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Study Species. The floating aquatic duckweeds Spirodela polyrhiza and Lemna minor are some of the smallest and most2

widely-distributed plants on earth, occupying all continents except Antarctica (1). The species have similar habitat preferences3

and frequently co-occur at both local (Fig. S1) and regional (Fig. S2) scales. While the ranges of these species show significant4

overlap, lake surveys have revealed that L. minor is the more abundant taxon in mixed Spirodela-Lemna communities. When5

present, S. polyrhiza is almost always encountered within larger crops of L. minor or the minute duckweed Wolffia sp., whereas6

L. minor is more frequently encountered in dense monocultures (2). Dispersal occurs primarily via aquatic birds (3), though the7

poleward edges of both species’ ranges terminate short of the the dispersal capabilities of migratory waterfowl and availability8

of freshwater habitats. The species exhibit different responses to cold temperatures, with S. polyrhiza producing dormant turion9

fronds and L. minor remaining viable as sunken vegetative fronds (4). Further, S. polyrhiza grows slightly better at higher10

temperatures, possibly explaining its higher prevalence in the tropics than L. minor, which grow better in cooler climates (1, 2).11

Estimating model parameters. We measured low-density growth rates of S. polyrhiza and L. minor in temperature-controlled12

growth chambers as previously described (2). Briefly, axenic duckweed strains were grown in 100 mL flasks containing a13

chemically-defined medium approximating the natural mesotrophic pond waters from which they were collected (5). Growth14

assays were carried out for 28 days at static temperatures (T ) ranging from 3°C to 37°C. Temperature-dependent low-density15

growth rates, µj(T ) (day-1), were measured from replicated monocultures inoculated with initial densities of 3 to 5 vegetative16

fronds. Growth at these densities was assumed exponential and estimated using the formula µ = [log(Nt/N0)]t−1. These values17

were used to fit thermal growth curves for each species, the best-fitting of which is shown as eq. 2 (6) (Fig. S2). Inter- and18

intraspecific competitive responses, αjk, were empirically estimated from reductions in a species’ growth rate across conspecific19

or heterospecific densities ranging from 0 to >1000 individuals at 12 and 28°C (7) (Fig. S2). Turion production and germination20

functions (eqs. 4 & 5) were fitted using values from the literature (4, 5). All parameter values are shown in table S1.21

Following model selection, our final model (eq. 1 in the main text) was able to predict the observed per capita growth rates22

of both S. polyrhiza and L. minor with good accuracy across a range of temperatures (predicted observed R2 = 0.76, 0.80, for23

each species, respectively) (Fig. S3) (2).24

Detailed Methods for MaxEnt Ecological Niche Models. Spatial point occurrence records for each species were downloaded25

using the rgbif package (8). This package facilitates remotely accessing data from the Global Biodiversity Information Facility26

database (GBIF; http://gbif.org; accessed February 2019) using the R language (9). After downloading all georeferenced27

records for Lemna minor (193,395 records, https://doi.org/10.15468/dl.wpisn8) and Spirodela polyrhiza (83,531 records;28

https://doi.org/10.15468/dl.2pixjr). We cleaned the data using the R package CoordinateCleaner (10), which flags and removes29

problematic entries. Our specific omission criteria included:30

1. Points falling within a 10 km radius of a country’s capital city.31

2. Points falling within a 1 km radius of a country’s centroid coordinate.32

3. Points possessing identical longitude and latitude values.33

4. Points falling within a 1° radius of the GBIF headquarters in Copenhagen, Denmark.34

5. Points falling within a 1 km radius of biodiversity institutions such as herbaria.35

6. Points determined to be in the ocean.36

7. Points having at least one coordinate exactly equal to zero degrees.37

8. Points collected prior to 1900.38

9. Points outside of the study regions of interest (Mexico, USA, Canada, United Kingdom, Ireland, and northern continental39

Europe). Note that we also retained all global records to create fig. 4 in the main text.40

We amended these occurrence records with gridded survey records from the UK and Ireland provided by the Botanical41

Society of Britain and Ireland (BSBI; ver. February 2019) (11). Point locations for these data represent the centroids of 1042

km2 grid cells in which a species was observed. Despite the gridded nature of these observations, the sampling scheme is far43

more thorough than data obtained through GBIF, and are trusted to represent the true spatial extent of the study species44

across the UK and Ireland. Given the high density of occurrence records in our study regions, we made the assumption that45

the distribution of occurrence records reflected the true geographic distributions of our study species. We note that while46

high-latitude observations may have been missed due to a lack of sampling effort (particularly in N. America), the observed47

distributions of points align closely with distributional accounts in the literature (1, 12).48

Because ecological niche models can be sensitive to the effects of spatially-clustered and potentially duplicated occurrence49

records (13), we randomly sampled one individual record falling within cells arranged in a gridded overlay. For our regional50

occurrence datasets, the cell sizes were 1.3° x 1.3°, 1° x 1°, and 0.3° x 0.3° for the N. America, N. EU, and UK datasets,51

respectively. We generated a fourth dataset by combining the unfiltered observations in all three regions, and then then52

David W. Armitage and Stuart E. Jones 1 of 21



spatially filtering these points by sampling from 1.5° x 1.5° grid cells. The number of records remaining in each regional dataset53

before and after correcting for spatial sampling bias is summarized in table S1.54

Two different sets of environmental covariates were used to fit statistical niche models. The first included 12 bioclimatic55

variables downloaded from the WorldClim database (14) at 2.5 arcmin resolution. We selected these variables based on their56

hypothesized or known contributions to the growth of aquatic plants. Our second set of covariates includes only the BIO157

(average annual temperature) and BIO7 (annual temperature amplitude) measurements, which are the same variables used in58

our mechanistic invasion model predictions (eq. 1). Summaries of these covariates and the models in which they were used59

can be found in table S2. These bioclimatic variables were then clipped to the extents of our study regions. We conducted60

principal component analyses (PCA) on these environmental variables to obtain the first two principal component axes (Fig.61

S5) and tested how the first environmental principal component varied across latitude in each region using linear regression.62

We used the MaxEnt software (version 3.4) (15) implemented within the R package ENMeval (16) to create niche models63

for our two duckweed species. MaxEnt is a statistical niche modeling framework that uses environmental covariates extracted64

from spatial occurrence data to predict a species’ habitat suitability relative to a randomly-sampled environmental background65

(17). As a presence-only method, MaxEnt can use the type of aggregated occurrence records stored on the GBIF, and despite66

not permitting information on species’ absences, performs favorably in comparisons with other statistical niche modeling67

approaches (18). For each of our species (L. minor and S. polyrhiza) and set of covariates (2 or 12 BIOCLIM variables), we68

generated individual MaxEnt models for each of our three study regions, as well as a fourth, combined region. Environmental69

background points were generated within each of these regions by randomly sampling between 10,000 (UK & Ireland) and70

30,000 (combined regions) random points that did not coincide with a species’ observation record.71

We employed two strategies to avoid overfitting the MaxEnt models. First, we generated four nested, spatial partitions72

of the presence and background data, which were then used for 4-fold cross validation across spatially-segregated training73

and test datasets (19). Second, we fit our models using a range of regularization parameters (1.5 through 6). Higher values74

of the regularization parameters result in more general, smoother model predictions (17). MaxEnt models were fit with75

combinations of linear, quadratic, hinge, and product feature classes using ENMeval (16) with clamping enabled. Best-fit76

MaxEnt models were selected using a pluralistic approach to improve precision while controlling for overfitting. We favored77

models with a combination of low AIC values (20), average 10% threshold omission rates closest to 0.1, and higher regularization78

parameters. MaxEnt habitat suitability thresholds were estimated using a 10% omission rate criterion. One-sided binomial79

tests of omission were used to determine model discriminatory performance. This test estimates the probability that a given80

MaxEnt or mechanistic invasion model’s predictions are significantly better than what would be obtained by chance alone (21).81

Estimating Range Limits. We used an inverse regression approach (22) to estimate the latitudinal limits of S. polyrhiza from82

model outputs. For each study region, we extracted both invasion and MaxEnt model outputs from cells containing an83

observation record. After fitting a linear regression model to these points, we estimated these models’ x-intercepts and their84

inverse 95% confidence intervals, which represent predictions for the latitudinal limit of S. polyrhiza. For our invasion model,85

this limit is defined as the latitude at which the low-density growth rate, r̄inv, equals zero. For MaxEnt models, it was defined86

as the latitude at which the cloglog occurrence probability, pocc, equalled the 10% omission threshold, τ . While choosing such a87

binary presence/absence threshold is subjective, it is necessary for quantifying a range boundary, and we found that a 10%88

omission threshold resulted in good approximations of the species’ observed distributions. Since r̄inv and pocc can be nonlinear89

over latitude, we performed regressions only on data points near the maximum latitude in each region. These subsets were90

selected where the latitude-output response appeared linear and included 138, 244, and 73 location records for the UK + Ire.,91

N. America, and N. EU study regions, respectively.92

Partitioning Coexistence Mechanisms. Modern coexistence theory (MCT) provides a conceptual and analytical framework for93

partitioning the effects of various fluctuation-dependent and fluctuation-independent mechanisms contributing to coexistence94

(23). As explained in the main text, stable coexistence hinges on satisfying the reciprocal invasibility criterion (i.e., r̄j\inv > 0 for95

all species in a community) (24, 25). The relative strength of each mechanism is then obtained by calculating invader-resident96

differences. A standard, non-spatial MCT partitioning uses Taylor approximations to decompose the invasion growth rate into97

three primary components: (1) the fluctuation-independent growth rate, which is the growth rate in the absence of fluctuations98

in competition, and includes the effects of intrinsic growth and negative density-dependence arising from niche differences,99

(2) relative nonlinearity in competition, which measures the differential impacts of nonlinear averaging (and thereby Jensen’s100

inequality) on species’ nonlinear responses to competition, and (3) the storage effect, which measures the buffering of population101

losses in harsh times relative to large gains in favorable times, and is a form of temporal niche partitioning (26, 27). Importantly,102

the latter two mechanisms can only occur when environments or resources fluctuate through time.103

We used a recently-developed computational method (28) for partitioning each species’ invasion and resident growth104

rates, r̄j\inv and r̄j\res, into terms reflecting the additive contributions of fluctuation-dependent and independent coexistence105

mechanisms (23, 29). This method, while accurate, results in slightly different, though arguably more interpretable results106

than the classic small-variance approximations used for partitioning in the classical MCT approach (27, 29). We briefly outline107

this approach below, but refer interested readers to the original literature for a more thorough overview (28, 30).108

Our invasion models contain three variable quantities that can affect each species’ invasion and resident growth rates:109

conspecific densities (Nj(t)), heterospecific densities (Nk(t), k 6= j), and temperature, (T (t)). Species’ long-term average110
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invasion and resident growth rates can be written as111

r̄j\inv = 1
m

m∑
v=1

rj

(
T (ts), Nk(ts)

)
r̄j\res = 1

m

m∑
v=1

rj

(
T (ts), Nj(ts)

)
,

[S1]112

where rj(T,Nk) = (Nj + Sj)−1(dNj/dt+ dSj/dt), and tv(v = 1, ...,m) are finely-spaced time points stretching over 365 total113

days. Following (28), we can partition these average per capita rates such that114

r̄j = ε∗j + ε′j + ε̄T
j + ε̄

Nk
j + ε̄

(T #Nk)
j + ε̄

(T Nk)
j , [S2]

where k = j for the species in its resident state, and k 6= j in its invasion state. The εj terms are defined as115

ε∗j = rj(T̄ , N̄∗k ), the fluctuation-free growth rate

ε′j = rj(T̄ , N̄k)− ε∗j , the effect of fluctuation-driven change in mean Nk

ε̄T
j = 1

m

m∑
v=1

rj(T̄ , Nk(tv))− [ε∗j + ε′j ], the main effect of variation in temperature

ε̄
Nk
j = 1

m

m∑
v=1

rj(T (tv), N̄k)− [ε∗j + ε′j ], the main effect of variation in competitor density

ε̄
T Nk
j = 1

m

m∑
v=1

rj(T (tv), Nk(tv))− [ε∗j + ε′j + ε̄T
j + ε̄

Nk
j ], the interaction of T and Nk variation

ε̄
(T #Nk)
j = 1

m2

m∑
v=1

m∑
w=1

rj(T (tv), Nk(tw))− [ε∗j + ε′j + ε̄T
j + ε̄

Nk
j ], the independent variation component of ε̄T Nk

j

ε̄
(T Nk)
j = ε̄

T Nk
j − ε̄(T #Nk)

j , the covariance component of ε̄T Nk
j ,

where T̄ and N̄k are arithmetic averages taken over the final 365 days of the simulation. N̄∗k represents the average value of Nk116

when temperatures do not fluctuate, which in our model, are point equilibria and therefore constant over time. Next, like in117

the analytical treatment of modern coexistence theory, we performed invader-resident comparisons to assess the relative extent118

to which each of the terms above benefits or harms the invading species. For example, we can define ∆T
j = ε̄T

j\inv − ε̄T
k\res119

(j 6= k) as the relative (dis)advantage experienced by an invader owing solely to the species’ varying responses to temperature120

fluctuations. This term and ∆Nk
j measure the relative nonlinearity in species’ responses to temperatures and competitor121

densities. Likewise, ∆(T Nk)
j = ε̄

(T Nk)
j\inv − ε̄

(T Nk)
k\res represents the contribution of covariance between the environment (T ) and122

competitive factor (Nk) to the invader’s growth rate. This term quantifies the coexistence mechanism called the temporal123

storage effect (27). For our analysis, we set the MCT invader-resident comparison quotients, qir, to 1, since they cannot be124

uniquely defined for all of our environmental states (28, 30), and are very close to 1 when unique solutions exist (2).125

We calculated the growth components for each species in its invader state at each point across a grid of average temperatures126

ranging from -10 to 37 °C with amplitudes ranging from 0 to 33 °C. These values span the natural range of temperature spaces127

across Earth. As described in the main text, we first simulated the dynamics of the resident species for 10 years, checking that128

its long-term growth rate was approximately zero. We used the final year of resident densities and temperatures to calculate129

the growth rate of an invader at each time step, which was then geometrically-averaged to obtain r̄j\inv. Partitioning then130

proceeded as described above and in (28). To check our results, we verified that the following relations held for each species in131

its invader state:132

r̄j\inv = ε∗j + ε′j + ε̄T
j + ε̄

Nk
j + ε̄

(T #Nk)
j + ε̄

(T Nk)
j

≈ r̄j\inv − r̄k\res

≈ ∆∗j + ∆′j + ∆T
j + ∆Nk

j + ∆(T #Nk)
j + ∆(T Nk)

j , (j 6= k).

[S3]133

134

We plotted our results as a heatmap over our 2-D temperature-amplitude grid, onto which we overlaid spatially-thinned global135

datasets of S. polyrhiza or L. minor observation records (figs. 5 and S4) obtained from GBIF and BSBI. We also overlaid the136

zero-growth isoclines for each species.137
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Estimating stabilizing and equalizing components. We also calculated the stabilizing and equalizing components of the ∆i
j138

partitions in eq. S3 (28, 31). Here, stabilizing components ∆i represent the average contribution of a particular coexistence139

mechanism i to competitors’ invasion growth rates and equals the arithmetic average across species of a particular ∆i. Positive140

stabilization will help both species increase when rare. Equalizing effects arise when a particular coexistence mechanism reduces141

fitness differences between an invader and resident and are equal to ∆i
j −∆i. Thus, a particular component of the growth rate142

partition (e.g., the storage effect, ∆(T Nk)
j ) can result in any combination of stabilization and equalization terms depending the143

direction and relative magnitude of its actions on both species. Summed across a species, the terms will equal the species’144

invasion growth rate. Note that although this stabilization value can be positive even when an individual contribution of ∆i
j is145

negative, our usage of ∆T was positive only when both ∆i
j ’s were greater than zero.146
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Fig. S1. A typical mixed community of Lemna minor and Spirodela polyrhiza (outlined in red).
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Fig. S3. (A) Empirically-measured thermal growth maxima, µj(T ) (per day), for L. minor and S. polyrhiza (data from (2)). Curves were fit using equation 2. (B) Partial residual
plots showing the effects of ambient temperature on interspecific (top) and intraspecific (bottom) negative density dependence for each species. Points are partial residuals of
growth rates rj (per day) from experimental cultures (2). Regression lines show the conditional effects of heterospecific and conspecific densities, controlling for the impacts of
the other species.
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Fig. S5. Principal components biplots showing first two PCA axes for environmental covariates for each study region. Points represent observations of S. polyrhiza, and are
shaded by latitude, and arrows denote loading of each variable. The top row shows results for mean temperature (bio01) and temperature amplitude (bio07) variables — used
to fit invasion models and 2-variable MaxEnt models. Second row contains results for variables used in the 12-variable MaxEnt model (bio1-bio12). Descriptions of these
variables can be found at http://www.worldclim.org/bioclim. Values on axis labels denote percentage of variance explained by the first and second PC axes.
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Fig. S7. Relationships between invasion model-predicted growth rates, r̄inv, and MaxEnt-predicted occurrence probabilities for S. polyrhiza. Points represent values for each
2.5 arcmin grid cell. Horizontal and vertical dashed lines indicate the MaxEnt presence/absence threshold and low-density growth thresholds, respectively. Colored lines show
results from beta regression models. The top and bottom rows contain data from the 2 and 12-variable MaxEnt models, respectively.
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Fig. S8. Relationships between invasion model-predicted growth rates, r̄inv, and MaxEnt-predicted occurrence probabilities for L. minor. Points represent values for each 2.5
arcmin grid cell. Horizontal and vertical dashed lines indicate the MaxEnt presence/absence threshold and low-density growth thresholds, respectively. Colored lines show
results from beta regression models. The top and bottom rows contain data from the 2 and 12-variable MaxEnt models, respectively.
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satisfying the invasion criterion (r̄ > 0). The predicted latitudinal limits of L. minor do not change if competition from resident S. polyrhiza is accounted for.
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Table S1. Parameter values used for simulating mechanistic niche models. See (2) for estimation procedures.

Parameter Description Species Value (± 95% CI)

Tmax,j Maximum growth S. polyrhiza 38.9 (0.4)
temperature (°C) L. minor 37.0 (0.7)

Tmin,j Minimum growth S. polyrhiza 3.8 (1.6)
temperature (°C) L. minor 0.5 (1.1)

cj Scaling constant for thermal S. polyrhiza 1.7 × 10−5 (1.8 × 10−6)
growth model L. minor 2.2 × 10−5 (1.3 × 10−6)

Td,j Temperature at which 50% of S. polyrhiza 15
growth is devoted to turions (°C) L. minor n/a

Tg,j Temperature at which 50% of S. polyrhiza 25
turions germinate at 20 days (°C) L. minor n/a

αjj(T ) Intraspecific competition S. polyrhiza 0.1069 (0.016)
parameter (at 20°C) L. minor 0.1005 (0.015)

αjk(T ) Interspecific competition S. polyrhiza 0.0646 (0.009)
parameter (at 20°C) L. minor 0.0591 (0.010)

ψjj Effect of 1°C temperature S. polyrhiza 6.2 × 10−3 (1.9 × 10−3)
change on αjj L. minor 6.3 × 10−3 (1.7 × 10−3)

ψjk Effect of 1°C temperature S. polyrhiza 3.1 × 10−3 (1.1 × 10−3)
change on αjk L. minor 3.0 × 10−3 (1.1 × 10−3)

mj Species’ average per capita S. polyrhiza 0.0134 (7.4 × 10−4)
mortality rate (d−1) L. minor 0.0107 (6.8 × 10−4)
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Table S2. Numbers of cleaned observation records for each of the study species both before and after spatial bias correction via grid filtering.
"Combined" row represents points aggregated from the three study regions.

Species Region Before spatial filter After spatial filter

L. minor World 153,575 445
N. America 1,402 340

N. EU 104,050 272
UK + Ireland 22,470 546

Combined 127,922 750
S. polyrhiza World 69,989 315

N. America 897 225
N. EU 58,906 192

UK + Ireland 2,266 250
Combined 62,069 516

David W. Armitage and Stuart E. Jones 17 of 21



Table S3. Bioclimatic variables used to fit ecological niche models.

Name Description r̄inv MaxEnt2 MaxEnt12

BIO1 Annual mean temperature Y Y Y
BIO2 Mean of monthly diurnal temperature range Y
BIO3 Isothermality (BIO2/BIO7) Y
BIO4 Temperature seasonality (annual standard deviation) Y
BIO5 Max temperature of warmest month Y
BIO6 Min temperature of coldest month Y
BIO7 Annual temperature amplitude Y Y Y
BIO8 Mean temperature of wettest quarter Y
BIO9 Mean temperature of driest quarter Y
BIO10 Mean temperature of warmest quarter Y
BIO11 Mean Temperature of coldest quarter Y
BIO12 Annual precipitation Y
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Table S4. Fit statistics for 2- and 12-covariate MaxEnt models. Features include hinge (H), linear (L), quadratic (Q), and polynomial (P) func-
tions, or any combination of the four. RM indicates the regularization multiplier. Area-under-curve (AUC) values are calculated by averaging
across 4 independently subsetted evaluation datasets. ∆AUC show average differences between individual calibration and evaluation AUC
values. Omission rate (OR) metrics can be compared to theoretical expectations of omission rates of 0 (ORMTP) and 0.1 (OR10%). Omission
rates equal to or lower than their theoretical expectations and ∆AUC values closer to zero signify lower overfitting.

Species Region Covariates Features RM AUC ∆AUC ORMTP OR10% Parameters

S. polyrhiza UK & Ireland 2 LQHP 3.5 0.74 0.01 0.007 0.098 6
12 LQH 4 0.74 0.02 0.011 0.102 16

N. America 2 LQ 1.5 0.77 0.02 0.002 0.093 3
12 LQ 1.5 0.81 0.02 0.012 0.116 12

N. Europe 2 H 4 0.71 0.03 0.003 0.091 18
12 LQ 1.5 0.80 0.02 0.001 0.086 14

L. minor UK & Ireland 2 H 1.5 0.67 0.03 0.003 0.090 37
12 H 3 0.76 0.02 0.002 0.090 35

N. America 2 L 4 0.65 0.01 0.004 0.101 2
12 L 3 0.66 0.02 0.003 0.101 5

N. Europe 2 L 2 0.73 0.01 0.001 0.109 2
12 H 3 0.76 0.02 0.002 0.090 35
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Table S5. Comparison of S. polyrhiza’s observed northern latitudinal limits, Lmax (° N), with niche model-estimated latitudinal limits, L̂max.
Values in parentheses denote 95% confidence intervals. True positive rates (TPR) and binomial omission test results (p-values) are used to
assess model model fit to observation records. For model definitions, see Materials and Methods section.

Region Lmax Model L̂max TPR

UK & (53.7, 56.3) r̄res (65.0, 68.5) 1.00n.s.

Ireland r̄inv (55.3, 56.2) 0.95**
MaxEnt2 (55.4, 56.7) 0.90**

MaxEnt12 (55.2, 56.5) 0.89**
N. America (48.6, 55.0) r̄res (62.7, 66.0) 1.00n.s.

r̄inv (55.5, 58.3) 0.98**
ME2 (51.9, 54.7) 0.91**

ME12 (53.4, 60.0) 0.90**
N. Europe (61.8, 66.0) r̄res (77.2, 80.7) 1.00*

r̄inv (63.8, 66.5) 0.98**
ME2 (62.6, 63.4) 0.90**

ME12 (63.7, 65.2) 0.95**

n.s.p > 0.05;*p < 0.005;**p < 0.001
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