM
guanosine; p indicates passage number. 
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bDeletions 2, 3, 4 and 5 were found always together

cThe genomic region analyzed by molecular cloning-Sanger sequencing spans residues
6220  to  6758  of  the  NS4B-  and  NS5A-coding  region;  the  residue  numbering
corresponds to the JFH-1 genome (GenBank accession number #AB047639).
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FIGURE LEGENDS.

Figure 1. Effect of ribonucleosides on HCV replication. (A) and  (B) Effect of guanosine

(Gua) on HCV p0 replication. Infectious progeny obtained in the presence of Gua 500 μM (A)

and Gua 800 μM (B); four replicas for each condition are shown (red squares). HCV p0 titer in

the  absence  of  treatment  (black  circles)  and  values  for  a  HCV  lethal  mutant  GNN (black

crosses) are also shown (see Methods).  (C) and  (D) Effect of adenosine (Ade, blue squares),

cytosine  (Cyt,  green  squares),  and  uridine  (Uri,  orange  squares)  on  HCV  p0  replication.

Infectious progeny obtained in the presence of the corresponding nucleoside at 500 μM (C) and

at 800 μM (D). HCV p0 viral titer in the absence of treatment (black circles) and values for a

HCV lethal  mutant  GNN (black  crosses)  are  also  shown.  (E) HCV p100 viral  titer  in  the

absence (black circles) or presence of Gua  500  μM (yellow symbols),  and Gua 800 μM (red

symbols).  Two  replicates  are  shown  for  each  condition  in  presence  of  nucleosides.  The

discontinuous horizontal line marks the limit of detection of virus infectivity. Procedures for

serial infections and titration of infectivity are detailed in Materials and Methods. 

Figure 2. Treatment with Gua causes a reduction in the efficiency of early aspects of the

infection.  (A) Impact  of  nucleoside  treatment  on  single  cycle  trans-complemented  HCV

particles (HCVtcp) infection efficiency. Huh-7 cells were pre-treated with the indicated doses of

nucleoside for 20 hours  before  inoculation with HCVtcp in the  presence or absence of the

nucleosides. As a positive inhibition control, target cells were treated with the entry inhibitor

hydroxyzine  (HDH)  at  the  time  of  infection  (5µM).  Single  cycle  infection  efficiency  was

determined by measuring luciferase activity in total cell extracts 48 hours post-inoculation. (B)

Huh-7  cells  were  pre-treated  with  the  indicated  doses  of  nucleoside  for  20  hours  before

transfection  with  in  vitro-transcribed  subgenomic  viral  RNA-containing  liposomes  in  the

presence or absence of the nucleosides. As a positive inhibition control, target cells were treated

with the replication inhibitor 2´-c-methyladenosine (2mAde) (10 µM). Primary translation (5

hours)  and  RNA  replication  efficiency  (24  and  48  hours)  was  determined  by  measuring

luciferase activity in total cell extracts at different times post-transfection. Data are shown as
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average and standard deviation of two experiments performed in triplicate (N=6). Significance

(Student’s T-test): ***p<0.0005; *p<0.05.

Figure 3. Effect of nucleosides on FMDV, LCMV and VSV replication. Effect of adenosine

(Ade),  cytidine  (Cyt),  uridine  (Uri),  and  guanosine  (Gua)  on  the  production  of  infectious

progeny of FMDV (A), LCMV (B) and VSV (C) in BHK-21 cells at an initial m.o.i. of 0.05

TCID50 per  cell,  in  the  absence  (C-)  or  presence  of  800  μM  of  the  indicated  nucleoside.

Infectivity was determined at passage 3 in the cell culture supernatant as described in Materials

and Methods. (D) Comparative inhibition of VSV and HCV p0 progeny production in Huh-7.5

reporter cells in the presence of 800 μM Gua. The titer shown for HCV is the average (four

replicas)  of  titers  determined  at  passage  3  in  the  supernatants  of  the  serial  infections

(corresponding to Fig 1). Procedures for serial infections and titration of infectivity are detailed

in Materials and Methods. Significance (Student’s T-test): ** p < 0.005.

Figure 4.  Effect  of  Gua on NS5BΔ21 RNA polymerase activity. (A) Recombinant  HCV

NS5B∆21 polymerase was added to a reaction containing a 540-nt RNA template [18], the four

nucleoside-triphosphates (ATP, CTP, GTP, and UTP) and the indicated concentrations of Gua.

Product quantification from three replicates (average ± SEM) and a representative experiment

(below) are shown. Polymerase activity is normalized with respect to its maximum activity. The

band indicates a new synthesis RNA product of 540 nt length. (B) A representative experiment

as  in  A,  but  using the  19-nt  LE19 RNA as  a  template.  DN,  PE,  and TS indicate  reaction

products  of  de  novo synthesis,  primer  extension,  and template  switching,  respectively  [54].

Procedures are detailed in Materials and Methods. Significance (Student’s T-test): ** p < 0.005.

Figure 5. Effect of Gua on intracellular nucleotides. Effect of treatment of Huh-7.5 cells with

Gua  on  the  level  of  intracellular  nucleoside-triphosphates  (A)  and  intracellular  nucleoside-

diphosphates (B). Data are represented as a box and whisker chart showing distribution of data

into quartiles,  highlighting the mean and outliers.  Error lines indicate variability outside the
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upper and lower quartiles. Data points (red circles) are grouped in black (no treatment), orange

(500 µM Gua) and blue (800 µM Gua) boxes. Significance (Student’s T-test): * p < 0.05; ** p <

0.005; *** p < 0.0005. The table shows the p-value and the fold of difference between treatment

conditions for each nucleoside di- and triphosphate.

Figure 6. Effect of nucleoside-triphosphate concentration on NS5BΔ21 RNA polymerase

activity. (A) Polyacrylamide gel showing the products for de novo (DN), primer extension (PE)

and template switching (TS) obtained with HCV NS5BΔ21 at increasing concentrations (100,

500,  800,  and 1000  μM) of UTP in the presence of radiolabeled  32P-CTP. ATP and GTP

concentrations  were  maintained  at  100  μM and 500  μM,  respectively  (left  panel).  Graphic

representation of densitometric values obtained from the electropherogram shown in A (red

diamonds, yellow triangles, and black squares correspond to  de novo (DN), primer extension

(PE),  and template switching (TS) activities,  respectively) (right  panel).  (B)  Corresponds to

experiments as in A but for increasing concentrations of ATP, with UTP and GTP maintained at

100 μM and 500 μM, respectively. (C) Corresponds to experiments as in A but for increasing

concentrations  of  GTP,  with  ATP  and  UTP  both  maintained  at  100  μM.  Activities  were

normalized to their maximum values. Densitometric data represent the mean of at least three

independent experiments. Error bars correspond to standard error of the mean. Horizontal lines

indicate statistically significant differences (Student’s T-test) between the activity values that

link, using the same color code as the activity type. Details of the activity measurements are

given in Materials and Methods. Significance (Student’s T-test): *** p < 0.0005, ** p < 0.005, *

p < 0.05.

Figure 7. Effect of NDPs on NS5BΔ21 RNA polymerase activity. (A) Polyacrylamide gel

showing the products for  de novo (DN), primer extension (PE) and template switching (TS)

obtained with HCV NS5BΔ21 at increasing concentrations (0, 166, 333, 500, 800, and 1000

μM) of UDP in the presence of ATP and UTP at a final concentration of 100 μM, GTP at 500
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μM, and radiolabeled  32P-CTP (left  panel).  Graphic  representation of  densitometric  values

obtained from the electropherogram shown in A (red diamonds, yellow triangles,  and black

squares  correspond  to  de  novo (DN),  primer  extension  (PE),  and  template  switching  (TS)

activities, respectively)  (right panel). (B) Corresponds to experiments as in A but for increasing

concentrations  of  ADP.  (C)  corresponds  to  experiments  as  in  A but  for  increasing

concentrations of GDP. Activities were normalized to their  maximum values.  Densitometric

data represent the mean of at least three independent  experiments.  Error bars correspond to

standard  error  of  the  mean.  Horizontal  lines  indicate  statistically  significant  differences

(Student’s  T-test)  between  activity  values,  using  the  same  color  code  as  the  activity  type.

Details  of  the  activity  measurements  are  given  in  Materials  and  Methods.  Significance

(Student’s T-test): ** p < 0.005, * p < 0.05.

Figure 8. Effect of guanosine on HCV specific infectivity. Huh-7.5 reporter cells were infected

with HCVp0 at an initial m.o.i. of 0.05 TCID50/cell, in the absence or presence of Gua at the

indicated concentrations. HCV GNN infection was used as a negative control. (A) Extracellular

viral RNA measured by quantitative RT-PCR in different passages. The populations correspond

to those of the experiment described in Fig 1 and the values in each passage are the average of

the three replicas; standard deviations are given.  (B) Specific infectivities calculated from the

infectivity values of the Fig. 1A and Fig. 1B and the extracellular RNA concentrations indicated

in Fig 8A. The horizontal dashed line indicates the limit of detection of viral RNA and specific

infectivity. Black, yellow, and red symbols correspond to no drug, Gua 500 μM, and Gua 800

μM, respectively. Values for a HCV lethal mutant GNN (black crosses) are also shown. Details

of the procedures are given in Materials and Methods. Significance (Student’s T-test):  ** p <

0.005, * p < 0.05.

Figure 9. Indels found in the mutant spectrum of HCV p0 passaged in the presence of

Gua. The nucleotide sequence of HCV genomic residues 6220 to 6758 was determined for 53
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molecular clones derived from the population in absence of Gua, and 132 molecular clones from

populations passaged in presence of Gua (data in Table 3). Deduced amino acids (single letter

code) are given for residues located at the carboxy-terminal region of NS4B preceding NS5A

amino acids. For clarity, only residues around insertions or deletions are shown; three squared

points indicate missing amino acids (sequence is that of JFH-1; accession number AB047639).

No indels were detected in the population passaged in absence of Gua. (A) Deletions in the

population passaged in the presence of 500 µM guanosine. Red boxes indicate nucleotides that

were deleted in a component of the mutant spectrum, with the deletion size indicated in the

filled boxes. (B) Insertions in the mutant spectrum of the population passaged in the presence of

500 µM Gua are marked with a blue triangle. (C) Deletions found in the HCV populations

passaged  in  the  presence  of  800  µM  Gua.  Procedures  for  HCV  genome  sequencing  are

described in Materials and Methods.
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