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Abstract 39 

 40 
Soil microbial respiration is an important source of uncertainty in projecting future climate and 41 

carbon (C) cycle feedbacks. Despite intensive studies for two decades, the magnitude, direction, 42 

and duration of such feedbacks are uncertain, and their underlying microbial mechanisms are still 43 

poorly understood. Here we examined the responses of soil respiration and microbial community 44 

structure to long-term experimental warming in a temperate grassland ecosystem. Our results 45 

indicated that the temperature sensitivity of soil microbial respiration (i.e., Q10) persistently 46 

decreased by 12.0±3.7% across 7 years of warming. Integrated metagenomic and functional 47 

analyses showed that microbial community adaptation played critical roles in regulating 48 

respiratory acclimation. Incorporating microbial functional gene abundance data into a 49 

microbially-enabled ecosystem model significantly improved the modeling performance of soil 50 

microbial respiration by 5–19%, compared to the traditional non-microbial model. Model 51 

parametric uncertainty was also reduced by 55–71% when gene abundances were used. In addition, 52 

our modeling analyses suggested that decreased temperature sensitivity could lead to considerably 53 

less heterotrophic respiration (11.6±7.5%), and hence less soil C loss. If such microbially mediated 54 

dampening effects occur generally across different spatial and temporal scales, the potential 55 

positive feedback of soil microbial respiration in response to climate warming may be less than 56 

previously predicted.   57 
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Introduction 58 

 59 

Soil stores large quantities of organic carbon (C), about three times more C than the Earth’s 60 

atmosphere 1,2. Soil respiration is the largest single source of carbon dioxide (CO2) from terrestrial 61 

ecosystems to the atmosphere, whose magnitude is about ten times larger than anthropogenic 62 

emissions 3. Soil total respiration (Rt) includes both autotrophic respiration (Ra) from plant root 63 

growth and root biomass maintenance, and heterotrophic respiration (Rh) from microbial 64 

decomposition of litter and soil organic matter (SOM). Various short-term experiments show that 65 

soil respiration increases exponentially with temperature 4, which has been used as a general 66 

relationship to parameterize ecosystem and Earth System Models (ESMs) 5. If the near-exponential 67 

short-term relationship of soil respiration and temperature holds for the long-term (years to 68 

decades), climate warming will trigger a sharp increase in ecosystem respiration. Such an increase 69 

could then result in a strong positive feedback to the global C cycle 6, which is dependent on the 70 

responses of Rh and the dynamics of detrital inputs under warming 7. Therefore, it is particularly 71 

important to accurately evaluate soil Rh and its response to climate warming. However, partitioning 72 

Rt into Ra and Rh is one of the main challenges in both experiment- and model-based global change 73 

research 8. Consequently, soil respiration is a poorly understood key C flux in the global C cycle 74 

and is an important source of the uncertainty in climate projections 9-11. 75 

 76 

Microorganisms can dramatically adjust their respiratory responses to temperature over long terms 77 

(years) via changing their metabolism and community structure 12. Several climate change 78 

experiments demonstrated that soil respiration was stimulated in the short term, followed by a 79 

dampened effect of warming later 13-15. This phenomenon is referred to as respiratory acclimation. 80 

The existence of respiratory acclimation is of critical importance as the greater the global 81 

respiratory acclimation, the weaker the positive feedback between climate warming and ecosystem 82 

CO2 release 16. However, the existence and the degree of soil respiratory acclimation is extremely 83 

uncertain, especially in the field and over a long duration (years to decades) 9,10,17. Whether 84 

respiratory acclimation can persist over time is not clear. Moreover, the mechanisms controlling 85 

soil respiratory acclimation have been intensively debated 4,14,17-19, and include warming-induced 86 

substrate depletion 17,19 or evolutionary adaptation via changes in microbial community 13,14. These 87 

two mechanisms may lead to different soil C loss in a warmer world 14,19. While the former could 88 
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lead to a depletion of labile C pools, releasing more C into the atmosphere through microbial 89 

respiration if more plant-derived C is available under warming, the latter could result in less soil 90 

labile C loss due to microbial community adaptation to the rising temperature (warming) 14. 91 

Therefore, knowledge about microbial respiratory acclimation and its underlying mechanisms will 92 

be central to making better predictions of terrestrial C cycling feedbacks. However, one grand 93 

challenge in climate change biology is to integrate microbial community information, particularly 94 

omics information, into ecosystem models to improve their predictive ability for projecting future 95 

climate and environmental changes 20. More specifically, parameter values for various microbial 96 

processes are poorly constrained by experimental observations, which becomes one of the 97 

significant uncertainty sources leading to low confidence in carbon-climate feedback projections 98 

21. Hence, using omics-enabled experimental observations to improve model parameter 99 

estimations could greatly help to refine the projected magnitude of the carbon-climate feedbacks. 100 

 101 

Soil microbial communities are very complex in structure and are sensitive to changes in 102 

environmental conditions 14, so information obtained from a single time point provides only a 103 

snapshot of the microbial community, and is not suitable for ecosystem model simulation. To 104 

modeling microbial respiratory responses to climate warming, long-term experiments under more 105 

realistic field-settings with time-series microbial data are needed. Otherwise, it will be difficult to 106 

determine the direction, magnitude, and duration of biospheric feedbacks to climate change 15,22. 107 

Therefore, a new warming experiment site with sandy soil and dominance of C3 grasses was 108 

established in a native, tall-grass prairie ecosystem of the US Great Plains in Central Oklahoma 109 

(34̊ 59ʹ N, 97̊ 31ʹ W) in July 2009 23. Soil samples archived every year right after the continuous 110 

warming by infrared radiators (+3 oC) were analyzed by integrated metagenomics technologies.  111 

 112 

In this study, we examined the temperature responses of soil Rh (> 7 years) and their underlying 113 

mechanisms. Our main objectives were to answer the following questions: (i) How does long-term 114 

experimental warming affect the temperature responses of soil microbial respiration over time? (ii) 115 

Whether or not acclimation of microbial respiration occurs persistently across years under 116 

warming and by what underlying mechanisms? (iii) Can the microbial mechanisms underlying soil 117 

respiration be incorporated into ecosystem models to improve model performance and reduce 118 

model uncertainty? We hypothesize that soil microbial respiratory acclimation exists persistently 119 
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over the long-term and that microbial community adaptation plays critical roles in regulating such 120 

respiratory acclimation. If true, incorporating metagenomics-based microbial functional 121 

information will significantly increase confidence in model simulations and therefore improve 122 

model predictions. 123 

 124 

Results and discussion 125 

 126 

Overall ecosystem changes under long-term warming. The plots in the warming experiment 127 

site have been subjected to continuous warming for over 7 years 7. On average, experimental 128 

warming significantly (p < 0.01) increased daily air temperature by 1.3 oC, and daily mean soil 129 

temperature at 7.5 cm by 2.8 oC (Fig. 1a). Experimental warming significantly (p < 0.01) decreased 130 

soil moisture by 6.4% (Fig. 1b). Consistent with previous reports 14, warming significantly (p = 131 

0.01) shifted plant community structure. Specifically, C3 plant biomass was significantly (p < 0.01) 132 

lower under warming than control, but no significant change was observed in C4 and total plant 133 

biomass (Fig. S1a), which results in a plant community shift towards relatively more C4 plants. 134 

Although the statistical test is not significant, the gross primary production (GPP) was slightly 135 

increased by warming (Fig. 1c). Meanwhile, the net ecosystem exchange (NEE) was higher under 136 

warming than control due to lower ecosystem respiration (ER), suggesting that the whole 137 

ecosystem acted as a C sink under the climate warming scenario (Fig. 1c). In addition, no overall 138 

differences were detected in total organic C (TOC), total nitrogen (TN) and soil pH (Fig. S1b and 139 

c), but the amount of NO3
- was significantly higher under warming than control (Fig. S1c). These 140 

alterations in ecosystem variables by warming are expected to lead to changes in soil respirations 141 

and microbial community functions. 142 

 143 

Temperature sensitivity of soil microbial respiration under warming. Soil surface CO2 efflux 144 

was measured by using shallow (2-3cm) PVC collars for Rt and deep (70cm) PVC tubes for Rh, 145 

with the differences between Rt and Rh calculated as Ra (Fig. S2 and Methods). Warming 146 

significantly (p < 0.01) stimulated Rh by 8.0–28.1% across all years, which is consistent with 147 

results from a filter paper decomposition experiment that showed significantly (p<0.01) higher 148 

decomposition rates under warming (Fig. 1e). However, warming appeared to suppress Ra, 149 

although it was not statistically significant (Fig. 1d), which may result from the decreased root 150 
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activities along warming-induced plant community shift 7. More than half of Rt (58% and 65% for 151 

the control and warming plots) was from heterotrophic respiration, indicating that soil microbial 152 

community greatly contribute to soil CO2 efflux 14. No significant decline of Rh/Rt ratio was 153 

observed in warmed and control plots through time, suggesting that soil C input in the form of 154 

plant litter may substantially contribute to the stability of soil C when plant roots were excluded. 155 

Due to the opposing responses of Ra and Rh to warming, Rt exhibited no significant change by 156 

warming across all years (Fig. 1d). Since our main interest is the response of microbial litter and 157 

SOM decomposition to warming, we primarily focused on Rh for the majority of the following 158 

analyses. 159 

 160 

To examine the apparent temperature sensitivity (Q10) of microbial respiration, the measured field 161 

Rh data in each year were fitted to the Q10-based exponential equation 4 (see Methods). Significant 162 

(p < 0.05) or marginally significant (p < 0.10) apparent Q10 estimates were observed under both 163 

control and warming treatments in all years except 2011 (Table S1). In average, the apparent Q10 164 

estimates were significantly (p = 0.03) higher under control (1.61±0.06) than warming (1.41±165 

0.07), suggesting a 12.0±3.7% decrease in the temperature sensitivity of soil Rh across 7 years of 166 

warming (Fig. 1f). However, the apparent temperature sensitivity estimate based on the field 167 

measurements are influenced by various other factors beyond temperature, including soil moisture, 168 

plants-derived substrate quality and availability, nutrient limitation influencing microbial enzyme 169 

production, experimental duration, and/or spatial heterogeneity, as well as uncertainty in 170 

instrumental measurements 4,8.  171 

 172 

To further delineate the intrinsic temperature sensitivity of SOM decomposition, ecosystem 173 

model-based inverse analysis was performed to untangle various complex soil processes 8,14,18 174 

using the Microbial-ENzyme Decomposition (MEND) model (Fig. S3a), which has been evaluated 175 

from laboratory to global scale 24-26. By fitting all 7-year respiration data together, the model-based 176 

intrinsic Q10 under warming was 1.39±0.09, significantly lower (p< 0.01) than that under control 177 

(1.77±0.12) (Fig. 1f). The intrinsic Q10 values from our model-data fusion approach were 178 

comparable with the measured apparent Q10 under both control and warming. Altogether, the above 179 

results indicate that there was a strong and persistent acclimation of heterotrophic respiration under 180 

warming over the last 7 years. 181 
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 182 

Mechanisms of the persistent decrease in temperature sensitivity of microbial respiration. 183 

The persistent decrease in temperature sensitivity of soil microbial respiration across different 184 

years under warming could be due to substrate depletion under warming. It has been argued that 185 

soil labile C becomes depleted by increased respiration in response to warming, which leads to a 186 

subsequent reduction in the rate of soil respiration 10. In this study, several lines of evidence suggest 187 

that the decreased temperature sensitivity of microbial respiration was unlikely due to substrate 188 

depletion. First, GPP and NEE were similar or higher under warming than control (Fig. 1c), 189 

suggesting that soil C input as plant litter and root exudates should be similar or even higher under 190 

warming than control. Also, our BIOLOG results revealed that microbial metabolism underpinning 191 

the utilization ability of most labile substrates were considerably higher under warming than 192 

control (Fig. S4). The measured mean annual soil C from 2010 to 2016 remained unchanged (Fig. 193 

S1c), which do not support the expectation garnered from the substrate depletion hypothesis. These 194 

results suggested that the reduced temperature sensitivity of soil respiration appears to be less 195 

likely due to substrate depletion.  196 

 197 

The adaptive changes in microbial community composition and functional structure could also 198 

lead to the reduced temperature sensitivity of microbial respiration. To test this hypothesis, soil 199 

microbial communities of individual samples from 2010 to 2016 were all analyzed with deep 200 

amplicon sequencing of the 16S rRNA gene for bacteria and archaea, and the ITS for fungi, 201 

metagenomic shotgun sequencing, and functional gene arrays (GeoChip 5.0; Table S2). 202 

Permutational multivariate analysis revealed that experimental warming significantly shifted 203 

microbial community taxonomic and functional structure (Table 1). These shifts were tightly 204 

linked to environmental factors, such as soil temperature, soil moisture, pH and climate conditions 205 

as revealed by the Mantel test (Fig. 2a and S5) and canonical correspondence analyses (CCA) (Fig. 206 

S6). Interestingly, considerably less unexplained community variations were obtained based on 207 

GeoChip data (59.2%) than 16S (73.0%), ITS (77.4%) and shotgun sequencing data (73.3%) (Fig. 208 

S7), indicating that GeoChip-based detection could be more effective to catch the community 209 

dynamics in response to the changes in plant diversity, soil conditions, and time. In addition, 210 

structural equation modeling (SEM)-based analysis indicated that soil temperature, moisture and 211 
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drought index could strongly affect soil Rh by altering microbial functional diversity and structure 212 

(Fig. 2b).  213 

 214 

Warming-induced shifts of microbial functional diversity and structure led to significant changes 215 

of biogeochemical cycling processes, including C cycling (e.g., C degradation, C fixation) and 216 

nutrient-cycling processes (e.g., N fixation, denitrification, nitrification), phosphorus utilization 217 

and sulfur metabolism. Overall, the total abundance of biogeochemical cycling genes significantly 218 

(p < 0.05) stimulated by warming were considerably higher (58%~80%) than those significantly 219 

inhibited by warming (20%~42%) in all years except 2015 (Fig. 2c), although the interannual 220 

variations of environmental factors greatly influenced the composition of biogeochemical cycling 221 

genes. Similar pattern was also observed in microbial functional genes involved in C degradation 222 

(Fig. S8a), including those important for degrading starch (e.g., amyA encoding α-amylase), 223 

hemicellulose (e.g., ara encoding arabinofuranosidase), cellulose (e.g., cellobiase), chitin (e.g., 224 

chitinase) and vanillin/lignin (e.g., mnp encoding manganese peroxidase). More specifically, 225 

larger numbers of individual genes involved in degrading various soil organic carbon were 226 

significantly increased by warming (95% confidence interval; Fig. 2d and Fig. S9) in most of the 227 

years, despite that warming effects on these C-degrading genes substantially changed across 228 

different years. The significant enrichment of C-degrading genes under warming may potentially 229 

enhance soil C degradation. In addition, the total abundances of warming-stimulated genes 230 

involved in N cycling (e.g., N fixation, denitrification, and nitrification), phosphorus utilization, 231 

and sulfur metabolism were higher than those of warming-inhibited genes in most of the years 232 

(Fig. 2d and Fig. S8b-d), suggesting that the rates of nutrient-cycling processes could be stimulated 233 

by warming. Further analyses by CCA and Mantel test revealed that most of the genes important 234 

to C degradation and nutrient cycling had strong correlations to the Rh, Rt, and Q10 (Table S3 and 235 

S4), indicating that these functional genes are important in controlling the dynamics of soil 236 

respirations. In general, GeoChip hybridization data exhibited stronger correlations to various 237 

functional parameters than shotgun sequencing data, particularly for the heterotrophic Q10 (Table 238 

S3 and S4). All the above results indicated that the changes of microbial community composition 239 

and function are crucial for the reduced temperature sensitivity of soil Rh under long-term 240 

experimental warming. 241 

 242 
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Incorporating microbial functional gene information into ecosystem models. Due to the 243 

importance of microbes in controlling soil Rh, as an exploratory effort, we further attempted to 244 

incorporate omics data into ecosystem models. Since traditional ecosystem models do not 245 

explicitly represent most microbial processes 27, the MEND model was employed, which explicitly 246 

represents microbial physiology and SOM decomposition catalyzed by oxidative or hydrolytic 247 

enzymes 26. Because MEND model requires absolute quantitative information on hydrolytic and 248 

oxidative enzymes for SOM decomposition 26,28, GeoChip hybridization-based data were used, 249 

which is more effective to catch the community dynamic changes as illustrated above.    250 

 251 

The MEND model was calibrated with or without functional gene information. We referred the 252 

former to as gene amended MEND (gMEND) and the latter as traditional MEND (tMEND). We 253 

constrained gMEND by achieving the highest correlation between MEND-modeled mean annual 254 

enzyme concentrations and GeoChip-detected annual oxidative and hydrolytic gene abundances 255 

in addition to a best fit between observed and simulated Rh. Our results showed high correlations 256 

(r = 0.74 and 0.81 for oxidative and hydrolytic enzymes, respectively) between simulated enzyme 257 

concentrations and GeoChip-detected gene abundances (Fig. S10a-b) in the control plots. Also, 258 

relatively low Mean Absolute Relative Errors (MARE = 14% and 22%, Fig. S10c-d) were also 259 

achieved between simulated and expected enzyme concentrations under warming conditions, 260 

which were the product of simulated enzyme concentrations under control and the warming-to-261 

control ratio of GeoChip-detected gene abundances. The above modeling results indicated good 262 

agreements on the 7-year interannual variabilities between simulated enzyme concentrations and 263 

GeoChip-detected gene abundances. Furthermore, almost all of 11 model parameters were better 264 

constrained by gMEND than by tMEND (Fig. 3a and Fig. S11). The average coefficient of 265 

variation (CV) of model parameters was significantly reduced from 77% (tMEND) to 22% 266 

(gMEND) under control and from 39% (tMEND) to 17% (gMEND) under warming. In addition, 267 

the MEND-simulated Rh agreed well with the observed Rh under warming and control (Fig. 3b: R2 268 

= 0.53 and 0.63, respectively). Compared to non-microbial terrestrial ecosystem model (TECO) 29, 269 

the MEND model improved CO2 efflux fitting by 5% under control and by 19% under warming 270 

(Fig. S12). Finally, the MEND-derived intrinsic Q10 values were confined from 1.20–2.42 271 

(tMEND) to a more reasonable range of 1.27–2.13 (gMEND), as Q10 values below 2 are preferred 272 

for better global C cycle modeling 30. The intrinsic Q10 values also concurred with previous site-273 
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level and global-scale studies 30,31. The Q10 in the MEND model solely reflects the microbial 274 

responses to temperature change, which can remove confounding effects of other environmental 275 

factors. Compared to the apparent Q10 estimated by the relationship between Rh and soil 276 

temperature, the MEND-derived Q10 better represents the intrinsic temperature effects on 277 

microbially-mediated SOM decomposition processes, which provides a significant advance in our 278 

understanding of microbial responses to changes in temperature. Therefore, the MEND-derived 279 

intrinsic Q10 was further used to explore how much C loss is reduced by the soil microbial 280 

acclimation (Q10) under warming. Our results showed that the microbial acclimation in the 281 

warming plots would reduce 11.6±7.5% soil Rh, and thus reduce soil C loss, during the 7-year 282 

experimental period, compared to the scenarios without acclimation (Fig. 4).  283 

 284 

Conclusions 285 

Through field measurements and process model-based simulations, our results demonstrated that 286 

soil microbial respiratory acclimation persisted over the last 7 years, which is consistent with a 287 

recent long-term study on a forest ecosystem 15. This study provides explicit, robust evidence of 288 

the persistence of soil microbial respiratory acclimation to warming-induced rising temperature 289 

and reducing moisture over long periods. If this phenomenon holds over larger spatial scales across 290 

different ecosystems, soil microbial respiratory acclimation globally may have a greater mitigating 291 

impact than expected on climate warming-induced CO2 losses 32. If the results from this study are 292 

applicable to other grasslands globally 33, the microbial acclimation could lead to 0.49±0.31 Pg 293 

(1015 g) less C loss per year (see Online Methods). Our study also reveals that warming-induced 294 

respiratory acclimation is significantly correlated with the adaptive changes in microbial 295 

community functional structure, which could dampen the potential positive C-climate feedbacks 296 

by reducing considerable amount of warming-induced heterotrophic respiration. In addition, 297 

although incorporating complex microbial information into global change models is extremely 298 

challenging 20, by parameterizing the microbial model with omics-based functional gene 299 

information, the uncertainty of key model parameters in MEND was substantially decreased, and 300 

its performance was considerably improved compared to non-microbial model. Thus, it is possible 301 

to improve the model predictive ability for projecting future environmental changes via better 302 

assessment of microbial omics-based functional capacities. However, to generalize whether these 303 

microbial mechanisms and metagenomics-enabled modeling strategy obtained in this grassland 304 
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ecosystem are applicable to other ecosystems requires further long-term studies under realistic 305 

field settings. 306 

 307 

Materials and methods 308 

Site Description and Sampling. This experimental site was established in July 2009 at the Kessler 309 

Atmospheric and Ecological Field Station (KAEFS) in the US Great Plains in McClain County, Oklahoma 310 

(34̊ 59ʹ N, 97 ̊31ʹW) 14,34. Experimental design and site description were described in detail previously23. 311 

Briefly, Ambrosia trifida, Solanum carolinense and Euphorbia dentate belonging to C3 forbs, and Tridens 312 

flavus, Sporobolus compositus and Sorghum halapense belonging to C4 grasses are dominant in the site 23,34. 313 

Annual mean temperature is 16.3 °C and annual precipitation is 914 mm, based on Oklahoma 314 

Climatological Survey data from 1948 to 1999. The soil type of this site is Port–Pulaski–Keokuk complex 315 

with 51% of sand, 35% of silt and 13% of clay, which is a well-drained soil that is formed in loamy sediment 316 

on flood plains. The soil has a high available water holding capacity (37%), neutral pH and 1.2 g cm-3 bulk 317 

density with 1.9% total organic matter and 0.1% total nitrogen (N) 23,34. Four blocks were used in the field 318 

site experiment, in which warming is a primary factor. Two levels of warming (ambient and +3 °C) were 319 

set for four pairs of 2.5 m × 1.75 m plots by utilizing a “real” or “dummy” infrared radiator (Kalglo 320 

Electronics, Bethlehem, PA, USA). In the warmed plots, a real infrared radiator was suspended 1.5 m above 321 

the ground, and the dummy infrared radiator was suspended to simulate a shading effect of the device in 322 

the control plots. 323 

In this study, eight surface (0-15 cm) soil samples, four from the warmed and four from the control 324 

plots, were collected annually at approximately the date of peak plant biomass (September or October) from 325 

2010 to 2016. Three soil cores (2.5 cm diameter x 15 cm depth) were taken by using a soil sampler tube in 326 

each plot and composited to have enough samples for soil chemistry, microbiology and molecular biology 327 

analyses. A total of 56 soil samples were analyzed in this study. 328 

 329 

Environmental and soil chemical measurements. Precipitation data were obtained from the Oklahoma 330 

Mesonet Station (Washington Station) 34 located 200 m away from our experiment site, and 12-month 331 

version of the standardized precipitation-evapotranspiration index (SPEI-12) was used as annual drought 332 

index 35,36. Air temperature, soil temperature and volumetric soil water content were measured as previously 333 

described 23. 334 

All soil samples were analyzed to determine soil total organic carbon (TOC), total nitrogen (TN), soil 335 

nitrate (NO3
-) and ammonia (NH4

+) by the Soil, Water, and Forage Analytical Laboratory at Oklahoma 336 

State University (Stillwater, OK, USA). Soil pH was measured using a pH meter with a calibrated combined 337 

glass electrode 37. 338 
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 339 

Aboveground plant communities. Aboveground plant community investigations were annually conducted 340 

at peak biomass (usually September) as described previously 34,38. Aboveground plant biomass, separated 341 

into C3 and C4 species, was indirectly estimated by a modified pin-touch method 34,38. Detailed description 342 

of biomass estimation is provided by Sherry et al. 39. All of the species in plant community within each plot 343 

were identified to estimate species richness.  344 

 345 

Ecosystem C fluxes and soil respirations. Ecosystem C fluxes and soil respirations were measured once 346 

or twice a month between 10:00 and 15:00 (local time) from January 2010 to December 2016 as described 347 

previously 14,34. One square aluminum frame (0.5 m x 0.5 m) was inserted in the soil at 2 cm depth in each 348 

plot to provide a flat base between the soil surface and the CO2 sampling chamber. Net ecosystem exchange 349 

(NEE) and ecosystem respiration (ER) were measured using LI-6400 portable photosynthesis system (LI-350 

COR) 40. Gross primary productivity (GPP) was estimated as the difference between NEE and ER. 351 

Meanwhile, soil surface respiration was monthly measured using a LI-8100A soil flux system attached to 352 

a soil CO2 flux chamber (LI-COR). Measurements were taken above a PVC collar (80 cm2 in area and 5 353 

cm in depth) and a PVC tube (80 cm2 in area and 70 cm in depth) in each plot. The PVC tube cut off old 354 

plant roots and prevented new roots from growing inside the tube. Any aboveground parts of living plants 355 

were removed from the PVC tubes and collars before each measurement. The CO2 efflux measured above 356 

the PVC tubes represented heterotrophic respiration (Rh) from soil microbes, while that measured above the 357 

PVC collars represented soil total respiration (Rt) including heterotrophic and autotrophic respiration (Rh 358 

and Ra) from soil microbes and plant root respectively. 359 

 360 

Soil decomposition rate. Weighted cellulose filter paper (Whatman CAT No. 1442-090) was placed into 361 

fiberglass mesh bags and placed vertically at 0-10 cm soil depth in each plot in March 2016. All of 362 

decomposition bags were collected back in September 2016, rinsed and dried at 60 °C for weighing. The 363 

percentage of mass loss was calculated to represent soil decomposition rate. 364 

 365 

Molecular analyses of soil samples 366 

a. BIOLOG analysis. The C substrate utilization patterns of soil microbial communities in 2016 were 367 

analyzed by BIOLOG EcoPlateTM (BIOLOG). The BIOLOG EcoPlateTM contains 31 of the most useful 368 

labile carbon sources for soil community analysis, which are repeated 3 times in each plate. In this study, 369 

the plates with diluted soil supernatant (0.5g soil with 45 mL 0.85% NaCl) were incubated in a BIOLOG 370 

OmniLog PM System at 25 °C for 4.5 days. The color change of each well was shown as absorbance curve. 371 
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The net area under the absorbance versus time curve was calculated to represent physiological activity of 372 

various C sources 41. The average value from 3 replicates was used for analyses in this study. 373 

 374 

b. DNA extraction, amplicon sequencing and analysis. Methods for DNA extraction from soil and 375 

amplicon sequencing of all soil samples were as previously described 23. Briefly, 10 ng DNA per sample 376 

were used for library construction and amplicon sequencing 42. The V4 region of bacterial and archaeal 16S 377 

rRNA genes and fungal ITSs between 5.8S and 28S rRNA genes were amplified with primer sets 378 

515F/806R and ITS7F/ITS4R, and sequenced on a MiSeq platform (Illumina, Inc.) using 2 x 250 pair-end 379 

sequencing kit. Raw sequences were submitted to our Galaxy sequence analysis pipeline 380 

(http://zhoulab5.rccc.ou.edu:8080) to further analyze as previously described 23. Finally, OTUs were 381 

clustered by UPARSE 43 at 97% identity for both 16S rRNA gene and ITS. All sequences were randomly 382 

resampled to 30,000 sequences for 16S rRNA gene and 10,000 sequences for ITS per sample. 383 

Representative sequences of OTUs were annotated taxonomically by the Ribosomal Database Project (RDP) 384 

Classifier with 50% confidence estimates 44. 385 

 386 

c. GeoChip analysis. GeoChip 5.0M, a functional gene array 45, was used for all 56 samples from 2010 to 387 

2016. GeoChip hybridization, scanning and data processing were performed as described previously 45. The 388 

raw signals from NimbleGen were submitted to the Microarray Data Manager on our website 389 

(http://ieg.ou.edu/microarray), cleaned, normalized and analyzed using the data analysis pipeline. Briefly, 390 

spot signal-to-noise ratio and minimum intensity cutoff were used as standard to remove unreliable spots. 391 

Both the universal standard and functional gene spot intensities were used to normalize the signals among 392 

arrays 45. 393 

 394 

d. Shotgun sequencing analysis. Metagenomic library of all samples was prepared using a KAPA Hyper 395 

Prep Kit and sequenced at the Oklahoma Medical Research Foundation’s Genomics Core using the Illumina 396 

HiSeq 3000 platform with a 2 x 150 bp paired-end kit. A total of 8.18 billion reads were obtained from all 397 

56 samples, and 80 million reads were randomly resampled from each sample to perform data processing. 398 

Functional gene prediction, annotation and treatment analyses were performed using methods similar to 399 

those described in previous study 45. Meanwhile, all reads were also submitted to our EcoFUN-MAP 400 

pipeline (http://www.ou.edu/ieg/tools/data-analysis-pipeline.html) to fish out shotgun sequence reads of 401 

important environmental functional genes used to fabricate GeoChip as described previously 46. The web 402 

based pipeline application of EcoFUN-MAP can be accessed with request. 403 

 404 

Model simulations (TECO and MEND model) 405 
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 406 

a. Data sources. Daily GPP values were obtained from a corrected 8-day GPP product based on the MODIS 407 

GPP (MOD17A2/MOD17A2H) 47. We assign the same daily GPP values for the 8-day period. Meanwhile, 408 

data sets measured in both control and warmed plots across all years were also used for model simulations, 409 

including soil temperature and moisture, heterotrophic respiration, and the GeoChip-detected enzyme 410 

densities. 411 

 412 

b. Apparent Q10 estimation. To examine temperature sensitivity of microbial heterotrophic respirations, 413 

the measured field Rh in warmed and control plots was fitted with the exponential equation 4 (Equation (1)) 414 

on yearly basis or across all years. In the equation, R is Rh, T is soil temperature, R(Tref) is the respiration 415 

rate at the reference temperature (Tref). The Q10 estimated by the observed respiration data was called 416 

apparent Q10 of respiration in this study.  417 

𝑅(𝑇) = 𝑅(𝑇𝑟𝑒𝑓) × 𝑄10
(𝑇−𝑇𝑟𝑒𝑓)/10

    (1) 418 

 419 

c. Intrinsic Q10 estimation. In the MEND model, the parameter Q10 is used to characterize the 420 

unconfounded temperature sensitivity of SOM decomposition and heterotrophic respiration. Constrained 421 

Q10 were obtained for the control and warming plots by incorporating respiration and microbial information 422 

into the MEND model parameterization process, which we called the intrinsic Q10 of soil respirations 30.  423 

 424 

d. TECO model. The non-microbial terrestrial ecosystem (TECO) model is a variant of the CENTURY 425 

model 48 that is designed to simulate C input from photosynthesis, C transfer among plant and soil pools, 426 

and respiratory C releases to the atmosphere (Fig. S3b). C dynamics in the TECO model can be described 427 

by a group of first-order ordinary differential equations, where the turnover rates are modified by soil 428 

temperature (T) and moisture (W) 29. Prior ranges of turnover rates were based on Weng and Lu 49. The prior 429 

ranges of Q10 were based on the ranges of apparent Q10 of Rh per treatment 4. We assumed that the parameters 430 

distributed uniformly in their prior ranges 8. We used the Shuffled Complex Evolution (SCE) algorithm to 431 

determine model parameters 26. We also applied the probabilistic inversion (Markov Chain Monte Carlo) to 432 

quantity parameter uncertainties 50. By performing TECO modeling, daily heterotrophic respiration was 433 

simulated for both warmed and control plots from 2010 to 2016. The coefficient of determination (R2) was 434 

used to estimate the model performance between observed and simulated respiration 51.  435 

 436 

e. Microbial-ENzyme Decomposition (MEND) model 437 

 438 
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e.1. MEND model description. The Microbial-ENzyme Decomposition (MEND) model (Fig. S3a) 439 

describes the SOM decomposition processes by explicitly representing relevant microbial and enzymatic 440 

physiology 26. The SOM pool consists of two particulate organic matter (POM) pools and one mineral-441 

associated organic matter (MOM) pool. The two POMs are decomposed by oxidative and hydrolytic 442 

enzymes, respectively. The MOM is decomposed by a generic enzyme group (EM). Model state variables, 443 

governing equations, component fluxes and parameters are described in Table S6–S9, respectively. A 444 

model parameter (reaction rate) in MEND may be modified by soil water potential, temperature, or pH 26,52. 445 

MEND represents microbial dormancy, resuscitation, and mortality and enzymatic decomposition in 446 

response to changes in moisture, as well as shifting of microbial and enzymatic activities with changing 447 

temperature 25. The temperature response functions are described by the Arrhenius equation (characterized 448 

by the activation energy) or the Q10 method 53, where the Q10 method was used in this study. 449 

 450 

e.2. Model Parameterization. The model parameters are determined by achieving high goodness-of-fits 451 

of model simulations against experimental observations, such as heterotrophic respiration (Rh), microbial 452 

biomass carbon (MBC), gene abundances of oxidative (EnzCo) and hydrolytic enzymes (EnzCh) in this 453 

study (Table S10). We implemented multi-objective calibration of the model 25. Each objective evaluates 454 

the goodness-of-fit of a specific observed variable, e.g., Rh, MBC, or gene abundances (Table S10). Note 455 

that the GeoChip gene abundances were used to constrain the MEND modeling as additional objective 456 

functions. The parameter optimization is to minimize the overall objective function (J) that is computed as 457 

the weighted average of multiple single-objectives (Table S9) 26 458 





m

i

ii JwJ
1

              (2a) 459 

1
1




m

i

iw  with ]1,0[iw         (2b) 460 

Where m denotes the number of objectives and wi is the weighting factor for the ith (i = 1,2,…,m) objective 461 

(Ji). In this study, Ji (i=1, 2, 3, 4) refers to the objective function value for Rh, MBC, EnzCo, and EnzCh, 462 

respectively.  463 

As the overall objective function J is minimized in the parameter optimization process, the individual 464 

objective function Ji may be calculated as (1− R2), (1−r), or MARE:  465 

  466 

                          467 (3) 

 468 
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      (4) 469 

            (5) 470 

where R2 denotes the Coefficient of Determination 26,54. The R2 quantifies the proportion of the variance in 471 

the response variables that is predictable from the independent variables. A higher R2 (R2 ≤ 1) indicates 472 

better model performance. MARE is the Mean Absolute Relative Error (MARE) and lower MARE values 473 

(MARE ≥ 0) are preferred 26,55. MARE represents the averaged deviations of predictions (Ysim) from their 474 

observations (Yobs). r is Pearson correlation coefficient and higher r values (|r|≤ 1) means better model 475 

performance. n is the number of data; Yobs and Ysim are observed and simulated values, respectively; and 476 

�̅�𝑜𝑏𝑠 and �̅�𝑠𝑖𝑚 are the mean value for Yobs and Ysim, respectively. 477 

Different objective functions are used to quantify the goodness-of-fit for different variables (Table S9), 478 

depending on the measurement method and frequency of variables. The R2 is used to evaluate the variables 479 

(e.g., soil respiration) that are frequently measured and the absolute values can be directly compared 480 

between observations and simulations. The MARE is used to evaluate the variables (e.g., microbial biomass 481 

and enzyme concentrations) with only a few measurements and the absolute values can be directly 482 

compared. When the absolute values cannot be directly compared, the correlation coefficient (r) between 483 

original or transformed (e.g., logarithmic transformed) observations and simulations will be used. For 484 

example, the gene abundances from metagenomics or GeoChip analysis cannot be directly compared to the 485 

enzyme concentrations or activities in the MEND model. However, we may assume correlation could be 486 

found between the measured and modeled values with a certain transformation or normalization. 487 

We used the Shuffled Complex Evolution (SCE) algorithm to determine model parameters for the 488 

control soil and the warming soil respectively. SCE is a stochastic optimization method that includes 489 

competitive evolution of a ‘complex’ of points spanning the parameter space and the shuffling of complexes 490 

56. 491 

 492 

e.3. Uncertainty quantification. The parameter uncertainty in the MEND model was quantified by the 493 

Critical Objective Function Index (COFI) method 26,52. The COFI method is based on a global stochastic 494 

optimization technique (e.g., SCE in this study). It also accounts for model complexity (represented by the 495 

number of model parameters) and observational data availability (represented by the number of 496 

observations). The confidence region of parametric space were determined by selecting those parameter 497 

sets resulting in objective function values (J) less than the COFI value (Jcr) from the feasible parameter 498 

space 26,52.  499 
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 500 

e.4. Estimation of warming-induced soil C loss and acclimation effect. To examine how much soil C 501 

loss is reduced by the soil microbial respiratory acclimation under warming, we further calculated 502 

heterotrophic respiration (Rh) under warming without acclimation (w/o Acclimation). That is, we estimated 503 

the mean Rh changing with soil temperature that under warming, however, we kept the same range of Q10 504 

as that under control 13,15. The Rh changing with soil temperature is described by the Q10 method similar to 505 

Eq. (1): 506 

𝑅ℎ(𝑇) = 𝑅ℎ(𝑇𝑟𝑒𝑓) × 𝑄10
(𝑇−𝑇𝑟𝑒𝑓)/10

    (6) 507 

where Rh(T) and Rh(Tref) are the Rh (g C m–2 d–1) at soil temperature (T) and reference temperature (Tref), 508 

respectively; and Tref = 10 ºC in this study.  509 

 We quantified the acclimation effect by taking into account the uncertainties in intrinsic Q10 510 

estimated by the MEND model. First we calculated the Rh fluxes (g C m-2 d-1) at the mean annual soil 511 

temperature under control, i.e., 𝑅ℎ
𝐶𝑇 under T = 17 ºC and Q10 = 1.77 with 95% confidence interval (CI) of 512 

1.70–2.13. Second we calculated Rh under warming with acclimation (𝑅ℎ
𝑤𝐴𝐶 under T = 20 ºC and Q10 = 1.39 513 

with 95% CI of 1.27–1.59) and Rh under warming without acclimation (𝑅 ℎ
𝑤𝑜𝐴𝐶 under T = 20 ºC and Q10 = 514 

1.77 with 95% CI of 1.70–2.13). We then calculated the reduction in Rh due to acclimation as  515 

∆𝑅ℎ
𝑤𝑜𝐴𝐶−𝑤𝐴𝐶 = 𝑅ℎ

𝑤𝑜𝐴𝐶 − 𝑅ℎ
𝑤𝐴𝐶 (7) 516 

Finally, we calculated the acclimation effect as the percent reduction in Rh due to acclimation relative 517 

to the baseline Rh , i.e, the mean Rh in the control plot (𝑅ℎ
𝐶𝑇)  518 

%∆𝑅ℎ = ∆𝑅ℎ
𝑤𝑜𝐴𝐶−𝑤𝐴𝐶 𝑅ℎ

𝐶𝑇⁄ × 100%   (8) 519 

 520 

As a preliminary test of global significance, we extrapolated our results to the world’s grasslands: 521 

The annual soil respiration flux (Rs) was 8.0 Pg C yr-1 in the global grasslands (area = 1.11107 km2) 522 

with the MODIS land cover map in 2009 according to Adachi et al. 33, which meant Rs = 720.7 g C m-2 yr-523 

1. 524 

We then estimated the heterotrophic respiration flux Rh = 381.7 gC m-2 yr-1 and Rh / Rs = 53% in global 525 

grasslands based on the relationship between Rh and Rs (in units of g C m-2 yr-1) described by Bond-Lamberty 526 

& Thomson 57: 527 

ln(𝑅ℎ) = 0.22 + 0.87 ln(𝑅𝑠)    (9) 528 

Based on the ratio Rh / Rs = 53%, the annual heterotrophic respiration flux from global grasslands was 529 

estimated as 4.2 Pg C yr-1.  530 
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We then estimated the acclimation effect as follows. Our results show that %∆𝑅ℎ= 11.6±7.5% (Fig. 531 

4c), which means the reduction in Rh due to acclimation accounted for 11.6±7.5% of 𝑅ℎ
𝐶𝑇. If this percentage 532 

is applicable to the global grasslands, the warming acclimation would result in less Rh by 0.490.31 Pg C 533 

yr-1 (= 4.2 Pg C yr-1(11.6±7.5%)). 534 

 535 

Statistical analysis. All statistical analyses were carried out using R software 3.1.1 with the package vegan 536 

58 (v.2.3-5) and pgirmess 59 (v.1.5.8) unless otherwise indicated. The difference of various variables between 537 

warming and control was tested by repeated-measures analysis of variance (ANOVA). The non-parametric 538 

multivariate analysis of variance (Adonis) were used to test the difference of microbial community 539 

taxonomic and functional structures considering the blocked split-plot design 23. CCA and Mantel test were 540 

performed to examine the linkage between environmental variables and microbial community 541 

structure/subcategories of functional genes. The significance of the CCA model was tested by analysis of 542 

variance (ANOVA). CCA-based variation partitioning analysis (VPA) was performed to evaluate how 543 

much different types of environmental variables influences microbial community phylogenetic and 544 

functional structures 14. Structural equation model (SEM) was used to explore how warming-induced 545 

environmental variables affected soil microbial communities and heterotrophic respiration. Response ratio 546 

was used to compute the effects of warming on functional genes involved in C cycling and nutrient-cycling 547 

processes from GeoChip data using the formula as previously described 46 . The non-parametric Kruskal-548 

Wallis method 59 was used to test the significance of difference in model parameter values or the Rh under 549 

different scenarios at a significance level of 0.05. 550 

 551 

Data and code availability. DNA sequences of 16S rRNA gene and ITS amplicons were available in NCBI 552 

Sequence Read Archive under project no. PRJNA331185. Raw shotgun metagenomic sequences are 553 

deposited in the European Nucleotide Archive (http://www.ebi.ac.uk/ena) under study no. PRJNA533082. 554 

GeoChip signal intensity data can be accessed through the URL 555 

(https://www.ou.edu/ieg/publications/datasets). MEND model code and data are accessible at 556 

https://github.com/wanggangsheng/MENDokw.git. All other relevant data are available in Supplementary 557 

Information or from the corresponding author upon request. 558 
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Table 1. Significance tests of the effects of warming and time on microbial community 722 

structures with permutational multivariate analysis of variance. 723 

Effects 16S ITS GeoChip 

Metagenomic 

sequencing 

Metagenome based 

EcoFUN-MAP 

 F P F P F P F P F P 

Warming (W) 4.200 0.001 2.314 0.001 2.505 0.026 8.059 0.001 2.924 0.001 

Year (Y) 2.432 0.001 1.595 0.001 12.216 0.001 4.398 0.001 2.323 0.001 

W × Y 1.178 0.092 1.055 0.224 1.385 0.092 1.350 0.170 1.135 0.084 

Permutational multivariate analysis of variance (Adonis) was used based on Bray-Curtis 724 
dissimilarity matrices. The two-way repeated-measures ANOVA model was set as 725 
“dissimilarity~warming×year+block” using function adonis in R package vegan. The degree of 726 

freedom was 1 for warming treatment, 6 for year and 39 for residuals.  Significant effects (P ≤ 727 
0.05) were shown in bold text. EcoFUN-MAP is a method designed for annotating metagenomic 728 

sequences by comparing them with functional genes used to fabricate GeoChip.  729 
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Fig. 1. Warming effects on soil variables and ecosystem C fluxes. (a) Air and soil surface (7.5 cm) 730 
temperatures averaged from 2010 to 2016. (b) Soil moisture averaged from 2010 to 2016. (c) Ecosystem C 731 
fluxes, which were estimated on the basis of the C amount from CO2 emissions averaged from 2010 to 732 
2016. GPP, gross primary productivity; ER, ecosystem respiration; NEE, net ecosystem C exchange. 733 
Positive values indicate C sink, and negative values represent C source.  (d) in situ soil respirations averaged 734 
from 2010 to 2016. Ra, autotrophic respiration; Rh, heterotrophic respiration; Rt, soil total respiration. (e) 735 
Decomposition rate of standard cellulose filter paper (mass loss) in the field determined in 2016. (f) 736 
Apparent and intrinsic temperature sensitivity (Q10) of heterotrophic respiration (Rh) averaged from 2010 737 
to 2016. Apparent Q10 is estimated by fitting the curve of Rh versus soil temperature based on the Q10 method. 738 
Intrinsic Q10 is derived by calibrating the MEND model. Error bars represent standard error of the mean.  739 
The differences between warming and control were tested by repeated measures ANOVA, indicated by *** 740 
when p < 0.01, ** when p < 0.05, * when p < 0.10.  741 
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Fig. 2. Feedback mechanisms of soil microbial communities to warming. (a) Pairwise comparisons of 742 
environmental factors with a color gradient denoting Pearson’s correlation coefficients. Taxonomic (based 743 
on 16S rRNA gene and ITS OTUs) and functional (based on GeoChip data) community structures were 744 
related to each environmental factor by Mantel tests. Edge width corresponds to the Mantel’s r statistic for 745 
the corresponding distance correlations, and edge color denotes the statistical significance. (b) The 746 
structural equation model (SEM) showing causal relationships among environmental factors, community 747 
diversity (Shannon index based on GeoChip) and structure (the first axis of NMDS analysis of GeoChip 748 
data), and heterotrophic respiration (Rh). Red and blue arrows represent significant positive and negative 749 
pathways, respectively. Arrow width is proportional to the strength of the relationship and bold numbers 750 
represent the standard path coefficients, and the p values of path coefficients are indicated by *** when P 751 
< 0.001, ** when P < 0.01, * when P < 0.05. R2 indicates the proportion of the variance explained for each 752 
dependent variable in the model. (c) Biogeochemical cycling genes significantly changed by warming from 753 
2010 to 2016 according to GeoChip data. Biogeochemical cycling genes included all genes involved in C 754 
degradation, C fixation, N cycling, phosphorus (P) utilization and sulfur (S) metabolism. Significance is 755 
based on response ratio of each gene with 95% confidence intervals of abundance differences between 756 
warmed and control treatments. Dash line represents that the abundance of warming-stimulated (red) genes 757 
are in good agreement with the abundance of warming-inhibited (blue) genes. (d) Bubble plot illustrating 758 
the enrichment of key biogeochemical cycling genes under warming (W) and control (C) treatments 759 
according to GeoChip data. Bubble color represents the significance (p-value) of gene enrichment based on 760 
response ratios. Bubble size represents the relative changes of gene enrichment based on response ratios. 761 
The biogeochemical cycling processes for these genes are shown in plot, and the full names of the genes in 762 
this plot are listed in Supplementary Table S5.   763 
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Fig. 3. Model parameter uncertainty and modeling performance. (a) The MEND model parameter 764 
uncertainty quantified by the Coefficient of Variation (CV). The bars show the mean CV values of the 11 765 
parameters (See Supplementary Fig. S11 and Table S8 for detailed description). The dots along each bar 766 
show the CV for each parameter. “tMEND” refers to the traditional MEND model parameterization without 767 
gene abundances data. “gMEND” denotes the improved MEND parameterization with gene abundances. 768 
(b) Comparison between gMEND-simulated and observed heterotrophic respiration (Rh) under control and 769 
warming (R2 denotes the coefficient of determination).  770 
 771 
  772 
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Fig 4. Warming-induced microbial acclimation of heterotrophic respiration (Rh) based on 773 

MEND-estimated intrinsic Q10. (a) Rh acclimation based on the mean values. The mean annual soil 774 

temperature (T) during 2010–2016 was 17 ºC and 20 ºC under control and warming, respectively. The 775 

average intrinsic Q10 = 1.77 under control and 1.39 under warming. The mean baseline Rh = 1.84 g C m–2 776 

d–1 under control (T = 17 ºC). The average Rh = 2.03 and 2.18 g C m–2 d–1 under warming (T = 20 ºC) when 777 

acclimation is considered (w/ Acclimation) or not considered (w/o Acclimation), which means a 8.2% 778 

reduction in Rh due to acclimation. 95% CI denotes the 95% confidence interval. (b) Acclimation in Rh 779 

when the uncertainties in intrinsic Q10 are considered.  Different letters for Rh indicate significantly 780 

differences between the scenarios based on the Kruskal-Wallis test at a significance level of 0.05. The 781 

acclimation (%) is quantified by the difference in Rh between warming w/o Acclimation and w/ Acclimation 782 

as a percentage of the baseline Rh under control (see Methods Eq.8). 783 

 784 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.23.961300doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.23.961300

