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Abstract 
 
Indirect parental genetic effects may be defined as the influence of parental genotypes on 
offspring phenotypes over and above that which results from the transmission of genes from 
parents to children. However, given the relative paucity of large-scale family-based cohorts 
around the world, it is difficult to demonstrate parental genetic effects on human traits, 
particularly at individual loci. In this manuscript, we illustrate how parental genetic effects on 
offspring phenotypes, including late onset diseases, can be estimated at individual loci in 
principle using large-scale genome-wide association study (GWAS) data, even in the absence 
of parental genotypes. Our strategy involves creating “virtual” mothers and fathers by 
estimating the genotypic dosages of parental genotypes using physically genotyped data from 
relative pairs. We then utilize the expected dosages of the parents, and the actual genotypes 
of the offspring relative pairs, to perform conditional genetic association analyses to obtain 
asymptotically unbiased estimates of maternal, paternal and offspring genetic effects. We 
develop a freely available web application that quantifies the power of our approach using 
closed form asymptotic solutions. We implement our methods in a user-friendly software 
package IMPISH (IMputing Parental genotypes In Siblings and Half-Siblings) which allows 
users to quickly and efficiently impute parental genotypes across the genome in large 
genome-wide datasets, and then use these estimated dosages in downstream linear mixed 
model association analyses. We conclude that imputing parental genotypes from relative pairs 
may provide a useful adjunct to existing large-scale genetic studies of parents and their 
offspring. 
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Introduction 
 

There is increasing interest in estimating the indirect effect of parental genotypes on the 
phenotypes of their offspring (Bates et al. 2018;  Evans et al. 2019;  Kong et al. 2018;  
Lawlor et al. 2017). We and others have shown in human populations that the maternal and 
paternal genomes can indirectly affect a range of offspring traits including perinatal 
(Beaumont et al. 2018;  Evans et al. 2019;  Tyrrell et al. 2016;  Warrington et al. 2019;  
Warrington et al. 2018;  Yang et al. 2019;  Zhang et al. 2015;  Zhang et al. 2017;  Zhang et al. 
2018) and later life phenotypes (Kong et al. 2018;  Warrington et al. 2019). However, these 
sorts of analyses typically require large numbers of genotyped parent-offspring duos and trios 
in order to partition genetic effects into parental and offspring mediated components (Evans 
et al. 2019;  Moen et al. 2019). Unfortunately, there are only a few cohorts around the world 
with large numbers of genotyped parents and children (Boyd et al. 2013;  Fraser et al. 2013;  
Krokstad et al. 2013;  Magnus et al. 2006;  Sudlow et al. 2015) implying that even if 
investigators were able to combine all the large-scale family-based cohorts in the world 
together, the statistical power to resolve parental genetic effects on offspring phenotypes may 
be low (Moen et al. 2019). The problem of low statistical power is exacerbated further if the 
interest is on identifying parental genetic effects on late onset diseases, since many of the 
cohorts that contain genotypic information on parents and their children are birth cohorts that 
were established less than thirty years ago (Boyd et al. 2013;  Fraser et al. 2013;  Magnus et 
al. 2006). This means that offspring from these cohorts are not old enough to have developed 
many late onset diseases of interest. There is therefore a considerable need to develop 
statistical genetics methods and software that can maximize the amount of data available to 
detect indirect parental genetic effects (Evans et al. 2019). 
 
In the following manuscript, we describe a simple strategy for estimating indirect parental 
genetic effects on offspring phenotypes which is capable of leveraging the considerable 
information contained within large publicly available cohorts and the tens of thousands of 
individuals contained within twin registries and family studies from around the world 
(Silventoinen et al. 2015). Briefly, our strategy involves creating “virtual” mothers and 
fathers by estimating the genotypic dosages of parental genotypes using physically genotyped 
data from sibling and half sibling relative pairs. We then use the expected dosages of the 
parents, and the actual genotypes of the siblings/half sibling pairs to perform conditional 
genetic association analyses and estimate maternal, paternal and offspring genetic effects on 
the offspring phenotype. 
 
We derive formulae to impute the expected dosage of maternal and paternal genotypes given 
sibling or half-sib genotypes at both autosomal and X-linked loci. We implement our 
calculations in a user-friendly software package, IMPISH (IMputing Parental genotypes In 
Siblings and Half siblings) that allows users to quickly and efficiently impute parental 
genotypes across the genome in large genome-wide datasets, and then use these estimated 
dosages in downstream genome-wide association analyses 
(http://evansgroup.di.uq.edu.au/software.html). We investigate the statistical power, type 1 
error and bias associated with estimating parental and offspring genetic effects via simulation 
and using closed form asymptotic solutions. Finally, we develop a series of freely available 
web applications (http://evansgroup.di.uq.edu.au/power-calculators.html) that researchers can 
use to estimate power to detect parental and offspring genetic effects in studies of sibling or 
half sibling pairs, with or without parental genotypes. 
  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.21.959114doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.959114
http://creativecommons.org/licenses/by/4.0/


Methods 
 
Imputing Expected Gene Dosages for Parents Given Observed Offspring Genotypes 
 
The intuition for why relative pairs enable imputation of parental genotypes is illustrated in 
Figure 1. Essentially, an individual’s sibling/half sibling provides additional information on 
the likely genotype of their parents- so that some parental genotypes are more probable than 
others given the observed genotype data. For example in Figure 1, it is possible to conclude 
that both parents of siblings who have genotypes “AA” and “aa” at an autosomal locus must 
be heterozygous. Likewise, maternal half siblings (i.e. half siblings who share a common 
mother) whom have genotype “AA” and “aa” at an autosomal locus, imply that their shared 
mother must be genotype “Aa” and their fathers “AA” or “Aa” and “Aa” or “aa” respectively 
(the exact probabilities depending on the allele frequencies at the locus under consideration). 
We calculated the probability of maternal and paternal biallelic SNP genotypes given data 
from sibling pairs or half sibling pairs at the same locus. We did this for autosomal and non-
pseudoautosomal X chromosome loci for bi-allelic SNP markers using Bayes Theorem e.g. 
for an autosomal locus: 
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 �  � ���� � �, �� � 	|�� � �
���� � �
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where GP  {“AA”, “Aa”, “aa”} refers to the genotype of the parent, and G1 and G2 the 
genotypes of offspring one and two. In the case of full sibling pairs, separate maternal and 
paternal genotypes can be resolved for X-linked loci. However, in the case of autosomal loci, 
the expected dosage for maternal and paternal genotypes is the same, meaning that it is 
impossible to distinguish maternal from paternal genotypes. 
 
Given conditional genotype probabilities, it is then a simple matter to calculate the expected 
genotype dosages (X) of the parents for a given pair of offspring genotypes: 

 ����|�� � �, �� � 	
 � ���� � ��|�� � �, �� � 	
 � 2 � ���� � ��|�� � �, �� � 	
 
 
These expected maternal and/or paternal dosages can then be included as terms in the fixed 
effects part of a linear mixed model together with the observed dosages of the offspring 
genotypes and then estimates of maternal, paternal and fetal genetic effects on the offspring 
phenotype can be obtained. Derivations of expected parental genotype dosages given 
sibling/half sibling genotypes for autosomes and the X chromosome are given in 
Supplementary Tables 1-4. 
 
Exploring Parameter Bias, Power and Type 1 Error of Tests of Genetic Association via 
Simulation 
 
We investigated parameter bias, power and type 1 error rate of tests of genetic association via 
simulation. Genotypes were simulated for nuclear families (mother, father and two siblings) 
and maternal half sibling families (common mother, two fathers and two half siblings). In the 
case of sibling pairs at autosomal loci, trait values were simulated according to the following 
model: 
 �� � ��� � �� � ��� � � � �� 
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�� � ��� � �� � ��� � � � �� �� � 0.5�� � ��
 � �� �� � 0.5�� � ��
 � �� 
 
where Y1 and Y2 are the phenotypes of siblings one and two, X1, X2, Xm and Xf   {0, 1, 2} are 
the genotype dosages of siblings one and two and their mother and father respectively, b, d 
and f are the effect of the offspring, maternal and paternal genotypes on the offspring 
phenotype, τ  is a random effect shared by the siblings, ε1 and ε2 are uncorrelated error terms 
for the two phenotypes, and η1 and η2 are random effects due to the segregation of alleles. 
Without loss of generality, effects were scaled so that the variance of the genotype dosages 
and phenotype terms was one. The variances of the random effects are: 
 �� ���
 � �� ���
 � !� �� ��
 � "� �� ��
 � 0.5 
 
In the case of X chromosome loci for sibling pairs, we assume that the effect of genotypes on 
offspring phenotype are equal in males and females (i.e. the regression coefficients b, d and f 
are equal regardless of whether the sibling is male or female). Unstandardized female 
genotypes are coded X  {0, 1, 2} whilst unstandardized male genotypes are coded {0, 2}. 
This means that male genotypes have twice the variance of female genotypes, and explain 
double the variance in the offspring phenotype. We simulated sibling phenotypes at X 
chromosomal loci under the following model: 
 �� � ��� � �� � ��� � � � �� �� � ��� � �� � ��� � � � �� �� � � � �� �� � 0.5� � 0.5�� � �� 
 
where the terms are defined similar to the sibling model above where sibling one is male and 
sibling two is female, and ηM and ηF are random effects due to segregation in male and 
female offspring. The variances of the random effects are: 
 �� ���
 � !��

�  �� ���
 � !��
�  �� ��
 � "� �� ���
 � 1 �� ���
 � 0.25 

 
At X chromosome loci, the covariances between genotypes of relative pairs are sex-
dependent: 
 
Mother-Daughter: 

Cov(X2, Xm) = 0.5 
Mother-Son: 

Cov(X1, Xm) = 1 

Father-Daughter: 
Cov(X2, Xf) = 1 

Father-Son: 
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Cov(X1, Xf) = 0 
Brother-Brother: 

Cov(X1, X2) = 1 
Sister-Sister: 

Cov(X1, X2) = 0.75 
Brother-Sister: 

Cov(X1, X2) = 0.5 
 
and so we simulate under three separate models for female-female, male-male, and opposite 
sex sibling pairs (see Supplementary Materials for more details). 
 
Finally, in the case of (maternal) half sibling pairs at autosomal loci we simulated data 
according to the model:  
 �� � ��� � �� � ���� � � � �� �� � ��� � �� � ���� � � � �� �� � 0.5�� � ���
 � �� �� � 0.5�� � ���
 � �� 
 
where the subscripts f1 and f2 denote the fathers of half sibling one and half sibling two 
respectively. The variances of the random effects are  
 �� ���
 � �� ���
 � !� �� ��
 � "� �� ��
 � 0.5 
 
Paternal half sibling pairs can be parameterized analogously. The reason we don’t show this 
explicitly is that for autosomal loci, the power to detect maternal effects using paternal half 
sibling pairs is the same as the power to detect paternal effects using maternal half sibling 
pairs, and the power to detect paternal effects using paternal half sibling pairs is the same as 
the power to detect maternal effects using maternal half sibling pairs. 
 
For each simulated pair, we calculated the expected genotype dosages of the parents based on 
the formulae from the preceding section (Supplementary Tables 1 to 4). Offspring phenotype 
was regressed on offspring genotype, and imputed (or physically genotyped) parental dosages 
using the lmer package in R. Tests were conducted using full information maximum 
likelihood. In the case of sibling pairs at autosomal SNPs, we investigated the properties of 
the following tests of association: 

(1) Omnibus test: We compared the full model where free terms for the offspring and 
parental genetic effect(s) were estimated versus a model where the offspring and 
parental regression coefficient(s) were fixed to zero (i.e. either a two degrees of 
freedom test if parental genotype was imputed; or a three degree of freedom test if 
genotypes for both parents were available). 

(2) Test using offspring genotypes only: We compared a model where there was a free 
term for the offspring genetic effect only, against a model where this term was set 
to zero (i.e. a one degree of freedom test). In other words, the effect of parental 
genotypes was not modelled in this analysis, even though parental genetic effects 
may influence the offspring phenotypes and parental genotypes may or may not be 
present. 
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(3) Test of the offspring genetic effect: We compared the full model where free terms 
for the offspring and parental genetic effect were estimated versus a model where 
the offspring regression coefficient was fixed to zero (a one degree of freedom 
test). 

(4) Test of the parental genetic effect: We compared the full model where free terms 
for the offspring and parental genetic effect are estimated versus a model where the 
imputed parental regression coefficient was fixed to zero (a one degree of freedom 
test). 

 
In the case of half sibling pairs, as well as sibling pairs at X chromosome SNPs, we 
investigated the properties of the following tests of association: 

(1) Omnibus test: We compared the full model where free terms for offspring, 
maternal and paternal genetic effects are estimated versus a model where the 
offspring, maternal and paternal regression coefficients were fixed to zero (a three 
degrees of freedom test). 

(2) Test using offspring genotypes only: We compared a model where there was a free 
term for the offspring genetic effect only, against a model where this term was set 
to zero (a one degree of freedom test). In other words, the effect of parental 
genotypes were not modelled in this analysis, even though maternal and/or paternal 
genetic effects may influence the offspring phenotypes and parental genotypes may 
or may not be present. 

(3) Test of the offspring genetic effect: We compared the full model where free terms 
for offspring, maternal and imputed paternal genetic effects are estimated versus a 
model where the offspring regression coefficient was fixed to zero (a one degree of 
freedom test). 

(4) Test of the maternal genetic effect: We compared the full model where free terms 
for offspring, maternal and paternal genetic effects are estimated versus a model 
where the maternal regression coefficient was fixed to zero (a one degree of 
freedom test). 

(5) Test of the paternal genetic effect: We compared the full model where free terms 
for offspring, maternal and paternal genetic effects are estimated versus a model 
where the paternal regression coefficient was fixed to zero (a one degree of 
freedom test). 

 
In the case of the Omnibus test (Model 1) and the test using the offspring genotypes only 
(Model 2), the focus is on locus detection (i.e. whether there is a genetic effect at the locus, 
regardless of whether it is mediated through the offspring or parental genomes). In contrast, 
in the case of the tests for the parental, maternal, paternal or offspring genetic effects (Models 
3 to 5), the focus is on partitioning a known locus into its indirect parental genetic and/or 
offspring genetic components. These tests are more relevant if the goal is to determine which 
genome mediates a known genetic effect on the offspring phenotype, or if the objective is on 
deriving unbiased effect estimates of genetic effects e.g. for Mendelian randomization 
analyses. 
 
For our simulations, we varied the size of genetic effects (two conditions: b2 = d2 = f2 = 0; b2 
= d2 = f2 = 0.1%), frequency of the trait decreasing allele (three conditions: p = 0.1, p = 0.5, p 
= 0.9), and shared residual variance (two conditions: "� = 0; "� = 0.2). For all simulations 
we used N = 2000 sibling pairs/half sibling pairs, a type 1 error rate of α = 0.05, and 1000 
replications. R code implementing the simulations are provided in the Supplementary 
Materials. 
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Calculating Power Analytically Using the Non-Centrality Parameter 
 
We derived closed form expressions for the non-centrality parameter of the statistical tests 
described above for actual and imputed parental genotypes and confirmed the results of these 
against our simulations. We have implemented these asymptotic power calculations in a 
series of applications which are freely available on our website 
(http://evansgroup.di.uq.edu.au/power-calculators.html). In the results section, we use our 
utilities to compare the statistical power to detect genetic effects when parental genotypes are 
available and when they need to be imputed for both sibling and half sibling pairs. 
 
Software to impute Parental Genotypes 
 
We have coded the parental imputation routines described above in a C++ software package 
called IMPISH (IMputing Parental genotypes in Siblings and Half siblings) which is freely 
available on our website (http://evansgroup.di.uq.edu.au/software.html). IMPISH uses source 
code adapted from the GCTA software package (version 1.26.0) that has been modified to 
impute parental genotype data given genotypes from sibling or half sibling pairs (Yang et al. 
2010). IMPISH accepts data in the form of PLINK style binary .bed, .bim and .fam file 
formats (Purcell et al. 2007). Users can elect to output expected parental genotype dosages or 
have the software compute these internally and utilize them in genome-wide association 
testing. IMPISH fits a genetic mixed linear model with fixed effects for offspring genotype 
and (imputed) maternal and paternal genotypes and allows users to compute these statistics 
across the genome in a computationally efficient fashion. A genome-wide genetic 
relationship matrix is used in the random effects part of the model just as in the original 
GCTA software, allowing users to account for population stratification and cryptic 
relatedness in their analyses. 
 
To quantify the computational requirements of the IMPISH software, we simulated datasets 
that ranged in size from N = 1,000 to 20,000 sibling pairs and M = 500,000 autosomal SNP 
markers. The datasets were simulated using an approach similar to that described above. We 
benchmarked the running time and memory use of the IMPISH software by running 
simulations on these datasets. Reported runtimes are the medians of five identical runs in a 
computing environment with 256 GB memory and 16 CPU cores with solid-state disk in one 
compute node. 
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Results 
 
Simulation Results 
 
A summary of the results of our data simulations is presented in Supplementary Figure 1. 
Estimates of paternal, maternal and offspring genetic effects from the full omnibus models 
were unbiased, even when imputed parental genotypes were used in the place of real 
genotypes. Type 1 error rates were also maintained at expected levels (Supplementary Tables 
5-9). Estimates of statistical power, closely matched those from asymptotic calculations 
(Supplementary Tables 5-9 and see below). 
 
Derivation of non-centrality parameters and asymptotic power for tests of association in 
sibling pairs (autosomal loci) 
 
Under full information maximum likelihood, all the tests of association considered in this 
manuscript are distributed as non-central chi-square distributions under the alternative 
hypothesis of genetic association, with degrees of freedom equal to the difference in the 
number of free parameters between full and reduced models. The non-centrality parameter (ζ) 
of these distributions is equal to twice the difference in expected log-likelihoods between the 
full and reduced models. Given the non-centrality parameter (ζ) of the statistical test, the 
power to detect association (P) can be obtained by the formula: 
 

� � $ �%���&, '
�

��
����,��

 

 
where %�

���&, 0
 is the 100(1 - α) percentage point of the central χ2 distribution with ν degrees 
of freedom, and %���&, '
 denotes a non-central chi-square distribution with non-centrality 
parameter ζ and degrees of freedom &. In the section below, we derive the expected 
covariance matrix of the residuals for each statistical model and its associated expected minus 
two log-likelihood. From these values the non-centrality parameter and statistical power of 
the relevant test of association can be calculated. 
 
To illustrate our derivations, we consider the case of sibling pairs with phenotype data Y1 and 
Y2, and corresponding genotype data X1 and X2, at an autosomal single nucleotide 
polymorphism (SNP). Similar derivations for sibling pairs at X chromosome loci and for half 
sibling pairs on the autosomes are provided in the Supplementary Materials. The coding of 
genotype assumes additivity (i.e. no dominance), and without loss of generality, all genotypes 
and phenotypes are standardized to have mean 0 and variance 1. In situations where the 
genotype data of parents (i.e. paternal genotype Xf and maternal genotype Xm) are 
unavailable, the maternal and paternal genotypes are imputed from the genotypes of the 
sibling pairs as: 
 

Xm’ = E(Xm | X1, X2) 
Xf’ = E(Xf | X1, X2) 

 
We assume the model above for sibling pairs (see Methods) and random mating so that 
Cov(Xm, Xf) = 0. The covariances between genotypes are: 
 

Cov(X1, X2) = Cov(X1, Xm) = Cov(X2, Xm) = Cov(X1, Xf) = Cov(X2, Xf) = 0.5 
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the covariance between phenotypes and genotypes are: 
 

Cov(Y1, X1) = Cov(Y2, X2) = b + 0.5(d + f) 
Cov(Y1, X2) = Cov(Y2, X1) = 0.5(b + d + f) 

Cov(Y1, Xm) = Cov(Y2, Xm) = 0.5b + d 
Cov(Y1, Xf) = Cov(Y2, Xf) = 0.5b + f 

 
and the covariance between the two phenotypes is: 
 

Cov(Y1, Y2) =  0.5b2 + d2 + f2 + bd + bf + "� 
 
The phenotypic variance can be decomposed as follows: 
 �� ��
 � ��� � �� � �� � �� � ��
 � "� � !� � 1 
 
The variance of the true maternal and paternal genotypes prior to standardization is 
equivalent to the expected heterozygosity, given the allele frequencies p and q: 
 �� ��
 � �� (��) � 2*+ � , 
 
Full sibling relationships do not provide adequate information to distinguish between alleles 
of maternal versus paternal origin, therefore the imputed maternal genotype  �

�  will be 
equivalent to the imputed paternal genotype ��

� . Thus, models using the imputed parental 
genotype ��

� , estimate the parameter c, the combined effects of d and f such that c = d + f. 
 
The variance of the imputed parental genotype, �� ���

� 
, imputed from full sibling pairs is: 
 

�� (��
� ) � 2,� � 5, � 124�, � 2
�, � 4
 

  
The covariance between actual and imputed genotype is equal to the variance of the imputed 
genotype: 
 ./0(� , ��

� ) � ./0(�� , ��
� ) � �� ���

� 
 
 
and the covariance between the imputed parental genotype and sib genotypes and phenotypes 
are: 
 ./0(��

� , ��) � ./0(��
� , ��) � 0.5 

 ./0(��
� , ��) � ./0(��

� , ��) � �/2 � 2�� (��
� ) 

 
When actual maternal and paternal genotypes are available, the linear mixed model is 
 �� � ��� � �� � ��� � � � �� �� � ��� � �� � ��� � � � �� 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.21.959114doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.959114
http://creativecommons.org/licenses/by/4.0/


The fixed effects b, d, and f may be estimated by generalised least squares (GLS), where the 
covariance matrix of random effects is: 
 

Ω � 4!��"� "�

"� !��"�5 

 
The inverse of the covariance matrix of random effects is: 
 

Ω�� � 1!��!��2"�
 4!��"� 6"�

6"� !��"�5 

 
The asymptotic GLS estimates of a vector of parameters 7 are given by 
 78 � ����Ω���
������Ω���
 
 
We consider the following models:  
 
Null model of no association 
 
The residual covariance matrix is simply the covariance matrix of Y: 
 Σ � Σ� 

� 4 1 0.5�� � �� � �� � �� � �� � "�

0.5�� � �� � �� � �� � �� � "� 1 5 

 
The expected minus two log-likelihood (-2lnL) of the model per sibling pair is therefore: 
 ��62:;<
 � ln �1 6 �0.5�� � �� � �� � �� � �� � "�
�
 � 2 
 
One parental genotype (maternal genotype) in the model: 
 
The X matrix contains one column with elements �. The asymptotic GLS estimate of the 
regression coefficient of  � is: 
 �8 � ����Ω���
������Ω���


 � ��2!��
� 
���(!����� � ��
) � ./0�� , �


 � � � �/2 
 
The residual covariance matrix is: 
 Σ � �(� 6 ��8)(� 6 ��8)�

 � �(��� 6 ��8��� 6 ��8�� � ��8�8���) � Σ� 6 �8�Σ�� � Σ��
 � �8�Σ� 
 
where 
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Σ�� � 4�/2 �  � �/2 �  ��/2 �  � �/2 �  �5 

 

Σ�� � 4�/2 �  � �/2 �  ��/2 �  � �/2 �  �5 

 Σ� � ?1 11 1@ 

 
Therefore: 

 

Σ � 41 6 �� � 0.5�
� 0.25�� � "�

0.25�� � "� 1 6 �� � 0.5�
�5 

 
The expected -2lnL of the model per sibpair is therefore: 
 ��62:;<
 � ln��1 6 �� � 0.5�
�
� 6 �0.25�� � "�
�
 � 2 
 
Both parental genotypes only in model (terms for � and �� only): 
 
The X matrix contains two columns with elements � and ��. The asymptotic GLS estimates 
for the regression coefficients of � and �� are: 
 AB � (�8, �8)� � ����Ω���
������Ω���
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� �0.5� � � 0.5� � �
� 
 
The residual covariance matrix is: 
 Σ � ��� 6 �AB
�� 6 �AB
� � Σ� 6 ���AB�� � �AB��� 6 �ABAB���
 

 
where 
 

���AB��
 � ���AB���
 � 40.5�� � �� � �� � �� � �� 0.5�� � �� � �� � �� � ��0.5�� � �� � �� � �� � �� 0.5�� � �� � �� � �� � ��5 

 

���ABAB���
 � 40.5�� � �� � �� � �� � �� 0.5�� � �� � �� � �� � ��0.5�� � �� � �� � �� � �� 0.5�� � �� � �� � �� � ��5 

 
Therefore: 
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Σ � 41 6 �0.5�� � �� � �� � �� � ��
 "�

"� 1 6 �0.5�� � �� � �� � �� � ��
5 

 
The expected -2lnL of the model per sibling pair is therefore: 
 ��62:;<
 � ln ��1 6 �0.5�� � �� � �� � �� � ��

� 6 "�
 � 2 
 
Offspring genotypes in model only (terms for �� and �� only): 
 
The X matrix contains one column with elements �� and ��. The asymptotic GLS estimate of 
the regression coefficient of �� and �� is: 
 �I � ����Ω���
������Ω���


 � �(�!� � "�
���
� � ��

�
 6 2����"�)���(�!� � "�
����� � ����
6 "������ � ����
)
 

� � � J !�

2!� � "�
K �� � �
 

 
The residual covariance matrix is: 
 Σ � �(� 6 ��I)(� 6 ��I)�

 � Σ� 6 �I�Σ�� � Σ��
 � �I�Σ� 

 
where: 
 

Σ�� � 4b � 0.5�� � �
 0.5�� � � � �
0.5�� � � � �
 � �  0.5�� � �
5 

 

Σ�� � 4b � 0.5�� � �
 0.5�� � � � �
0.5�� � � � �
 � �  0.5�� � �
5 

 Σ� � ? 1 0.50.5 1 @ 

 
Therefore: 
 Σ
� � 1 � �2� 	 
 	 ��� 	 �� 0.5�� 	 
� 	 �� 	 �
 	 �� 	 �� � �� 	 
 	 ��� 	 0.5��

0.5�� 	 
� 	 �� 	 �
 	 �� 	 �� � �� 	 
 	 ��� 	 0.5�� 1 � �2� 	 
 	 ��� 	 �� � 

 
The expected -2lnL of the model per sibling pair is: 
 ��62:;<
 � ln |Σ| � 2 
 
Full Omnibus Model (terms for �, ��, �� and ��): 
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The X matrix contains three columns; column 1 with elements �� and ��, column 2 with 
elements � and �, and column 3 with elements �� and ��. The asymptotic GLS estimate 
of the regression coefficients of columns 1, 2 and 3 are: 
 AB � ��I, �,M �8
� � ����Ω���
������Ω���


 � ��, �, �
� 
 
The residual covariance matrix is: 
 Σ � ��� 6 �AB
�� 6 �AB
�

 � Ω 

� 4!��"� "�

"� !��"�5 

 
The expected -2lnL of the model per sibling pair is: 
 ��62:;<
 � ln |Σ| � 2 
 
Imputed parental genotypes only in model (terms for ��

�  only) 
 
When only imputed parental genotypes are available, the linear mixed model becomes: 
 �� � ��� � 2��

� � � � �� �� � ��� � 2��
� � � � �� 

 
The X matrix contains one column with elements ��

� . The asymptotic GLS estimate of the 
regression coefficient of  ��

�  is: 
 2̂ � ����Ω���
������Ω���


 

� � J 2��
�2

�2	2�2
K�� � J��

�  ��1 	 �2

�2	2�2

K 

� ./0(��
� , �)Var(��

� ) � 0.5� � 2�� (��
� )�� ���

� 
 � 2 � 0.5��� ���
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The residual covariance matrix is: 
 Σ � ��� 6 �2̂
�� 6 �2̂
�

 � ����� 6 �2̂��� 6 �2̂�� � �2̂2̂���

 � Σ� 6 2̂�Σ�� � Σ��
 � 2̂�Σ� 

 
where: 
 

Σ�� � J0.5� �  2�� (��
� ) 0.5� �  2�� (��

� )0.5� �  2�� (��
� ) 0.5� �  2�� (��

� )K 

 

Σ�� � J0.5� �  2�� (��
� ) 0.5� �  2�� (��

� )0.5� �  2�� (��
� ) 0.5� �  2�� (��

� )K 
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Σ� � J�� (��
� ) �� (��

� )�� (��
� ) �� (��

� )K 

 
The expected -2lnL of the model per sibling pair is: 
 ��62:;<
 � ln |Σ| � 2 
 
Full omnibus model with imputed parental genotypes (terms for ��

� , �� and ��) 
 
The X matrix contains two columns; column 1 with elements �� and ��, and column 2 with 
elements ��

�  and ��
� . The asymptotic GLS estimate of the regression coefficients of columns 

1 and 2 are: 
 AB � ��I, 2̂
� � ����Ω���
������Ω���


 � ��, 2
� 
 
The residual covariance matrix is: 
 Σ � ��� 6 �AB
�� 6 �AB
� � Σ� 6 ���AB�� � �AB��� 6 �ABAB���
 

 
where: 
 

���AB��
 � ���AB���
 � J�I./0���, ��
 � 2̂./0���
� , ��
 �I./0���, ��
 � 2̂./0���

� , ��
�I./0���, ��
 � 2̂./0���
� , ��
 �I./0���, ��
 � 2̂./0���

� , ��
K 

and: 

���ABAB���
 � J �I� � �I2̂ � 2��� ���
� 
 0.5�I� � �I2̂ � 2̂��� ���

� 
0.5�I� � �I2̂ � 2̂��� ���
� 
 �I� � �I2̂ � 2��� ���

� 
 K 

 
The expected -2lnL of the model per sibling pair is: 
 ��62:;<
 � ln |Σ| � 2 
 
Results of Asymptotic Power Calculations 
 
We used our asymptotic formulae to investigate the statistical power to detect association 
across a range of different parameters, study designs and statistical tests (Supplementary 
Tables 10-14). We highlight some general results from our power calculations that we hope 
investigators may find useful in terms of planning genetic association studies, particularly 
those aimed at identifying and/or estimating the contribution of indirect parental genetic 
effects on offspring phenotypes. 
 
A key question for researchers is, what is the optimal analysis strategy if the primary focus is 
on locus detection? According to our power calculations, the answer to this question, perhaps 
unsurprisingly, depends on the genetic architecture of the trait, in particular on the existence 
of indirect maternal/paternal genetic effects and whether these are in the same or opposing 
directions. Figure 2 displays power to detect a locus using sibling pairs when a locus is 
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influenced by maternal and/or offspring genetic effects (e.g. a perinatal trait like birth 
weight). When the locus under study involves an offspring genetic effect only (green lines in 
Figure 2), which is probably the case for the majority of loci in the genome for most traits, 
then the most powerful strategy appears to be simply testing for an offspring genetic effect 
against the null model of no association (i.e. performing a one degree of freedom test just 
using the sibling pairs with no parental imputation). This includes situations where parents 
have been genotyped. This is because fitting the full omnibus model and testing against the 
null model requires extra degrees of freedom to model parental genetic effects (which in this 
case are not present) which adversely affects power. We note that this decrement does not 
appear to be great in the case of sibling pairs if only the mother is genotyped and paternal 
genetic effects are not modelled and do not contribute to the trait of interest, (Figure 2, 
Supplementary Table 10)- which is perhaps a reasonable assumption for many perinatal 
phenotypes. 
 
In contrast, when indirect maternal (or paternal) genetic effects substantially influence the 
offspring phenotype (blue and red lines Figure 2), and parental genotypes are present, the full 
omnibus model (lines with crosses) often performs comparably or better than a simple one 
degree of freedom test using the sibling genotypes alone (lines with small circles). This is 
especially the case when offspring and/or parental genetic effects are directionally discordant 
(red lines), as is frequently observed for some trait-locus combinations like fasting glucose 
associated loci and offspring birth weight (Warrington et al. 2019;  Warrington et al. 2018). 
Here the power of a simple one degree of freedom test involving the sibling genotypes only 
can be vastly diminished, because the discordant parental and offspring genetic effects tend to 
cancel each other out. In contrast, an omnibus test which models both offspring and indirect 
parental genetic effects performs much better in these situations. Importantly, when parental 
genotypes are unavailable, for many situations there appears to be little gained by imputing 
parental genotypes and including these in an omnibus test if the focus is solely on locus 
detection (Figure 2; Supplementary Tables 10-11). 
 
Another goal investigators might be interested in is partitioning effects at known genetic loci 
into direct offspring and indirect parental genetic components. This may be of relevance if 
investigators want to prove the existence of indirect maternal genetic effects on offspring 
phenotypes for example. Figure 3 displays the power to partition a genetic effect into 
maternal (or equivalently paternal) genetic sources of variation in the case of half sibling or 
sibling pairs, with and without parental genotypes at autosomal loci. The graph highlights the 
clear advantage in power of including actual as opposed to imputed parental genotypes in the 
statistical model when the focus is on resolving indirect genetic effects on offspring 
phenotypes. Figure 3 shows that if parental genotypes are unavailable, then a considerable 
number of sibling pairs (>40,000) and maternal half sibling pairs (>60,000) will be required 
to achieve high power (>80%, α = 0.05) to partition genetic effects at a locus- even for those 
of relatively large effect (d 2 = 0.1%). Interestingly, paternal half sibling pairs who have not 
had their parents genotyped, provide much less power to estimate maternal genetic effects 
and require even larger numbers (a similar decrement in power is also observed in the case 
for maternal half sibling pairs if the interest is in estimating paternal genetic effects). The 
lower power of the imputed half sibling analyses compared to the imputed sibling analyses 
partially reflects the fact that only two sources of variation are modelled in the imputed 
sibling models (i.e. offspring and parental genetic sources of variation), whereas in the half 
sibling models, three different sources of variation are modelled (offspring, parental, maternal 
genetic sources of variation). If investigators believe that paternal genetic effects do not 
contribute to offspring trait variation (a reasonable assumption for perinatal traits), then one 
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option to increase power is to fix this path to zero in models involving half siblings. 
Interestingly, the presence/absence of other genetic effects has little effect on power of the 
conditional tests of association for realistic effect sizes when correctly modelled. 
 
In order to put the above numbers in context, in the publicly available UK Biobank dataset 
(which roughly consists of ~20,000 sibling pairs), we estimate that an autosomal parental 
genotype would need to explain ~0.2% of the variance in the offspring phenotype in order to 
have 80% power to resolve an indirect genetic effect if parental genotypes need to be imputed 
(assuming the same parameters as in Figure 3). An indirect effect size this large is probably 
unrealistic for most traits, implying that larger samples will be needed to resolve genetic 
effects at known loci into indirect and direct genetic effects if parental genotypes need to be 
imputed. We also note that the power of the conditional tests are typically lower than 
omnibus tests, implying that omnibus tests of association should be used for locus discovery 
purposes whilst conditional tests of association should be reserved for partitioning 
effects/estimating effect sizes at known loci (Supplementary Tables 10-14). 
 
We found that the effect of the other parameters we investigated (allele frequency, shared 
residual variance) on statistical power was complicated and often interacted with the level of 
other factors in the calculation (Supplementary Tables 10-11). Allele frequency exerted a 
modest effect on the power of most of the statistical tests examined, and its effect on power 
appeared to be symmetric around p = 0.5. The effect of the shared residual variance on 
statistical power was complex and depended on the statistical test, the underlying genetic 
model, allele frequency etc (Supplementary Tables 10-11). 
 
Imputing parental genotypes on the X chromosome has the advantage that separate maternal, 
paternal and offspring genetic effects can be resolved for sibling pairs (although at X linked 
loci, male siblings are uninformative for paternal transmissions, and so contribute nothing in 
terms of identifying paternal genetic effects when fathers have not been genotyped). We 
parameterize the statistical model at X linked loci so that unstandardized male genotypes are 
coded G1  {0, 2} and female genotypes are coded G2  {0, 1, 2}. We also assume that the 
regression coefficient of offspring phenotype on (maternal/paternal/offspring) genotype is the 
same in male and female offspring. This means that male loci explain double the amount of 
variance in the phenotype compared to females (see Supplementary Materials). We have 
coded the web utilities (http://evansgroup.di.uq.edu.au/power-calculators.html) so that users 
enter the variance in the offspring phenotype explained by maternal, paternal and/or offspring 
genotypes at the locus. For offspring genetic effects in opposite sex siblings, users enter the 
variance explained by male loci. 
 
The results of the power analyses for sibling pairs on the X chromosome are displayed in 
Supplementary Tables 12-14. The general pattern of results for loci on the X chromosome 
was similar to that described for the autosomes, and consequently we make similar 
recommendations regarding the appropriate analyses for locus detection and partitioning 
genetic effects at X linked loci. Comparing the power across the different study designs 
however revealed a few interesting results which we highlight. First, male sibling pairs offer 
increased power to resolve indirect paternal genetic effects on the X chromosome compared 
to the autosomes- so long as fathers have been genotyped. This is because (under random 
mating) father’s genotype is uncorrelated with maternal and male offspring genotype at X 
linked loci. Correlation between paternal X linked loci and male offspring phenotype can 
therefore not be explained by maternal or offspring genotype. The corollary is that male 
sibling pairs cannot be used to impute paternal genotypes at X linked loci and so are 
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uninformative for paternal genetic effects unless the father has been genotyped (opposite sex 
sibling pairs also provide slightly elevated power to detect paternal genetic effects when 
fathers have been genotyped for the same reason). 
 
When parental genotypes are present, male siblings also provide lower power to detect X 
linked loci (3 degree of freedom tests) compared to many of the other study designs. The 
reason is the converse of the explanation above- paternal genetic effects do not contribute to 
the covariance between male sibling pairs. Opposite sex sibling pairs also provide reduced 
power to detect loci (3 degree of freedom tests), but this partly a consequence of how we 
parameterize the model of association on the X chromosome (i.e. we calculate the size of 
offspring genetic effects in reference to the variance explained by male offspring, meaning 
that the variance explained by the same locus in the sister will be half this amount). We 
choose not to compare results across the different study designs when parental genotypes are 
imputed because the different models and their tests are usually not equivalent (e.g. one can’t 
resolve paternal genotypes at X linked loci for male sibling pairs; opposite sex sibling pairs 
have their variances parameterized slightly differently to the other sibships etc). These results 
are tabulated in Supplementary Tables 12-14. 
 
IMPISH Software Performance 
 
Supplementary Table 15 shows the performance of the IMPISH software in terms of CPU 
times and time to perform genome-wide association. Our results show that IMPISH can be 
used to impute parental genotypes from large numbers of relative pairs and perform tests of 
association across the genome in a reasonable time frame. 
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Discussion 
 
In this manuscript we have shown that it is possible to impute parental genotypes given 
genotype data on sibling and half sibling pairs and then subsequently use this information to 
derive unbiased estimates of parental genetic effects. We have derived asymptotic formulae 
to compute power to detect association when parental genotypes are observed or imputed, 
and implemented these calculations in a series of freely available online power calculators 
that investigators can use to guide study design and analysis strategy. Finally, we developed 
IMPISH, a freely available easy to use software package that imputes parental genotypes 
given genotype information on sibling or half sibling pairs, and then uses this information to 
perform genome-wide conditional tests of paternal, maternal and offspring genetic effects. 
 
Our asymptotic calculations reveal that the power to partition known individual loci into 
parental and offspring genetic effects using imputed parental genotypes is low in general, and 
highlights the value in having parents genotyped if the interest is in resolving indirect 
parental genetic effects at known loci. In situations where parental genotypes are unavailable, 
we show that indirect parental genetic effects can still be estimated without bias, but very 
large numbers of sibling (or half sibling) pairs will be required (e.g. >40,000 sibling and 
>60,000 half sibling pairs). Whilst these sorts of numbers may be realistic in the case of 
siblings (e.g. UK biobank contains roughly 20,000 sibling pairs, and there are many twin 
cohorts around the world that contain large numbers of dizygotic twins), most cohorts contain 
very few half sibling pairs. For these reasons we suggest our method may currently be more 
suitable as a complement to existing large-scale genetic studies of parents and their children. 
For example, both the Norwegian MOBA and HUNT cohorts not only contain tens of 
thousands of parent-offspring trios and duos, but also large numbers of sibling pairs that 
could be combined with more traditional parent-offspring analyses to further increase power 
to detect parental genetic effects (Krokstad et al. 2013;  Magnus et al. 2006). 
 
A key motivation for developing our approach was the realization that estimates of parental 
genetic effects derived from imputed genotypes could also be used in two sample Mendelian 
randomization (MR) studies examining possible causal relationships between parental 
exposures and offspring outcomes (Evans et al. 2019). Whilst our method could be used to 
increase the power of existing MR analyses involving perinatal outcomes (Tyrrell et al. 
2016), an exciting novel application would be the examination of the influence of parental 
exposures on later life offspring outcomes. The majority of the world’s large-scale cohorts 
with genotyped mother-offspring pairs are relatively new historically (Boyd et al. 2013;  
Fraser et al. 2013;  Magnus et al. 2006;  Wright et al. 2013). This means that the children in 
these cohorts are not old enough to have developed many late onset diseases of interest 
including adverse cardiometabolic phenotypes. Consequently, it is currently difficult, if not 
impossible, to perform maternal-offspring MR studies on late onset diseases. Our procedure 
of imputing parental genotypes means that in principle mother-offspring MR analyses are 
now possible utilizing cohorts of mature sibling and half sibling pairs. Such an approach 
would enable the investigation of hypotheses in life course epidemiology such as the 
Developmental Origins of Health and Disease which posits a link between intrauterine 
growth restriction and the development of disease in the offspring in later life (Barker 1990). 
 
Besides low statistical power, there are a number of limitations with our approach. In the case 
of sibling pairs, separate maternal and paternal genotypes can be resolved for X linked (non-
pseudoautosomal) loci. However, for autosomal loci, the expected dosage for maternal and 
paternal genotypes is the same. This means that it is impossible to distinguish maternal and 
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paternal genotypes using data from sibling pairs alone. Thus, utilization of sibling pairs to 
detect indirect genetic effects requires the non-trivial assumption that either paternal (or 
maternal) genetic effects do not affect the offspring phenotype under study. Whilst this 
assumption may be justified for certain perinatal phenotypes where the contribution of the 
father’s phenotype to trait variation in the offspring may be minimal (like birth weight), it 
may not be justifiable for other phenotypes. Sensitivity analyses could be performed by 
testing whether estimates derived from using sibling pairs are consistent with those derived 
from e.g. parent-offspring trios or even half sibling pairs where estimates of maternal, 
paternal and offspring genetic effects can be estimated consistently. 
 
We have shown that for half sibling pairs, different maternal and paternal genotype 
probabilities (and therefore expected dosages) can be resolved at genetic loci. This means 
that, in principle, the half sibling pairs within large publicly available biobanks could be 
leveraged to provide information on parental genotypes and consequently help obtain 
unbiased estimates of indirect parental genetic effects on offspring traits. This will be 
possible if there is explicit pedigree information that unequivocally identifies half sibling 
relationships. However, the task becomes more challenging if half siblings have to be 
identified on the basis of genetic information alone. This is because half siblings share the 
same expected number of alleles identical by descent as grandparent-grandchild pairs and 
avuncular relationships, making it difficult to distinguish between these relationships given 
only genetic data. The majority of grandparent-grandchild pairs can be differentiated from 
half sibling pairs on the basis of age (i.e. the age difference in most grandparent-grandchild 
relationships will be >30 years). However, it is much more difficult to resolve half sibling 
from avuncular pairs. Half siblings and avuncular pairs can be partially distinguished by the 
former’s longer haplotype sharing. Intuitively, this is because any chromosome segments that 
half siblings share have only gone through a total of two meioses since their common 
ancestor (i.e. transmission from the shared parent to half sibling one and transmission from 
the shared parent to half sibling two). In contrast, any shared haplotype segments have gone 
through a total of three meioses since the last common ancestor in the case of avuncular 
relationships (i.e. transmission from shared grandparent to uncle/aunt and transmission from 
shared grandparent to parent to child). However, classification is imperfect (Gusev et al. 
2009;  Hill and Weir 2011;  Hill and White 2013), but could be improved further through the 
use of additional information including age difference of the pair and reported information on 
the parents (e.g. half siblings who share the same mother should produce consistent reports of 
maternal illnesses). Any half sibling pairs that are identified would need to be classified into 
maternal half siblings (who share a mother) and paternal half siblings (who share a father). 
Genetic data on the sex chromosomes and mitochondria could help facilitate this 
differentiation. 
 
Finally, we note that there are several ways that our procedure could be improved/extended. 
First, we have only considered relative pairs in our derivations. Additional first degree 
relatives (i.e. additional siblings, the addition of one parent etc) would enable better genotype 
imputation and therefore increased power to detect parental genetic effects on offspring 
phenotypes. It is also possible that more distant relatives may also be informative for 
imputation, particularly if shared haplotypes could be identified within larger pedigree 
structures. Third, we have only considered one SNP at a time. It is possible that the inclusion 
of haplotype information may increase imputation fidelity. Fourth we note that it is likely that 
family dynamics will alter the strength of indirect parental genetic effects depending on the 
relationship of offspring to their parents. For example, the relationship between half siblings 
and their birth parents is likely to be qualitatively different to those of full siblings in nuclear 
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families. Thus, for later-life phenotypes especially, parental genetic effect size estimates in 
half siblings may not be comparable to those estimated from full siblings. This may be 
perhaps less of an issue for maternal genetic effects on perinatal phenotypes. Finally, we note 
that the models that we have considered in this manuscript could be extended in a variety of 
ways including adding more relatives to help estimate sibling and/or parent of origin effects. 
 
In conclusion, we have developed a suite of online genetic power calculators and software to 
assist researchers in detecting and partitioning loci that exhibit indirect parental genetic 
effects. We hope that our methods and utilities will form useful adjuncts to large ongoing 
genetic studies of parents and their offspring. 
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Figure 1. Illustration showing the intuition behind why the genotypes of relative pairs such 
as siblings and half siblings provide information on parental genotypes. In the case of sibling 
pairs at autosomal loci, sibling genotypes provide information on parental genotypes. 
However, mothers and fathers have the same expected genotypes and so separate maternal 
and paternal genotypes cannot be imputed given only genotype information from sibling 
pairs. However, mothers and fathers have different expected genotypes given sibling pair 
genotypes at non-autosomal X chromosome loci, and so different maternal and paternal 
genotypes can be imputed at these loci. Likewise, in the case of half sibling pairs, mothers 
and fathers have different expectations for their genotypes given half sibling genotypes, and 
so maternal and paternal genotypes can be imputed at loci. Male individuals are 
uninformative for paternal genotypes at (non-pseudoautosomal) X chromosome loci. 
 
Figure 2. Power of locus detection in sibling pairs assuming directionally concordant 
maternal and offspring genetic effects (blue lines: d2 = 0.1%; b2 = 0.1%), directionally 
discordant maternal and offspring genetic effects (red lines: d2 = 0.1%; b2 = 0.1%), or 
offspring genetic effects only (green lines: d2 = 0%; b2 = 0.1%). Shown are results of a one 
degree of freedom test using sibling genotypes only (lines with large circles), an omnibus two 
degree of freedom test using observed maternal and sibling genotypes (lines with crosses), 
and an omnibus two degree of freedom test of association when parental genotypes need to 
be imputed from sibling genotypes (lines with small circles). We note that the power of three 
conditions are equivalent (i.e. offspring effects only omnibus imputed and omnibus tests; 
discordant maternal and offspring effects omnibus test). To understand this result intuitively, 
the variance in the phenotype explained under the offspring genetic effects only model (b2 = 
0.1%; d2 = 0%) is the same as that explained under the directionally discordant model 
because of the negative covariance between maternal and offspring genotypes (i.e. variance 
explained = b2 + d2 – bd = 0.1% + 0.1% - 0.1% = 0.1%). Likewise, the power is also identical 
under the omnibus test when parental genotypes are imputed because the effect in this 
condition is completely driven by the offspring genotype (i.e. the presence/absence of 
maternal genotypes does not contribute to the model fit). For all calculations we assume an 
autosomal locus, shared variance "� = 0.2, a type 1 error rate α = 5x10-8, and where relevant, 
a decreasing allele frequency of p = 0.1. 
 
Figure 3. Power to resolve an autosomal maternal genetic effect (d2 = 0.1%; f 2 = 0%; b2 = 
0%;) at a known genetic locus, using a conditional one degree of freedom test of association 
in sibling pairs (green lines), maternal half sibling pairs who share the same mother (red 
lines) and paternal half sibling pairs who share the same father (blue lines). All calculations 
assume p = 0.3 frequency of the trait decreasing allele; shared variance "� = 0.2; type 1 error 
rate α = 0.05). The red dashed vertical line in the figure indicates the approximate number of 
sibling pairs in the UK Biobank (N = 20,000). This figure highlights the advantage of having 
actual parental genotypes in the statistical model. 
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