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Abstract  

Quantifying the functional effects of complex disease risk variants can provide insights 

into mechanisms underlying disease biology. Genome wide association studies (GWAS) 

have identified 39 regions associated with risk of epithelial ovarian cancer (EOC). The 

vast majority of these variants lie in the non-coding genome, suggesting they mediate 

their function through the regulation of gene expression by their interaction with tissue 

specific regulatory elements (REs). In this study, by intersecting germline genetic risk 

data with regulatory landscapes of active chromatin in ovarian cancers and their 

precursor cell types, we first estimated the heritability explained by known common low 

penetrance risk alleles. The narrow sense heritability (���) of both EOC overall and high 

grade serous ovarian cancer (HGSOCs) was estimated to be 5-6%. Partitioned SNP-

heritability across broad functional categories indicated a significant contribution of 

regulatory elements to EOC heritability. We collated epigenomic profiling data for 77 cell 

and tissue types from public resources (Roadmap Epigenomics and ENCODE), and 

H3K27Ac ChIP-Seq data generated in 26 ovarian cancer-relevant cell types. We 

identified significant enrichment of risk SNPs in active REs marked by H3K27Ac in 

HGSOCs. To further investigate how risk SNPs in active REs influence predisposition to 

ovarian cancer, we used motifbreakR to predict the disruption of transcription factor 

binding sites. We identified 469 candidate causal risk variants in H3K27Ac peaks that 

break TF motifs (enrichment P-Value < 1x10-5 compared to control variants). The most 

frequently broken motif was REST (P-Value = 0.0028), which has been reported as both 

a tumor suppressor and an oncogene. These systematic functional annotations with 

epigenomic data highlight the specificity of the regulatory landscape and demonstrate 

functional annotation of germline risk variants is most informative when performed in 

highly relevant cell types. 
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Introduction 

Epithelial ovarian cancer (EOC) consists of five histological subtypes of invasive 

disease; High grade serous (HGSOC), low grade serous (LGSOC), mucinous (MOC), 

endometrioid (EnOC) and clear cell (CCOC) ovarian cancer.  The majority of serous 

cases are diagnosed at a late stage and this contributes to the poor prognosis and 

resistance to standard chemotherapeutic treatments frequently observed1–3. Ovarian 

tumors of low malignant potential (LMP) comprise ~20% of cases and only a small 

minority will progress to invasive disease. Each histotype shows differences in 

underlying biology, genetic risk and to some extent different epidemiological and 

lifestyle risk factors. They may also derive from different cell types, with fallopian tube 

secretory epithelial cells the likely cell of origin for most serous tumors 4,5, and 

endometriosis the putative precursor of CCOC and EnOC 6–8. Uncovering the 

underlying genetic architecture of different EOC histotypes is an urgent need and may 

be the most effective approach to reduce mortality due to EOC 9.    

 

Less than forty percent of the estimated narrow sense heritability of ovarian cancer is 

explained by known coding pathogenic mutations in susceptibility genes including 

BRCA1, BRCA2, BRIP1, RAD51C and RAD51D 10. Genome wide association studies 

(GWAS) have identified 40 independent regions associated with EOC risk 11. Some 

regions are associated with specific histotypes, while others appear pleiotropic across 

different EOC histotypes 11–21 or other phenotypes (e.g. breast cancer) 21,22.  Combined, 

these common, low risk alleles explain a fraction of the narrow sense heritability for 

ovarian cancer. Heritability estimates are complicated by linkage disequilibrium, which 

often results in the identification of tens to hundreds of tightly correlated SNPs at each 

susceptibility locus 23.   

 

The vast majority of risk alleles for common complex traits identified by GWAS lie in the 

non-protein coding DNA regions with their mechanisms of function largely unknown 24. 

Several studies of complex disease phenotypes have shown that risk variants are 

enriched in regulatory elements, suggesting that they function through the differential 

regulation of gene expression 25–28. Many regulatory elements can be identified by 
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epigenomic modifications; for example, H3K4me1 and H3K4me2 histone modifications 

correlate with poised enhancers, H3K27Ac with active enhancers and CTCF with gene 

repressors or the flanking boundaries of topologically associated domains 29–32. Publicly 

available resources such as the Encyclopedia of DNA Elements (ENCODE) and the 

Roadmap Epigenome Mapping Consortium (REMC) have characterized the epigenomic 

architecture of a multitude of cell types, showing that the epigenomes and 

transcriptional program are highly tissue-specific 29,33. Analyses of acetylated lysine 27 

of histone H3 (H3K27Ac) in primary tissues shows that >80% of cell type-specific 

regulatory elements lie in putative enhancers, reinforcing previous observations that cell 

type-specific enhancers drive the spatial and temporal diversity of gene expression 29,34.  

 

We hypothesize that common ovarian cancer risk SNPs are located within tissue 

specific regulatory elements and are likely to function by altering the activity of 

enhancers active in ovarian cancers and cell types that represent likely precursors of 

the different EOC histotypes. We applied systematic computational approaches to 

identify regulatory elements that are potentially disrupted at EOC GWAS risk loci. We 

first estimated the heritability for each EOC histotype using common SNPs, taking into 

account linkage disequilibrium; and then partitioned narrow sense heritability across 

general broad functional categories. We focused our analyses on 40 germline GWAS 

risk loci previously reported for one or more EOC histotypes with the aim of identifying 

putative regulatory elements and transcription factors associated with EOC risk variants 

and the initiation and development of EOC.  

 

Methods 

Genotyping datasets for ovarian cancer. 

Summary statistics were available from the largest published meta-analysis of 25,509 

EOC cases and 40,941 controls 11. This analysis included EOC cases from the five 

major histotypes of invasive disease; HGSOC; n = 13,037, LGSOC; n = 1,012 ,  MOC; n 

= 1,149, EnOC; n = 2,764 and CCOC; n = 1,366, and borderline serous; n = 1,954 and 

EOC cases of either unknown or undefined histology (n = 2,749). This analysis utilized 
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genotypes based on the 1000 Genomes Project reference panel of 11,403,952 common 

variants (MAF>1%).  

 

We further curated all previously reported  genome-wide significant risk regions for EOC 

(including all histotypes) to identify a credible causal set of SNPs at each locus for all 

invasive ovarian cancer and for each histotype where there was evidence of a risk 

association 9–19. This identified 39 risk regions for different histotypes at genome wide 

significance (P<5.0 x 10-8)  (Supplementary Table 1). Variant position and rsid for each 

variant were validated in dbSNP146 with hg19/GRCh37 coordinates. 

 

Epigenomic and datasets for ovarian cancer and their precursor tissues. 

Publicly available epigenomic profiling datasets were collected from the Roadmap 

Epigenomics Mapping Consortium 34 and the ENCODE project 29 (labelled as 

‘ENCODE2012’ in this study, Supplementary Table 2). Additionally, a collection of 

chromatin immunoprecipitation-sequencing (ChIP-seq) for H3K27Ac in ovarian cancer 

related cell and tissue types that were generated in house was compiled. This includes  

precursor normal and ovarian cancer cell lines from previously published studies and 

newly generated H3K27Ac ChIP-Seq in additional cell lines and primary tumors 

(Supplementary Table 3). Briefly, we have generated H3K27Ac-ChIP-seq data for: 

Twenty primary EOC tumors, five each for the different histotypes of invasive ovarian 

cancer (HGSOC, CCOC, EnOC and MOC) (Supplementary Table 3); twelve established 

EOC cell lines that model; undifferentiated EOC (HEYA8), HGSOC (CaOV3, 

UWB1.289, Kuramochi, OVCA429), LGSOC (VOA1056, OAW42), CCOC (JHOC5, ES2 

and RMG-II) and MOC (GFTR230, MCAS, EFO27); and three ovarian cancer precursor 

cell types; fallopian tube secretory epithelial cells ((FTSECs), FT246, FT33), ovarian 

surface epithelial cells ((OSECs), IOSE4 and IOSE11) and endometrioid epithelial cells 

(EEC16) 35 (Supplementary Table 3). Methods for H3K27Ac-ChIP-seq and peak calling 

that was previously published have been described 11,29,36–41. 

 

H3K27Ac ChIP-Seq for six new cell lines (EFO27, VOA1056, HEYA8, Kuramochi, ES2, 
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RMG-II) was performed according to previously published methods 42. Peak calling was 

performed using the AQUAS pipeline 43. Reads were aligned against the reference 

human genome hg38. Quality control metrics were computed for each individual 

replicate, including number of reads, percentage of duplicate reads, normalized strand 

coefficient, relative strand correlation and fraction of reads in called peaks. Two 

biological replicates were available for EFO27, VOA1056 and Kuramochi. Peak calling 

was performed with macs2 with pooled replicate peaks that overlap 50% or more in 

each individual replicate selected for the final peak set. When replicates were not 

available (HEYA8, ES2 and RMG-II) psuedo replicates were formed and pooled peaks 

selected in the same manner from these pseudo replicates. To create consensus peak 

sets across a single histotype for enrichment analyses, peaks with least 50% overlap 

with at least one other peak in two or more samples from a histotype group were 

retained, with the boundaries stretched to the edge of each peak in the overlap. Files 

were then concatenated and peak co-ordinates merged  such that if records within the 

concatenated file were overlapping they were combined into a single peak.  

 

We generated chromatin state calls in REMC and ENCODE2012 samples using  

StatepaintR 44 (Supplementary Table 2). This approach uses human expert rule-based 

segmentations, which allows the user to designate combinations of epigenomic marks 

to represent functional chromatin states. StatepaintR annotates chromatin states based 

upon available epigenomic marks, accommodating for the practical situation that not all 

histone marks are available for all samples. These chromatin state annotations are also 

released in the StateHub Model Repository under TrackHub ID 

5813b67f46e0fb06b493ceb0 (www.statehub.org/).  

 

Estimation of SNP-heritability 

We estimated the variance explained by known SNP effects, or SNP-heritability, by 

using linkage disequilibrium score regression (LDSC) 45,46, version 1.0.0. LDSC models 

the expected �� statistics from a GWAS of SNP � as 

������ �  	���

 �� � 	
 � 1 
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where 	 is the number of individuals; 
 is the number of SNPs, such that 
��
�

�
 is the 

average heritability explained per SNP; 
 is a constant measuring the contribution of 

confounding biases, such as cryptic relatedness and population stratification; �� is the 

LD score of SNP � defined as �� �  ∑ ����� , where ����  is the Pearson correlation between 

SNP � and SNP � , and � denotes other SNPs within the LD region. The LD scores 

were pre-calculated from phased European-ancestry individuals from the 1000 

Genomes Project reference panel v3 45. 

 

Partitioning SNP-heritability into functional categories 

To examine the importance of specific functional categories in SNP-heritability, we 

applied stratified LD score regression 46 to EOC and HGSOC GWAS summary statistics. 

The goal was to partition SNP-heritability into functional categories by combining SNPs 

in the same LD region together and quantify their overlaps with regions of interest. The 

stratified LDSC model was adapted from the above-mentioned regular LDSC model: 

������ �  	 � ��
�

���, �� � 	
 � 1 

, where � represents the functional categories; �� denotes the per-SNP contribution to 

heritability of category �; ���, �� is the LD score of SNP � falling in category �, calculated 

as ���, ��  �  ∑ �������  ; all the other parameters are the same as in LDSC. The category-

specific enrichment was defined as the proportion of SNP-heritability in the category 

divided by the proportion of SNPs in the same category.  

 

The partitioned-heritability analyses were performed with two different sets of functional 

categories. The first is a full baseline model with 24 general broad functional 

annotations from public datasets, which were inclusive of all publicly available cell types 

and post-processed in Gusev et al. 47. The 24 annotations include coding, 3’UTR, 

5’UTR, promoter, and intron regions from UCSC Genome Browser 47,48; regions 

conserved in mammals 49,50; combined chromHMM and Segway predictions comprising 

CTCF-bound regions, promoter-flanking, transcribed, transcription start site (TSS), 
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strong enhancer, weak enhancer, repressed annotations 51; digital genomic footprint 

(DGF) and transcription factor binding sites (TFBS) from ENCODE 47; open chromatin 

regions as reflected by DNase I hypersensitivity sites (DHSs) from a union of all cell 

types and a union of only fetal cell types on ENCODE and Roadmap Epigenomics 52; 

FANTOM5 enhancer 53; H3K27Ac 54,55, H3K4me1 29, and H3K4me3 29 histone marks 

from a union over cell types on Roadmap Epigenomics;  super-enhancers obtained from 
55. 

 

The second set contains 15 cell-type-specific annotations for H3K27Ac marks, which 

represent precursor normal and ovarian cancer cell lines (see the ‘Epigenomic profiling’ 

section for details). We added these cell-type-specific annotations individually to the full 

baseline model, which resulted in 15 models for EOC and 15 models for HGSOC. This 

cell-type-specific analysis helped measure how much more the annotation contributes 

on top of the rest of the full baseline model, and to justify which cell type is more 

enriched than the others.  

 
Enrichment of credible causal SNPs in biofeatures 

EOC credible causal risk variants were combined to create the full credible set (n=1432), 

and then split to represent sets of risk variants associated with each EOC histotypes. 

The background set of variants used in functional annotation and enrichment analysis 

were generated by aggregating SNPs within 2Mb (1Mb +/-) of the credible causal set, in 

an attempt to maintain similar genetic architecture (e.g. linkage disequilibrium) as 

credible causal risk variants.  Functional annotation of credible causal SNPs was 

performed with SNPnexus 56 using SIFT 57 and Polyphen 58 for protein effect, ENCODE 
29, Roadmap Epigenomics 34, and Ensembl Regulatory Build 59 for regulatory elements, 

and CADD 60, DeepSEA 61 and FunSeq2 62 for non-coding variation scoring. The 

difference between the average FunSeq2 functional score for the foreground and 

background SNP lists was determined with a two tailed t test. 

 

Enrichment analysis was performed with the FunciVar package 

(https://github.com/Simon-Coetzee/funcivar), a tool for annotation and functional 
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enrichment of variant sets. In principle, FunciVar first takes two lists of variants as inputs: 

1) a list of target variants, in this analysis the credible causal set of risk SNPs, which act 

as the foreground, and 2) a list of control variants, which act as the background. The 

background SNP lists from each locus were combined as necessary to ensure the local 

background set of variants for each locus was included in the histotype-specific 

enrichment. FunciVar then intersects each variant with biofeatures, which were provided 

as bed files. The likelihood of true enrichment for each variant list is modeled under the 

beta-binomial distribution.  

�	�~Beta��	� �  �, 		� �  �� 

    

�
�~Beta��
� �  �, 	
� �  �� 
where � is the number of observed overlaps with biofeature, 	 is the number of total 

variants, and subscripts ��  and ��  denote background and foreground respectively. 

FunciVar uses an uninformative Jeffreys prior, which set � � 0.5  and � � 0.5 . To 

estimate the true enrichment, FunciVar by default simulates 10,000 times to obtain a 

distribution of foreground enrichment probability, �	� , and a distribution of background 

enrichment probability, �
�. The two sets of simulated probabilities were next directly 

subtracted to obtain a distribution of differences.  FunciVar calculates a 95% credible 

interval for the range of enrichment probability differences between the two lists of 

variants. Enrichment is reported as the median of this credible interval, within the range 

of -1 to 1, where 1 means strong enrichment and -1 means strong depletion. The 

significance of results is reported as probability that foreground SNPs have more 

overlaps with the biofeature than background SNPs, within the range of 0 to 1, the 

higher the more confident. Results are plotted with significantly enriched biofeatures 

shown in color, and non-significantly enriched biofeatures shown in grey. 

 

Identifying transcription factor binding consequences of EOC credible causal 

variants in enhancers 

To identify the potential consequences of EOC risk variants in EOC enhancers we used 

MotifBreakR 63 to predict the transcription factor binding sites that a variant disrupts and 
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the extent of disruptiveness. MotifBreakR uses a position weight matrix to score the 

difference of binding between reference and alternative alleles for every possible 

window that includes the variant, and then categorizes the normalized difference score 

as effect of the target variant (strong, weak, or neutral).  We used seven TFBS motif 

databases; ENCODE motifs 64, Factorbook 65, Hocomoco 66, Homer 67, Transfac 68, 

Jaspar 69 and MotifDb 70.  

 

To identify significant TFs that were predicted to be impacted by the alternate allele at 

credible causal variants, we applied FunciVar package again. We curated two lists: 1) 

the foreground list, which are credible causal variants that intersect H3K27Ac peaks in 

any EOC cell type, and 2) the background list; credible causal variants that did not 

intersect H3K27Ac peaks in any EOC cell type. Significant differences in likelihood of 

the alternate allele of a credible causal variant disrupting a TFBS are reported for each 

TF.  

 

Results 

Regulatory elements significantly account for ovarian cancer heritability 

The aim was to evaluate the functional significance of common, genetic variants 

associated with epithelial ovarian cancer (EOC) risk identified by GWAS, and the 

contribution of different functional states to EOC heritability. We utilized genotype data 

pooled from multiple GWAS comprising 25,509 EOC cases and 40,941 controls 

stratified into five major histotypes of invasive or low grade/ borderline disease: High 

grade serous (HGSOC), low grade serous (LGSOC), mucinous (MOC) endometrioid 

(EnOC) and clear cell (CCOC) ovarian cancers (see Methods). These analyses 

identified thirty-nine different risk regions at P<5 x 10-8 either for all invasive EOC or 

specific to different histotypes. Fine mapping of these regions identified a total of 1,432 

credible risk variants at these loci, ranging from 3 to 192 risk SNPs per region 

(Supplementary Table 1). 

We estimated the variance explained by known SNP effects, or SNP-heritability, using 

linkage disequilibrium score regression (LDSC) 45,46. LDSC measures narrow sense 
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heritability ( #�
� , ‘SNP-heritability’ henceforth) using GWAS summary statistics to 

explicitly model linkage disequilibrium. Estimates of SNP-heritability ranged from nearly 

0 - 6% for the different EOC histotypes (Figure 1), with the highest heritability explained 

by risk variants associated with the HGSOC histotype and the lowest heritability for risk 

variants associated with LGSOC. 

 

Next, we partitioned SNP-heritability across 24 broad non-cell-type-specific ‘functional’ 

categories (see Methods) 71. For these analyses, EOC cases were stratified into two 

group - ‘all invasive EOC’ and HGSOC - based on the results of heritability analyses 

(Figure 1). We observed a significant contribution of several functional features that may 

regulate gene expression to EOC heritability (Table 1). For example, 27% of 1,432 

candidate causal risk variants coincided with the histone modification H3K27Ac, 

accounting for 97% of the estimated SNP-heritability (3.6-fold enrichment, P-Value = 

0.006). Other significant functional elements included 3 prime untranslated regions 

(3’UTR) (17.3-fold enrichment, P-Value = 0.015); promoters (8.7-fold enrichment, P-

Value = 0.016); and super-enhancers (2.1-fold enrichment, P-Value = 0.02) (Table 1). 

HGSOC heritability was most strongly driven by 3’UTRs (18.4-fold enrichment, P-Value 

= 0.009) and H3K27Ac marks (1.8-fold enrichment, P-Value = 0.033).     

 

Enrichment of EOC risk variants with different chromatin states by cell type 

We integrated 1,432 credible causal risk variants with epigenomic data to evaluate 

enrichment of EOC risk variants in different chromatin states by cell type. We first 

focused on publicly available data from Roadmap Epigenomics and ENCODE which are 

mainly for non-ovarian epigenomic datasets. We annotated the full credible set of EOC 

risk SNPs with SNPnexus 72 to map each variant to intergenic, intronic, 3’ or 5’ UTR or 

exonic regions (Supplementary Figure 1a). The majority of credible causal SNPs (96%) 

fall into non-protein coding DNA regions; 71% of SNPs lie in intergenic regions; and 

25% of SNPs lie in intronic regions. We obtained a functional impact score for each 

variant through FunSeq2 scoring algorithms 62. The average functional impact score of 

EOC risk variants was 0.404, which is significantly higher than regional, matched 

background SNPs (0.2404; P-Value = 2.02x10-49; Supplementary Figure 1b).  
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Table 1. Enrichment estimates for 24 non-cell-type-specific functional categories for 
EOC and HGSOC. Enrichment was calculated as Pr(����/Pr(SNPs), which shows the 
proportion of estimated SNP-heritability explained by the proportion of SNPs in the 
functional category.  Statistically significant associations (P-values < 0.05) are marked in 
bold. 

Functional Category All EOC HGSOC 
Enrichmen

t 
P-value Enrichmen

t 
P-value 

3’UTR 17.29 0.02 18.40 0.01 
5’UTR -0.62 0.89 5.12 0.71 
Coding  3.55 0.75 8.05 0.30 
Conserved 24.94 0.06 21.82 0.07 
CTCF -9.62 0.11 -3.86 0.47 
DGF 1.71 0.82 -0.92 0.52 
DHS 3.42 0.35 0.50 0.83 
Enhancer 2.66 0.69 2.56 0.71 
FANTOM5 enhancer -2.46 0.86 12.42 0.51 
Fetal DHS 0.41 0.87 -1.52 0.50 
H3K27Ac (Hnisz et al.) 1.96 0.01 1.77 0.03 
H3K27Ac (PGC2) 3.61 0.01 2.42 0.16 
H3Kme1 2.02 0.16 1.82 0.28 
H3Kme3 3.91 0.07 1.01 0.99 
H3K9ac 3.25 0.33 0.90 0.96 
Intron 1.46 0.12 1.24 0.35 
Promoter 8.69 0.02 6.99 0.06 
Promoter flanking 10.38 0.49 -2.90 0.76 
Repressed -0.32 0.07 0.67 0.64 
Superenhancer 2.09 0.02 1.83 0.12 
Transcription factor binding 
site 4.93 0.16 2.21 0.66 
Transcribed 1.87 0.24 1.05 0.95 
TSS 5.28 0.55 0.56 0.96 
Weak enhancer 9.06 0.35 4.69 0.68 
 

We performed enrichment analyses to test whether EOC risk SNPs are enriched within 

specific classes of biofeatures. We used StatePaintR 44 to combine epigenomic marks 

into chromatin state calls that represent functional elements, including active, poised, 

silenced, and weak states of enhancers and promoters. We first evaluated enrichment 

of EOC risk SNPs with chromatin states from Roadmap Epigenomics and ENCODE for 

publicly available tissues 29,34. Enrichment tests were performed using FunciVar (see 

Methods). Overall, we observed the greatest enrichment of EOC risk SNPs in active 

regulatory regions in digestive, immune, epithelial, liver, thymus, smooth muscle and 
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stem cell types and each of the cancer-associated ENCODE2012 cell lines, which are 

all closely related cell types (Figure 2, Supplementary Table 4). In contrast, we 

observed a depletion of EOC risk SNPs in heterochromatin in 68 cell types, and an 

enrichment in polycomb repressed silenced regions in 48 cell types. Overall these 

analyses indicate that the enrichment of EOC risk SNPs in active regulatory regions is 

typically more cell-type restricted than in silenced regions. 

 

We observed the strongest enrichment in an active regulatory chromatin state in 

stimulated primary T helper cells (E041) and primary T helper memory cells (E037), 

where 165 and 128 of 1432 EOC risk SNPs respectively overlapped active regions 

(Figure 2, Supplementary Table 5). There was also enrichment in active regulatory 

regions in all digestive tissue types (sigmoid colon, rectal mucosa, small intestine and 

stomach). By contrast, we found no evidence of enrichment for EOC risk SNPs in active 

regulatory regions in brain, heart or lung tissues, but instead observed enrichment for 

silenced regions in these tissue types.  

 

Enrichment of EOC risk variants in regions marked by H3K27Ac peaks in ovarian 

and non-ovarian cancer tissues 

Given the tissue-specific patterns of enrichment in active regulatory states, we restricted 

these analyses to regions only marked by H3K27Ac, the most widely profiled marks in 

Roadmap Epigenomics and ENCODE tissues. We also included in these analyses data 

we have generated through H3K27Ac-ChIP-seq profiling of primary tissues or cell lines 

for 26 ovarian cancers representing the different histotypes of invasive disease, and 6 

normal cell lines representing putative cells of origin of the different ovarian cancer 

histotypes (see Methods) (Supplementary Table 3). 

 

We observed enrichment of EOC risk SNPs in H3K27Ac peaks in 38 of the 98 cell types 

from in Roadmap Epigenomics/ENCODE, and depletion in only 10 cell types (Track 1 of 

Figure 3 and Supplementary Table 6). EOC risk SNPs were most enriched in H3K27Ac 

in blood and T-cell tissues and were significantly depleted in all seven brain cell types. 
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After stratifying EOC risk SNPs by histological subtype, we found the strongest 

enrichment for risk variants at the 17q12 risk locus for the CCOC histotype; all 8 

candidate causal SNPs at this locus lie in intronic regions of HNF1B gene (hepatocyte 

nuclear factor 1 homeobox B) (Figure 3 and Supplementary Table 6), with the greatest 

enrichment in digestive (E106, E102, E101, E092, E085, E084) and liver (E080) tissues.  

 

We next performed the same analysis for H3K27Ac marks profiled in 38 ovarian cancer 

related tissues, including ovarian tumors for different histotypes, normal ovarian cancer 

precursor cell types and data from profiling of whole ovary specimens 55. We also 

compared these data to enrichment for other tissue types from Roadmap 

Epigenomics/ENCODE which may indicate other tissues of origin for ovarian cancers 

(e.g. mucinous ovarian cancers, which may arise from cells of the digestive tract).  We 

observed enrichment of EOC risk SNPs across all ovarian tissues except for whole 

ovary. The strongest enrichment was observed in H3K27Ac peaks in primary HGSOCs 

in which 197/1432 SNPs (13.75%) overlapped H3K27Ac peaks, compared to 5.6% of 

the background (control SNPs) (probability > 0.999) (Figure 4a, Supplemental Table 8, 

and Supplemental Table 9). In parallel, we also estimated enrichment of heritability in 

these H3K27Ac marks based on common SNPs with similar findings (Supplementary 

Materials, ‘Enrichment of common SNPs in ovarian cancer related H3K27Ac peaks 

based on partitioned heritability’ paragraph). 

 

We repeated these analyses after stratifying the panel of candidate causal EOC risk 

SNPs by histotype. In total there were 315 candidate causal risk SNPs specific to 

HGSOC, 353 SNPs specific to LGSOC, 8 SNPs specific to CCOC, 8 SNPs specific to 

EnOC, 296 SNPs specific to MOC and 47 SNPs specific to LMP histotypes. Risk SNPs 

for HGSOC were most significantly enriched in H3K27Ac marks in primary HGSOC 

tumors; 31/315 (9.8%) risk variants for HGSOC intersect H3K27Ac marks in primary 

HGSOCs, compared to local background SNPs (difference=0.045, probability=0.999; 

Figure 4b). Notably, we observed little or no enrichment for HGSOC risk SNPs in 

H3K27Ac marks generated in HGSOC cell lines, nor in normal FTSECs which are the 

reported precursors of HGSOC (Figure 4b).  HGSOC risk SNPs were also significantly 
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depleted in normal ovarian surface epithelial cells (OSECs). We also observed 

significant enrichment of risk variants associated with the LMP histotype in H3K27Ac 

marks in OSECs (Supplementary Tables 10 and 11; Supplementary Figure 2), but no 

tissue specific enrichments for risk SNPs for other histotypes, which could largely be 

due to the lack of statistical power to detect enrichment. 

 

In silico analysis of EOC risk SNPs intersecting transcription factor binding site 

(TFBS) motifs  

We evaluated the putative effects of the 590 EOC risk SNPs intersecting H3K27Ac 

marks on binding to TFBS motifs using statistical tool, motifbreakR 63. The 590 EOC risk 

SNPs were selected by intersecting with at least one H3K27Ac peak in any of the 

precursor normal or ovarian cancer cell lines or tumors.  469 out of 590 SNPs were 

predicted to significantly disrupt at least one TFBS (P-value < 1x10-5; Supplementary 

Table 12), compared to background SNP set which was drawn from credible causal 

SNPs that did not intersect any EOC-related H3K27Ac marks. Eighty-two SNPs were 

predicted to break a single TFBS; the remaining SNPs break two or more (on average 

four) motifs with 5 SNPs predicted to break more than 20 motifs (Figure 5a). At the 

18q11.2 locus, which confers risk of HGSOC, rs9955681 located in an intron of the 

LAMA3 gene, was predicted to break 67 different motifs; and at the 4q26 EOC locus, 

rs7671665, which is located in intron 2 of the SYNPO2 gene was predicted to break 31 

different motifs (Supplementary Table 12, Figure 5a).  

 

The most frequently disrupted TFBS motifs were for REST (repressor element-1 

silencing transcription factor) disrupted by 19 SNPs across 12 loci (P-Value = 0.0028); 

TCF3 (Transcription factor 3) disrupted by 11 SNPs (P-Value = 0.0075); and ID4 (DNA-

binding protein inhibitor), which was disrupted by 8 SNPs (P-Value = 0.0025) (Figure 5b 

and Supplementary Table 13). The motif for the epithelial-specific transcription factor 

EHF, which is overexpressed in EOC tumors, induces apoptosis and impairs cell 

adhesion and invasion after knockdown in EOC cell lines 73 was broken by 6 SNPs at 

five EOC risk loci associated serous and mucinous histotypes (1p36, 2q13, 2q31, 8q24, 

19p13).  
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Discussion 
Identifying the functional effects of common susceptibility variants identified by GWAS 

on is an important step in delineating the biological mechanisms underlying disease and 

in understanding the earliest stages of disease pathogenesis. In this study, we 

examined the heritability for risk variants associated across all ovarian cancer and for 

each of each of the different histotypes of disease. Moreover, we partitioned heritability 

into broad functional categories to identify those that that are the drivers of neoplastic 

initiation and progression.  

 

We identified enrichment of EOC credible causal SNPs into active regulatory elements 

marked by H3K27Ac in ENCODE and Roadmap Epigenomics public datasets. This 

indicated germline risk variants that contribute to disease biology via disruption of 

enhancer activity in cell and tissue specific active regulatory regions, rather than 

regulatory elements that are active across a broad range of cell types. We further 

identified strong enrichment of the full credible causal variant list in 14 of the 15 highly 

EOC relevant cell types included. We observed clear patterns of enrichment of HGSOC 

germline risk SNPs in HGSOC tumors, and depletion of these variants in H3K27Ac from 

precursor normal cells. These findings suggest that HGSOC germline risk variants 

affect cancer progression or development rather than initiation, and underscore the 

need for variant annotation using cell types relevant to disease. Finally, we identified 

TFs whose binding motifs are significantly disrupted by EOC risk SNPs in active regions.  

 

The cells of origin for the different histotypes of ovarian cancers are not precisely known. 

Fallopian tube epithelial cells are the most like precursors of HGSOCs and CCOC and 

EnOC are more likely arise from endometriosis 4–8. Our comprehensive H3K27Ac ChIP-

seq data in ovarian and non-ovarian cancer tissues makes it possible to identify the 

putative cells of origin of disease. The significant depletion of HGSOC credible causal 

variants we observed in H3K27Ac from OSECs active regions (Figure 4b) is consistent 

with an emerging consensus that HGSOC is less likely to arise from ovarian surface 

epithelial cells 4,5,74. The significant enrichment of LMP risk variants in OSECs active 
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regions supports a role for this cell type in this histotype (Supplementary Table 10 and 

Supplementary Figure 2) 75,76.  

 

It has been hypothesized, with supporting data from pathology examination 76, that 

ovarian surface epithelium invaginates into the underlying stroma of the ovary to form 

inclusion cysts that undergo transformation to become malignant 76. LMP and LGSOC 

are likely to arise from transformed OSECs trapped within inclusion cysts 75 and the 

significant enrichment of six SNPs at two LMP rick loci (4q32.2 and 5p15) in OSECs 

(Supplementary Table 11) supports an OSEC origin for these tumor types.  

 

CCOCs are strongly associated with endometriosis, and may derive from ciliated 

epithelial cells in ovarian endometriosis lesions 77,78. Only one locus has been confirmed 

to be associated with CCOC risk (the HNF1B 17q12 locus) which makes it challenging 

to investigate the likely cells of origin in the current study. We observed a strong 

enrichment for CCOC credible causal variants at this locus in digestive and liver cells 

which supports this (Track 7 of Figure 3). This locus is pleiotropic for both HGSOC and 

CCOC, but we only observed significant enrichment in H3K27Ac marks for CCOC and 

MOC tumors and cell lines (Supplementary Figure 4a). Here all 8 candidate causal 

SNPs at 17q12 lie in intronic regions of the HNF1B gene. HNF1B has been reported as 

a susceptibility gene and is highly expressed in CCOCs but largely absent in HGSOCs 
7,79. We further investigated gene expression of HNF1B across our previously generated 

ovarian cancer tumors RNA-seq data41. We found HNF1B is expressed in MOC, EnOC, 

and CCOC, but not in HGSOC (Supplementary Figure 4b), which is consistent with the 

difference in H3K27Ac enrichment between histotypes.  

 

We present here an approach to annotate risk SNPs that may influence transcriptional 

regulation by interacting with the epigenomic landscape to disrupt TF binding and alter 

gene regulation and expression. For example, SNPs rs7671665 and rs9955681 were 

predicted to break the greatest number of motifs. We identified SNP rs7671665 that 

breaks 31 motifs within a regulatory element present in a wide range of Roadmap 
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Epigenomics and ENCODE cell types and most of our panel of EOC related cell types. 

This SNP is an eQTL located within intron 2 of SYNPO2, and is reported to loop to the 

promoter of SYNPO2 80 and METTL14 81, a component of N6-methyladenosine (m6A) 

methyltransferase complex. This complex controls post translational modification of 

m6A RNA and has been implicated in cancer, cell differentiation and proliferation in 

development pathways 82. Interestingly, m6A is reported to be enriched in the 3’UTR 83, 

which was the most significantly enriched biofeature in our partitioning of heritability 

analysis. Another example is SNP rs9955681, which is predicted to break 67 TF motifs 

in EOC tumors active regions. This SNP is located in an intron of LAMA3, a known 

enhancer in breast and cervical cancer cell lines and gastrointestinal tissues 29,33. This 

SNP is also a known eQTL in previous HGSOC susceptibility gene analyses 84. 

 

In conclusion, we have applied enrichment approaches to identify overrepresentations 

of risk SNPs within specific biofeatures. By intersecting risk SNPs with a catalogue of 

regulatory elements, we identify putative enhancers impacted by risk variants that help 

explain the underlying functional mechanisms mediating genetic risk as ovarian cancer 

susceptibility loci. In additional we have shown the power of these approaches to 

elucidate the putative cells of origin of the different ovarian cancer histotypes, providing 

support for previously known cell types, and identifying other novel cell types associated 

with other histotypes. Finally, these studies have defined sets of putative causal variants 

at ovarian cancer risk loci, that warant further functional analysis to identify the genetic 

and regulatory mechanisms that drive initiation and early stage development of ovarian 

cancers.  
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Figure 1. Estimates of SNP-heritability (#�
� ) explained by common SNPs. Overall SNP 

heritability calculated based on GWAS summary statistics for each EOC histotype. The GWAS 
included 40,941 control cases and the number of cases by histotypes are shown in 
parentheses. EOC: Epithelial ovarian cancer; HGSOC: high grade serous ovarian cancer; 
MOC: mucinous ovarian cancer; EnOC: endometrioid ovarian cancer; CCOC: clear cell ovarian 
cancer; LGSOC: low grade serous ovarian cancer; LMP: low malignant potential 
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Figure 2. EOC risk variants are enriched in active regulatory elements. 
Enrichment analyses were performed in different chromatin states in REMC and 
ENCODE tissues and cell lines. Enriched biofeatures are shown in purple, depleted 
biofeatures in green, and non-significantly enriched biofeatures in grey. The size of 
the circle indicates the degree of confidence. EOC risk SNPs are significantly 
enriched in active regulatory elements in blood and T cells, digestive cell types and 
ENCODE cell lines.   
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Figure 3. Histotype specific credible causal variants show different patterns of 
enrichment. Enrichment analyses were performed for each EOC histotype in active 
regulatory regions marked by H3K27Ac in Roadmap Epigenomics and ENCODE 
tissues and cell lines. Enriched tissues are shown in purple, depleted tissues in 
green, and non-significantly enriched tissues in grey. The size of the circle indicates 
the degree of confidence.  
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a b 

Figure 4. Enrichment of EOC risk variants in ovarian cancer associated tissues 
and cell lines. (a) EOC credible causal SNPs are significantly enriched in precursor 
(dark colors) and cell line models of EOC, and primary EOC tumors (light colors). (b) 
Credible causal SNPs associated with HGSOC are enriched in active regulatory 
regions in primary HGSOCs (*) and significantly depleted in ovarian surface epithelial 
cells (OSEC consensus peaks) (**) 

N
o
rm
a
l 
S
ig
m
o
id
 C
o
lo
n

C
o
lo
re
c
ta
l 
C
a
rc
in
o
m
a
 C
e
ll
 L
in
e

C
e
ll
 L
in
e
 C
o
n
s
e
n
su
s 
P
e
a
k
s

T
u
m
o
r 
C
o
n
se
n
s
u
s 
P
e
a
k
s

N
o
rm
a
l 
O
v
a
ry

O
S
E
C
 C
o
n
se
n
su
s 
P
e
a
k
s

F
T
S
E
C
C
o
n
se
n
su
s 
P
e
a
k
s

L
G
S
O
C
 C
e
ll
 L
in
e
 C
o
n
s
e
n
su
s 
P
e
a
k
s

H
G
S
O
C
 C
e
ll
 L
in
e
 C
o
n
se
n
su
s 
P
e
a
k
s

H
G
S
O
C
 T
u
m
o
r 
C
o
n
se
n
su
s 
P
e
a
k
s

H
e
L
A
(C
e
rv
ic
a
l 
C
a
n
ce
r)

E
n
d
o
m
e
tr
io
s
is
 C
e
ll
 L
in
e

E
N
O
C
 T
u
m
o
r 
C
o
n
se
n
su
s 
P
e
a
k
s

C
C
O
C
 C
e
ll
 L
in
e
 C
o
n
se
n
su
s 
P
e
a
k
s

C
C
O
C
 T
u
m
o
r 
C
o
n
s
e
n
su
s 
P
e
a
k
s

0.000

0.025

0.050

0.075

0.100

d
iff

er
e

nc
e

MO

C MO

C 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.21.960468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.21.960468


30 

 a b 

c 

Figure 5. EOC risk SNPs disrupt TF motifs at risk loci. (a) Number of motifs 
disrupted by credible causal SNPs intersecting EOC-related H3K27Ac peaks. (b) 
Number of times motif is broken by credible causal SNPs that overlap EOC-related 
H3K27Ac peaks. (c) REST motif logo from motifbreakR. 
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