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Abstract 

Replication-coupled (RC) nucleosome assembly is an essential process in eukaryotic cells in order 

to maintain chromatin structure during DNA replication. The deposition of newly synthesized 

H3/H4 histones during DNA replication is facilitated by specialized histone chaperones. Although 

the contribution of these histone chaperones to genomic stability has been thoroughly investigated, 

their effect on replisome progression is much less understood. By exploiting a time-lapse 

microscopy system for monitoring DNA replication in individual live cells, we examined how 

mutations in key histone chaperones including CAC1, RTT106, RTT109 and ASF1, affect replication 

fork progression. Our experiments revealed that mutations in CAC1 or RTT106 that directly deposit 

histones on the DNA, slowdown replication fork progression. In contrast, analysis of cells mutated 

in the intermediary ASF1 or RTT109 histone chaperones revealed that replisome progression is not 

affected. We found that mutations in histone chaperones including ASF1 and RTT109 lead to 

extended G2/M duration, elevated number of RPA foci and in some cases, increased spontaneous 

mutation rate. Our research suggests that histone chaperones have distinct roles in enabling high 

replisome progression and maintaining genome stability during cell cycle progression. 

Author Summary 

Histone chaperones (HC) play key roles in maintaining the chromatin structure during DNA 

replication in eukaryotic cells. Despite extensive studies on HCs, little is known regarding their 

importance for replication fork progression during S-phase. Here, we utilized a live-cell imaging 

approach to measure the progression rates of single replication forks in individual yeast cells 

mutated in key histone chaperones. Using this approach, we show that mutations in CAC1 or 

RTT106 HCs that directly deposit histones on the DNA lead to slowdown of replication fork 

progression. In contrast, mutations in ASF1 or RTT109 HCs that transfers H3/H4 to CAC1 or 

RTT106, do not affect replisome progression but lead to post replication defects. Our results reveal 

distinct functions of HCs in replication fork progression and maintaining genome stability.
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Introduction

DNA replication in eukaryotic cells is a complex process that requires the accurate copying of the 

DNA itself and the formation of a precise chromatin structure [1,2]. The basic unit of chromatin is 

the nucleosome, composed of ~146 base pairs of DNA wrapped around an octamer of histones. A 

nucleosome is composed of a core of (H3-H4)2 tetramer and two flanking H2A-H2B dimmers [3,4]. 

During DNA replication, nucleosomes must be disassembled to allow replication fork progression 

and subsequently must be reassembled to establish the accurate chromatin state. Histone chaperones 

are essential for the process of DNA replication-coupled (RC) nucleosome deposition by facilitating 

correct histone assembly, post-translational modifications and localization during DNA replication 

[5–8].

Newly synthesized histones are assembled into nucleosomes by several histone chaperones 

including Asf1, Rtt109, Rtt106, Caf1 and the FACT complex that act in a sequential and coordinated 

manner to facilitate nucleosome deposition during DNA replication [5,9–11]. In budding yeast, Asf1 

binds newly synthesized H3-H4 histones and promotes H3K56 acetylation by Rtt109 [12]. 

Acetylation of H3K56 enhances H3-H4 binding to Caf1 and Rtt106 that deposit (H3/H4)2 tetramers 

directly onto the DNA [13–15]. Previous studies have shown that single- or double-mutations of 

histone chaperone genes including Caf1 subunits, RTT106, ASF1 or RTT109 can lead to severe 

replication stress, checkpoint activation, increased recombination and sensitivity to DNA damaging 

agents [14,16,17]. However, the effect of histone chaperone mutations on the rate of replisome 

progression is much less understood. While studies in human cells have shown that mutations in 

genes essential for the synthesis of histones significantly slowdown replisome progression [18], 

studies in yeast show that mutations in histone chaperones can have little effect on S-phase 

progression [14,17,19–21].

One of the most important and extensively studied histone chaperone complex for RC nucleosome 

deposition both in vitro and in cells is the Caf1 complex [13]. Caf1 is composed of three subunits, 

Cac1, Cac2 and Cac3, which are highly conserved from yeast to human [22]. Cac1 is the largest 

subunit of the complex and was shown to interact with Proliferating Cell Nuclear Antigen (PCNA) 

through a canonical PCNA Interacting Protein (PIP) motif [23]. Since PCNA is an essential subunit 

of the replisome, Cac1-PCNA interaction can couple between nucleosome deposition and DNA 

synthesis [24]. In addition, Cac1 was shown to contain a Winged Helix Domain (WHD) motif 

allowing its direct binding to DNA [25]. While several biochemical studies provide important 

insights into the function of Caf1 subunits and the PIP and WHD domains of Cac1 [26,27], much 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 25, 2020. ; https://doi.org/10.1101/2020.02.25.964221doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.25.964221
http://creativecommons.org/licenses/by/4.0/


4

less is known regarding their importance for replisome progression during S-phase and for 

nucleosome deposition on newly replicated DNA.  

In this research, we have investigated the effect of deletion and/or mutations of major H3/H4 histone 

chaperones on DNA replication rate and G2/M duration. We have utilized our recently described 

live-cell microscopy approach [28,29] for the direct measurement of replisome progression and 

G2/M duration in individual live yeast cells (see below for details). We found that deletion of CAC1 

or RTT106, which directly deposit nucleosomes on the DNA, lead to slowdown of replication fork 

progression. Further analysis of point mutations in Cac1 showed a separation of function in Cac1 

WHD and PIP domains affecting replisome progression and G2/M duration, respectively. In 

addition, we found that deletion of ASF1 or RTT109 histone chaperones that transfer H3/H4 histones 

to CAC1 and RTT106 did not lead to slowdown of replication fork progression but led to severe 

post-replication defects. Cell cycle analysis of the histone chaperone mutant cells, indicated a 

significant elongation of G2/M duration, ssDNA accumulation and, in some cases, elevated 

spontaneous mutation rates. These results demonstrate that histone chaperones exhibit distinct roles 

in facilitating high replisome progression rate and maintaining genome stability enabling efficient 

cell cycle progression.

Results

The experimental approach for measuring replication fork progression and G2/M duration 

in histone chaperone mutant strains

In order to examine the importance of Caf1, Rtt106, Asf1 or Rtt109 for replication fork progression 

during S-phase, we directly measured DNA replication rates in live WT and mutant cells [28,29]. 

Recently, we have described a live cell imaging approach for measuring the progression rates of 

single DNA replication forks in individual yeast cells [28]. This approach is based on the site-

specific integration of arrays of lacO and tetO bacterial operator sequences, bound by the respective 

GFP-lacI and tetR-tdTomato cognate repressors, allowing the labelling of specific chromosomal 

loci as two distinct fluorescent dots (Fig. 1). The fluorescent intensity of these dots increases during 

replication of the lacO and tetO arrays since more fluorescently labelled repressor proteins are 

recruited to the newly replicated arrays (Fig. 1). These arrays are utilized as reporters of replication 

fork progression by inserting one array adjacent to an early origin of replication and the other array 

downstream in the same replicon (Fig. 1). By monitoring replicating cells and quantifying the 

intensity of each dot over time using live-cell fluorescence microscopy, the replication time of each 
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array region is determined. Since the distance between the arrays along the chromosome is known, 

fork progression rate can be derived. We recently demonstrated the applicability of this approach 

by examining replication at different loci, in the presence of different concentrations of HU and in 

different mutant strains [28]. More recently, we have utilized this approach to examine replication 

fork progression through G-quadruplex structures on the background of different pif1-mutant strains 

[29]. An additional advantage of this system is the ability to monitor yeast cell morphology and 

detect anaphase events at the single-cell level. Anaphase can be monitored as splitting of each 

fluorescent dot into two, one of which moves to the daughter cell. By calculating the time interval 

between replication of the second array (tetO) and anaphase, we can estimate the duration of G2/M 

and examine how it is affected in different histone chaperone mutant cells (Fig. 1) [28].

The importance of Caf1 complex subunits for replisome progression and G2/M duration:

Previous studies have shown that Caf1 complex, composed of Cac1, Cac2 and Cac3, is important 

for H3/H4 deposition directly onto the DNA[13,27]. To examine the importance of each subunit of 

Caf1 complex for replisome progression rate and G2/M duration, we have deleted CAC1, CAC2 or 

CAC3 subunits on the background of a strain containing the lacO and tetO arrays located at the 

vicinity of ARS413. We then measured replication times and G2/M duration in individual yeast 

cells using live cell microscopy as described above (Fig. 2AB and Table S1). We found that cac1-

deletion leads to a significant elongation of replication times relative to the WT strain while cac2- 

or cac3-deletion do not (Fig. 2C). Next, we analyzed the G2/M duration in the different strains and 

found that cac1-deletion cells exhibit significant increase in G2/M duration relative to WT cells 

(Fig. 2D). These results highlight the importance of Cac1 for replisome and G2/M progression and 

are in good agreement with a previous study showing that Cac1 is essential for the Caf1 protein 

complex assembly and H3/H4 binding [13,26].

Previous studies have revealed the contribution of the Caf1 subunits for H3/H4 assembly and 

nucleosome deposition under DNA stress conditions [30–32]. To further investigate the effect of 

cac2- or cac3-deletion on DNA replication under these conditions, we incubated the Caf1 mutant 

strains with 20 mM HU and measured their replication times as described above. We found that all 

Caf1 component mutants exhibited longer replication times relative to WT (Fig. 2E and Table S2). 

These results are in agreement with previous studies [30–32] and deepen our understanding about 

the importance of Caf1 subunits on DNA replication under stress conditions.

G2/M elongation due to cac1-deletion is linked to spindle checkpoint activation
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G2/M elongation may stem from the activation of two mitotic checkpoints due to genomic instability 

accumulated during DNA replication [33]. These two checkpoints are the DNA damage checkpoint 

and the spindle assembly checkpoint [34,35]. Previously, mutation in CAC1 was shown to be 

implicated in the activation of the spindle checkpoint [36]. Specifically, it was shown that the 

deletion of MAD2, the master checkpoint protein of spindle assembly, suppressed the mitotic delay 

measured in cac1- and hir1-double deletion strain [36]. To examine whether the G2/M elongation 

observed in cac1-deletion cells (Fig. 2) was due to spindle checkpoint arrest, we deleted MAD2 in 

the background of cac1- deletion. We then measured replication times and G2/M duration in these 

mutant cells using the live-cell imaging system described above. In accordance with the previous 

study [36], we found that the elongation of G2/M duration due to CAC1 deletion is suppressed in 

the double mutant cells and is similar to the G2/M duration values measured for WT cells (Fig. 3). 

To further support the importance of spindle checkpoint activation in cac1-deleted cells, we 

examined the growth of cac1- and mad2-double deleted cells using a spot assay. In agreement with 

the microscopy experiments, we found that the addition of MAD2 deletion suppressed the growth 

defects observed in cac1-deleted cells (Fig. S1). These results, further supports the role of CAC1 in 

ensuring mitotic spindle integrity prior to cell mitosis.

Separation of function of the WHD and PIP regions in Cac1

The elongation of replication times and G2/M duration of cac1-deleted cells can stem from the lack 

of Caf1 complex formation or from deficiencies in Cac1 specific interactions. Previously, Cac1 was 

shown to contain a WHD domain and a PIP region facilitating its direct interaction with the DNA 

and PCNA, respectively [23,25]. To examine the importance of these Cac1 regions for replisome 

progression and G2/M duration, we have generated strains for replication measurements containing 

K564E/K568E and F233A/F234G mutations in Cac1 WHD domain and the PIP region, 

respectively. These mutations in the WHD and PIP domains of Cac1 were previously shown to 

abolish binding to DNA and PCNA, respectively [23,25]. Next, we measured replication time and 

G2/M duration in individual cells containing these mutations as described above. We found that 

mutating Cac1 WHD domain leads to increased replication times with no effect on the G2/M 

duration, relative to WT cells (Fig. 4A). In contrast, we found that mutating the PIP region of the 

protein does not affect replication times but leads to a significant elongation of G2/M duration (Fig. 

4B). These results demonstrate the separation of function between the WHD and PIP regions of 

Cac1, with DNA binding contributing to proper replisome progression and PCNA binding 

preventing replication stress.
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Next, we examined the level of nucleosome deposition on newly synthesized DNA in the WHD and 

PIP Cac1 mutant strains at the vicinity of ARS305 and ARS605 using chromatin 

immunoprecipitation (ChIP) following release from HU arrest. In accordance with the effect of these 

mutations on replisome progression rate and G2/M duration, we found a significant decrease in the 

level of nucleosome deposition during DNA replication in these mutant strains relative to the WT 

(Fig. 4C-D and Fig. S2). To further examine the effect of HU replication stress on the two Cac1 

mutants, we measured their replication times in presence of 20 mM HU. We found that both mutants 

exhibit more than 9 minutes longer replication times compared to WT (Fig. S3). These results 

highlight the importance of both PIP and WHD of Cac1 for nucleosome deposition and replication 

fork progression at early S-phase under DNA stress conditions.

Analysis of mutation in RTT106, RTT109 or ASF1 histone chaperones

To examine how mutations in additional H3/H4 histone chaperones affect replisome progression 

and G2/M duration, we have generated deletions in RTT106, RTT109 or ASF1 on the background 

of the lacO and tetO containing strain as described above. In addition, to examine how double 

deletion in CAC1 and RTT106 affect these properties we have generated this strain on the same 

background. Rtt106 was previously shown to interact with H3/H4 and the DNA to enable (H3/H4)2 

tetramer deposition on newly synthesized DNA [37]. Cac1 and Rtt106 were shown to physically 

interact suggesting that these histone chaperones cooperate to facilitate high level of nucleosome 

deposition on newly synthesized DNA [38]. Asf1 and Rtt109 are additional key histone chaperone 

and histone acetylase, respectively, acting prior to Cac1 and Rtt106 to facilitate H3K56 acetylation 

of newly synthesized histones [12,19]. Analysis of rtt106-deletion and the cac1-rtt106-double 

deletion cells using our assay showed significantly increased replication times, relative to WT cells. 

In contrast, rtt109- or asf1-deletion did not lead to a significant change in replication times (Fig. 

5A). Analysis of the G2/M duration in cac1- rtt106-double deletion, rtt109- or asf1-deleted cells 

was significantly extended while was not affected in rtt106-deleted cells relative to WT cells (Fig. 

5B). Elongation of G2/M duration, observed in cac1- rtt106-double deletion, rtt109- or asf1-deleted 

cells, is in agreement with several studies showing checkpoint activation and replication stress in 

these strains [14,19–21]. 

Increased G2/M duration in histone chaperone mutant cells is associated with ssDNA 

accumulation 

Replication stress often lead to the accumulation of single-stranded DNA near active replication and 

repair sites [39]. This accumulation can be visualized as foci of the ssDNA-binding protein 
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Replication Protein A (RPA) [40–42]. To examine whether long G2/M duration in histone 

chaperone mutant cells is associated with increased level of ssDNA accumulation, we monitored 

the levels of RPA foci in these mutant cells. For monitoring RPA foci in live cells, we used Rfa1, 

expressed under its native promoter, tagged with GFP at its N-terminus [43] and used fluorescent 

time-lapse microscopy to monitor foci in cells that started budding. To verify the nuclear 

localization of the RPA foci, we monitored their co-localization with a nuclear signal generated by 

simultaneous expression of NLS-tetR-tdTomato. Indeed, we found that RPA foci are identified 

within the cell nucleus following budding and entering S-phase (Fig. S4). Previously, the lack of 

PCNA ubiquitylation by Rad18 ubiquitin ligase was shown to significantly increase the level of 

RPA foci in mammalian cells [42]. Thus, to further validate our system, we generated rad18-

deletion strain and examined the level of RPA foci in mutant cells relative to WT. We found that 

the percentage of cells with RPA foci containing the rad18-deletion is significantly higher than WT 

cells (Fig. S5). 

Next, we generated the different histone chaperone mutants on the background of GFP-Rfa1 strain 

and monitored the accumulation of RPA foci in mutant and WT cells (please see Fig. 6A for 

representative WT and asf1-deleted cells). We found an increase in the percentage of cells 

containing RPA foci in the histone chaperone mutant cells relative to WT cells indicating that these 

mutations lead to the accumulation of ssDNA [39,40] (Fig. 6B). Increase in RPA foci was most 

prominent in asf1- or rtt109-deleted strains, in which over 40% of the cell population contained at 

least one clear RPA focus. We found that the increased level of RPA foci in histone chaperone 

mutant strains is strongly correlated with increased G2/M duration, validating that the delayed G2/M 

phenotype seen in these strains is related to accumulation of DNA damage during S phase (Fig. S6). 

Taken together, our results suggest that replication that is uncoupled to nucleosome deposition can 

lead to replication stress, accumulation of ssDNA, and significant delays in cell cycle progression 

(Fig. 6 and Fig. S6). 

Spontaneous mutation rate analysis of histone chaperone mutant strains

Replication fork stalling and accumulation of ssDNA during replication can lead to double strand 

breaks that can be detrimental to cell survival [44,45]. To avoid double strand breaks, cells employ 

a variety of mechanisms including the recruitment of translesion DNA polymerases (TLS) by the 

RAD6/RAD18 pathway [46,47]. This pathway, initiated by mono-ubiquitylation of PCNA on K164, 

can minimize fork stalling but may lead to increased mutation rates due to the inaccuracy of the 

TLS polymerases [46,47]. To examine whether mutation rates are elevated in the different histone 

chaperone mutant strains, we have utilized the CAN1 assay. We have previously utilized this assay 
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to examine a variety of PCNA mutants leading to RAD6/RAD18 pathway activation [48]. In 

accordance with previous analysis, we found that asf1- or rtt109-single deletions lead to a mild 

increase in mutation rate of up to two-fold relative to the WT strain [49]. Single deletions of CAC1 

or RTT106 lead to similarly mild increase. In contrast, we found that the cac1-rtt106-double deletion 

leads to a dramatic increase of ~7 fold in mutation rate, (Fig. 7 and Table 1). To examine whether 

the increased mutation rate in the cac1-rtt106-double deletion strain is due to RAD6/RAD18 

pathway activation, we generated a cac1-rtt106-rad18-triple deletion strain and examined its 

mutation rate. Consistent with RAD6/RAD18 pathway activation, we observed that the triple 

deletion strain exhibits a dramatic reduction in mutation rate relative to the cac1-rtt106-double 

deletion strain (Fig. 7). In addition, we found that depletion of DNA polymerase ζ, a key TLS 

polymerase, in this strain leads to higher sensitivity to MMS, highlighting its possible activation 

upon DNA damage (Fig. S7). Taken together, our results with the cac1-rtt106-double deletion strain 

show that mutations in histone chaperones can lead to RAD6/RAD18 pathway activation and 

increased spontaneous mutation rates. However, results with the other histone chaperone mutant 

strains, exhibiting long G2/M duration and a mild increase in mutation rate (e.g. rtt109 or asf1 

mutant strains), suggest that other pathways can be activated upon ssDNA accumulation during 

DNA replication (see Discussion section).

Discussion

DNA RC nucleosome assembly that connects DNA synthesis with nucleosome deposition and 

modification has been extensively studied in the past two decades [9,11,50]. These studies allowed 

the identification and characterization of histone chaperones that are important for nucleosome 

deposition on newly synthesized DNA. However, much less is known regarding how mutations in 

histone chaperones affect replisome progression during DNA replication. Here, we used our recently 

described direct approach to monitor replisome progression in individual yeast cells [28,29] that are 

mutated in different histone chaperone genes, including Caf1 subunits, RTT106, ASF1 and RTT109. 

We found that mutation in Cac1 or Rtt106 that directly deposit H3/H4 histones on DNA, 

significantly slowdown replication fork progression (Fig. 2-5). These results suggest that the direct 

interaction of these chaperones with the replication fork is essential for enabling high fork 

progression rate during S-phase. Interestingly, we found that mutations in histone chaperones which 

transfer H3/H4 on Cac1 or Rtt106 prior to their final assembly, including ASF1 or RTT109 histone 

acetyl transferase, do not affect replisome progression but significantly extend G2/M duration (Fig. 

5) highlighting the distinct and independent roles of histone chaperones in genome replication and 
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stability. The normal replisome progression in asf1-deleted cells (Fig. 5) is in good agreement with 

previous studies showing that yeast budding and progression through S-phase is not significantly 

altered in this mutant strain [20,21]. 

Our system also allows the detection of elongations in G2/M duration by monitoring both 

fluorescence and morphological changes in individual cells. Our findings that single deletion of 

CAC1, RTT109 or ASF1 or double deletion of CAC1 and RTT106 (Fig. 5) leads to a significant 

increase in G2/M duration highlight the important role of these chaperones in preventing replication 

stress [39]. Our analysis of G2/M duration is probably an underestimation of the true G2/M length in 

these mutant cells since high percentage of the analyzed cells did not undergo mitosis during the 

experiment duration (Table S3). Our further examination of these strains revealed a dramatic increase 

in RPA foci formation following DNA replication (Fig. 6). We found that in the case of double 

deletion of CAC1 and RTT106 the elongated G2/M duration and RPA foci formation is also correlated 

with a significant increase in spontaneous mutation rate (Fig. 7). Previously, several studies have 

extensively examined different aspects of genome stability in histone chaperone mutant strains. An 

extensive study examining several single and double deletions of histone chaperones including 

RTT109, ASF1, CAC1 and RTT106 in yeast revealed that most mutations lead to increased 

recombination frequency, checkpoint activation, loss of replisome stability and sensitivity to DNA 

damaging agents [14]. In addition, RTT106 was shown to genetically interact with DDC1-MEC3-

RAD17 that forms an alternative sliding clamp termed the 9-1-1 complex which is involved in 

checkpoint activation [51]. Furthermore, ASF1 was shown to directly interact with the downstream 

RAD53 effector kinase [52,53] suggesting that these checkpoint proteins are intimately connected to 

DNA RC nucleosome deposition. Our findings that histone chaperone mutants lead to high level of 

RPA foci formation highlight their importance for preventing the accumulation of ssDNA. It 

complements studies showing the interaction between histone chaperones and S-phase checkpoint 

activation where ssDNA accumulation sensed by RPA (Fig. 6) is transmitted to several proteins 

including the 9-1-1 complex [51], leading to Mec1 sensor kinase activation followed by Rad53 

effector kinase activation [52,53]. The correlation between high level of RPA foci formation and 

G2/M duration (Fig. S6) highlights the detrimental effect of ssDNA accumulation for cell cycle 

progression. In contrast to WT cells in which RPA foci can be corrected during S-phase, we observed 

that for histone chaperone mutants, RPA foci can be maintained through the G2 phase following DNA 

replication (Fig. 6A).

Analysis of the different subunits of the Caf1 complex indicated that deletion of CAC1 exhibits the 

strongest effect on both replisome progression and G2/M duration (Fig. 2). Previously, Cac1 has been 
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implicated in the MAD2-dependent mitotic spindle checkpoint [36] and our results further verify this 

study (Fig. 3). Further analysis of mutations in Cac1 WHD or PIP regions showed that while the WHD 

domain is important for replisome progression, the PIP region is important for preventing replication 

stress (Fig. 4). This separation of function highlights the importance of direct Cac1-DNA interaction, 

mediated by the WHD domain, for fast replisome progression. In contrast, elongation of G2/M duration 

in Cac1 PIP mutant highlights the importance of coordinating Cac1 activity with replisome progression 

for avoiding replication stress. Our further analysis of the WHD and PIP Cac1 mutants showed a 

significant reduction of nucleosome deposition of both mutants relative to WT strain as well as 

slowdown of replisome progression in the presence of HU (Fig. 4 and Fig. S3). Previously, several 

studies have examined the importance of Cac1 WHD and PIP regions for their biochemical and cellular 

functions including their importance for DNA binding following association with H3-H4 histones [27], 

nucleosome assembly in vitro [23] and sensitivity to DNA damaging agents [25]. Our results examining 

the function of these regions in live cells are in agreement with these studies and further enhance our 

understanding of the contribution of each interaction for efficient replisome progression and short G2/M 

duration.

Previously, mutations in histone chaperones were shown to increase recombination level and gross 

chromosomal rearrangement highlighting their roles in maintaining genome stability [14,16]. Asf1, 

Caf1 and Rtt109 were shown to be important for deactivation of damage checkpoint after double strand 

break repair [55,56]. However, much less is known regarding their contribution to DNA damage 

response pathways that include the activation of TLS polymerases for damage bypass. Our findings that 

mutations in histone chaperones lead to moderate increase in spontaneous mutation rate (Fig. 7) suggest 

that other pathways are dominant, including homologues recombination, to overcome replication stress. 

Our findings are in good correlation with a previous study examining the level of spontaneous mutation 

rate in several deletion strains including the RTT109 or ASF1 single deletions [49]. The significant 

increase in spontaneous mutation rate in cells deleted in CAC1 and RTT106 (Fig. 7) may suggest that 

these chaperones link PCNA both to nucleosome deposition and activation of TLS polymerases through 

PCNA ubiquitylation by the RAD6/RAD18 pathway. Notably, these results are in agreement with the 

involvement of CAC1 in the RAD6/18 post-replication repair pathway [32].

Overall, our experiments reveal that histone chaperones exhibit distinct functions in replisome 

progression and maintaining genome stability. Our data showing the effects of cac1-or rtt106-deletion 

on replisome progression highlight the possible importance of direct interaction of these chaperones 

with H3/H4 and the DNA in facilitating fast replisome progression. In contrast, histone chaperones 

which are involved indirectly with the transfer of histones on DNA, including Asf1 and Rtt109 do not 
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significantly affect replisome progression but are essential for preventing replication stress. Our system 

can be further utilized to investigate how additional histone chaperones, such as the FACT complex, 

Nap1, Vps75 [5,57], or combinations of mutants affect replication fork progression and G2/M duration.  

Materials and Methods

Strain generation

Strains for replication time measurement were generated on the background of a W303 MATa 

Saccharomyces cerevisiae strain, expressing GFP-LacI and tetR-tdTomato fusion proteins in the 

nucleus. lacOx256 and tetOx224 arrays are located at chrIV:332960 and chrIV:352560 respectively, 

near ARS413 and with a mid-array distance of approximately 30.6 kb [28]. CAC1, CAC2, CAC3, 

RTT106, ASF1, RTT109 and MAD2 genes were replaced by natMX or hphMX antibiotic cassettes 

using the Lithium Acetate (LiAc) transformation method [58]. The cac1 WHD, cac1 PIP, and rtt106 

KK245,246AA mutants were generated on the background of the cac1- or rtt106- deleted cells 

respectively, with a markerless CRISPR/Cas9 approach, by targeting either the natMX or hphMX 

with specific gRNAs and the respective mutant genes as DNA donors [59]. All replacements were 

validated with Polymerase Chain Reaction (PCR) and Sanger sequencing.

Microscopy and data analysis

All microscope experiments for the determination of replication time were conducted as previously 

described [28] with slight modifications. Briefly, yeast cultures were grown overnight to OD600nm = 

0.1-0.2 in synthetic complete (SC) medium containing 4% glucose at 30˚C. The cultures were then 

synchronized at G1 using 10 μg/ml α-factor (GenScript) for 2-3 hours. For hydroxyurea (HU) 

experiments, yeast cultures were incubated with 20 mM HU one hour before and during the imaging. 

Cells were then immobilized on microscopy slide chambers (Ibidi) coated with 2 mg/ml 

concanavalin A (Sigma-Aldrich) and washed thoroughly from α-factor with warm SC medium 

containing 4% glucose prior to microscopy measurements. Live cell imaging of the cells was 

performed on a Marianas spinning-disk confocal microscope (3i) using an Evolve EM-CCD camera 

(Photometrics) with 1 min intervals for 2-8 hours at 28˚C, using a x63 oil objective (NA = 1.4) in 

3D (12 z-sections at 0.7μm apart). GFP-LacI and TetR-tdTomato were excited with 488nm and 

561nm lasers, respectively. For data analysis, time-lapse measurements were collected with 

SlideBook (3i) and analyzed in Matlab using a custom-made software (‘DotQuant’) which 

identifies, tracks and quantifies the fluorescent dots in each cell [28]. Statistical analysis of 
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replication rate results was performed using Monte Carlo resampling with 1,000,000 iterations. 

Mitosis events were identified manually as the timepoint when the dots split and move to the mother 

and daughter cell.

Chromatin immunoprecipitation (ChIP) assay

ChIP assays were performed using anti-H3K56Ac antibodies as previously described [19]. 

Exponentially growing cells were synchronized with 5 μg/ml α-factor for 3 hr at 25℃ and then 

released into fresh media containing 0.2 M HU for 45 min at 25℃. Samples were collected to 

perform ChIP assay using H3K56Ac and H3 (as a normalization control) antibodies. The ChIP DNA 

was analyzed by quantitative PCR using primers (ARS607/ARS607+14kb and 

ARS305/ARS305+12kb) amplifying replication origins as well as fragments downstream of 

replication origins. The mean and SD of three independent biological replicates were shown. The 

percentage of ChIP DNA relative to the total input DNA was calculated (Fig. 4), and the ratio of 

H3K56Ac ChIP signal to the total H3ChIP signal was also calculated (Fig. S2).

RPA foci analysis

Strains for RFA1 foci analysis were generated on the background of a BY4741 Saccharomyces 

cerevisiae strain which carries N-terminus GFP-tagged RFA1 expressed under control of its native 

promoter [43], as described above. To locate the cell nuclei, NLS-tetR-tdTomato was transformed 

into the ADE1 locus. For imaging, yeast cultures were grown overnight at 30˚C to OD600nm= 0.2-

0.6 in SC medium containing 4% glucose. Cells were fixed on microscopy slide chambers (Ibidi) 

coated with 2mg/ml concanavalin A (Sigma-Aldrich) and imaged using confocal microscopy as 

described above for 1-3h with 1 min intervals at 28˚C. GFP-Rfa1 and NLS-tetR-tdTomato were 

excited with 488 nm and 561 nm lasers, respectively. At least 60 cells from three independent 

experiments were analysed for each strain and scored for the presence of one or more RPA foci 

during S-phase. The percentage of cells with RPA foci was estimated by dividing the number of 

cells exhibiting one or more RPA foci in the nucleus by the total amount of cells that were taken 

into account in each experiment. Results were compared with one-way ANOVA and post-hoc 

analysis (Dunnett's test), after transforming the data with arcsin(sqrt(x)).

Can1 spontaneous mutation rate analysis

The determination of the mutation rate of the can1 gene was performed as previously described [60] 

based on the Lea and Coulson method [61] with some modifications. Strains for can1 mutation rate 

measurement were generated on the background of a BY4741 Saccharomyces cerevisiae strain as 
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described above. Yeast cultures were grown overnight at 30˚C in YPD medium to OD600nm ≈ 0.8-1. 

Cells were then diluted 105 fold, plated as single cells on SC plates and grown for 4 days at 30˚C. 

At least 16 single colonies were randomly chosen from each strain, resuspended in 1 ml of sterile 

ddH2O and diluted to OD600nm ≈ 1.0. Next, 105 fold dilutions of each resuspended colony solution 

were plated on SC plates to define the number of viable cells and the rest of the solutions were 

plated on SC-Arg + 60mg/ml canavanine to obtain the number of canavanine-resistant cells. The 

median number of viable cells was estimated from the different colonies (replicates) and the 

mutation rates, the 95% Confidence Intervals (CI) and the p values were calculated by utilising the 

rSalvador package (v1.7) running on the R software (v3.4.3) [62].

Rev3 inducible degradation and spot assays

Strains for spot assays were generated on the background of a BY4741 Saccharomyces cerevisiae strain. 

An auxin-inducible degron (AID) was inserted into the C’-terminus of rev3 as previously described 

[28]. Briefly, a PCR fragment containing the AID sequence, the Oryza sativa TIR1 gene and the hphMX 

resistance cassette as selection marker was generated with homologous ends to the 5' of the REV3 yeast 

gene. The presence of AID results in the degradation of the fused protein after incubation of yeast cells 

with 1-Napthaleneacetic acid (NAA) [63,64]. The viability of rev3-AID histone-chaperone mutants was 

tested with spot assays on agarose plates. Briefly, overnight exponentially-growing yeast cultures were 

diluted to OD600nm= 0.3 and 4μl of 10-fold serial dilutions were spotted on YPD plates containing 200 

μg/ml HYG, HYG+0.5mM NAA, HYG+0.005% MMS, or HYG+0.5mM NAA+0.005% MMS. Cells 

were incubated at 30˚C for 32 hours and representative pictures were captured.
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Figure 1: Measuring replication rates in histone chaperone mutant yeast cells. (A) 
Schematic illustration of the design for the real-time analysis of replication kinetics in live 
yeast cells containing mutations in histone chaperone genes. Strains are genetically 
engineered to contain lacO and tetO arrays located 20 Kb apart, downstream from an origin 
of replication. Binding of GFP-lacI and tetR-tdTomato lead to green and red fluorescent foci, 
respectively. During DNA replication, array duplication leads to recruitment of additional 
lacI-GFP and tetR-tdTomato proteins leading to an increase in fluorescence intensity. The 
newly-synthesized DNA is packed around new (orange) and pre-existing (blue) 
nucleosomes. Histone chaperones (HC, purple) deposit newly-synthesized histones as 
(H3/H4)2 tetramers behind the replisome. The replication time of each locus is measured 
using time-lapse confocal microscopy. For simplicity, origin firing is shown only to the array 
direction. (B) Schematic display of the doubling of fluorescent intensity of the GFP-lacI and 
tetR-tdTomato foci in a single cell due to lacO and tetO array duplication during DNA 
replication. The time between replication of the arrays (replication time) is calculated using 
the mid-rise points of the GFP and tdTomato fluorescence intensities. The G2/M duration is 
estimated by the time delay between the mid-rise point of the tdTomato fluorescence 
intensity and the anaphase (C) Image of single cells from the yeast strains used in this study. 
Top - image following replication before anaphase, Bottom – after anaphase. Images scale: 
2μm
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Figure 2: Extended replication times and G2/M duration in cac1-deleted cells. (A-B) 
Representative results of a single cell from (A) WT and (B) cac1-deleted strains showing a 
significant increase in G2/M duration in the cac1-deleted cell. Solid lines represent a fit of 
the data to a sigmoidal function showing the lacO array replication (green) and the tetO array 
replication (red), green and red mid-points are indicated by dashed lines while black dashed 
lines show the anaphase timepoint. Black double arrows measuring the time delay between 
lacO array replication and tetO array replication and tetO array replication and anaphase 
indicates the replication time and G/M duration, respectively. (C) Replication times of ~30.6 
Kb at the vicinity of ARS413 for WT, cac1-, cac2- and cac3-deleted cells. (D) G2/M 
durations, estimated by measuring the time delay between the mid-rise point of the tdTomato 
fluorescence intensity and the anaphase, for WT, cac1-, cac2- and cac3-deleted cells. (E) 
Replications times as in (C) but in the presence of 20 mM of HU. Significance was 
determined by Monte Carlo resampling and p values relative to WT are shown. The number 
of cells analyzed for each strain, all median values and statistical results are shown in Table 
S1 and for (E) Table S2. 
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Figure 3: Extended G2/M duration in cac1-deleted cells is suppressed by the deletion of 
MAD2: (A) Replication times of ~30.6 Kb at the vicinity of ARS413 for WT, mad2-, cac1-
deletion and mad2 and cac1-double deleted cells. (B) G2/M durations, estimated by 
measuring the time delay between the mid-rise point of the tdTomato fluorescence intensity 
and the anaphase, for WT, mad2-, cac1-deletion and mad2 and cac1-double deleted cells. 
The number of cells analyzed for each strain and all median values and statistical results are 
shown in Table S1. 
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Figure 4: Replication times, G2/M duration and ChIP analysis of cac1 mutated cells. 
Mutations in the Cac1 WHD an PIP domains lead to increased replication times and G2/M 
duration, respectively, and lower nucleosome deposition during DNA replication, relative to 
WT cells. (A) Replication times of ~30.6 Kb at the vicinity of ARS413 for WT, cac1-
deletion, cac1 PIP* (PIP mutant containing the F233A and F234G mutations)- and cac1 
WHD* (WHD mutant containing the K564E and K568E mutations)-mutant cells. (B) G2/M 
durations, calculated as described in Fig. 2D, for WT, cac1-deleltion, cac1 PIP*- and cac1 
WHD-mutant cells. Significance was determined by Monte Carlo resampling and p values 
relative to WT are shown. The number of cells analyzed for each strain and all median values 
and statistical results are shown in Table S1. (C-D). ChIP analysis of H3K56Ac deposition 
for WT and cac1 mutant strains. WT and cac1 mutant cells were arrested at G1 phase using 
α-factor at 25°C and then released into fresh medium containing 0.2 M HU. Equal numbers 
of cells were collected just prior to (G1, 0 min) and at 45 minutes following release into fresh 
medium containing HU. ChIP assays were performed using antibodies against H3K56Ac and 
H3 (as a normalization control). The ChIP DNAs were analyzed using four different primer 
pairs amplifying (C) ARS305, ARS305+12kb and (D) ARS607, and ARS607+14kb, using 
quantitative PCR. At least three independent biological repeats were performed, with similar 
trends in all cases. The mean and SDs of three independent biological replicates are shown. 
P values derived from two-way analysis of variance (ANOVA) (***P value ≤ 0.001). ChIP 
over input is shown here, results were similar after normalizing to total H3 ChIP for the same 
trend (Fig. S2), indicating that loss of H3K56Ac signal is not as a result of decreased total 
H3.
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Figure 5: Replication times and G2/M durations of cac1-, rtt106-, cac1- and rtt106-, asf1- 
or rtt109-deleted cells. Cell measurements are shown as swarm plots (A) Replication times 
of ~30.6 Kb at the vicinity of ARS413 for WT, cac1-, rtt106-, cac1- and rtt106-, asf1- or 
rtt109-deleted cells. WT and cac1-deleted cells are shown as comparison. (B) G2/M 
durations, estimated by measuring the time delay between the mid-rise point of the tdTomato 
fluorescence intensity and the anaphase, for WT, cac1-, rtt106-,cac1- and rtt106-, asf1- or 
rtt109-deleted cells. Significance was determined by Monte Carlo resampling and p values 
relative to WT are shown. The number of cells analyzed for each strain and all median values 
and statistical results are shown in Table S1. 
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Figure 6: RPA foci accumulate in histone chaperone mutant cells. (A) Representative 
WT and asf1-deleted cells containing RPA foci are shown at different time points. In the case 
of the WT cells, the RPA focus disappears in late S-phase. In the case of asf1-deleted cell, 
mitosis does not take place even after 120 min from initial budding and the RPA foci persists. 
(B) WT or histone chaperone mutant cells expressing N-terminal GFP-Rfa1 fusion were 
analyzed using time-lapse fluorescent microscopy. At least 60 cells from three independent 
experiments were analyzed for each strain and scored for the presence of one or more RPA 
foci during S-phase. Images scale: 2μm
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Figure 7: Increased spontaneous mutation rate in histone chaperone mutants is most 
significant in the cac1-rtt106-double deletion strain. Spontaneous mutations in this strain 
are dependent upon RAD6/RAD18 pathway since spontaneous mutation rate in the triple 
cac1-rtt106-rad18-deletion strain is dramatically reduced relative to the cac1-rtt106-double 
deletion strain. The data are rates of Canr mutation values within the 95% confidence limits 
of at least 16 independent analyses. The values of the spontaneous mutation rate of the 
different strains are presented in Table 1.
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Table 1: Spontaneous mutation rate at the CAN1 locus

Genotype Mutation rate CanR [CI]a
Fold increase 
compared to 

WT

WT 1.59 [1.09, 2.19] x 10-7 -

Δcac1 3.04 [2.14, 4.08] x 10-7 1.9

Δrtt106 2.24 [1.54, 3.08] x 10-7 1.4b

Δcac1+Δrtt106 11.4 [8.72, 14.30] x 10-7 7.2

Δcac1+Δrtt106+Δrad18 3.15 [2.01, 4.57] x 10-7 2.0

Δasf1 2.90 [1.95, 4.05] x 10-7           1.8

Δrtt109 2.64 [1.75, 3.74] x 10-7 1.7b

aThe numbers in brackets represent the low and high values for the 95% 
confidence interval for each rate, obtained using the confidence interval 
for the median test. The medians and 95% confidence intervals were 
deduced from at least 16 independent determinations for each strain.
bNon significant difference from the WT

Supporting Information Legends:
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Figure S1: Growth defects of cac1-deletion strain is suppressed by mad2-deletion. 

Growth was analyzed by a spot assay on YPD plates using a 10-fold serial dilution of yeast 

cultures spotted on the plate. Growth was analyzed following 24h (left) or 48h (right) of 

incubation.

Figure S2: The Cac1 PIP*(F233AF234G) or Cac1 WHD*(K564EK568E) mutations 

lead to reduced new H3 deposition on replicating DNA. Results are normalized to total 

H3 ChIP, complementing data shown in Figure 3 (main text) indicating that loss of 

H3K56Ac signal is not as a result of decreased total H3.

Figure S3: Replication times of cac1 mutated cells measure in the presence of 20 nM of 

UH. Mutations in the Cac1 WHD an PIP domains lead to increased replication times relative 

to WT cells in the presence of HU. Replication times of ~30.6 Kb at the vicinity of ARS413 

for WT, cac1-deleltion, cac1 PIP* (PIP mutant containing the F233A and F234G mutations)- 

and cac1 WHD* (WHD mutant containing the K564E and K568E mutations)-mutant cells. 

The number of cells analyzed for each strain and all median values and statistical results are 

shown in Table S2. 

Figure S4: Expression of RFA1-GFP and NLS-tetR-tdTomato for validation that RPA 

foci are located in the cell nucleus. Representative WT and asf1-deleted cells containing 

RPA foci are shown. 

Figure S5: The percentage of cells with RPA foci is significantly increased in Δrad18 

cells relative to WT. Analysis of RPA foci is described in the Materials and Methods section 

and in Figure 6 of the main text.  

Figure S6:  Pearson correlation between percentage of cells with RPA foci and G2/M 

duration. the p value is 0.017 indicating a statistically significant correlation. 

Figure S7: Depletion of DNA polymerase ζ in cac1- and rtt106-double deleted strain 

leads to higher sensitivity to DNA damage. All analysed yeast strains contain REV3 (the 

catalytic subunit of DNA polymerase ζ) fused to auxin inducable degron (AID) to enable its 

depeletion following NAA (auxin) addition to the growth media (see material and methods 

for details). Growth of WT, single cac1- or rtt106-deletion strains and the double cac1- and 

rtt106-deletion strains on plates containing YPD or YPD supplemented with 0.005% MMS 

were analysed with or without NAA.  
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Table S1: Parameters obtained from live cell microscopy analysis of different histone 

chaperone mutant strains described in the main text.

Table S2: Parameters obtained from live cell microscopy analysis described in the main 

text of different histone chaperone mutant strains in the presence of HU.

Table S3: Percentage of cells undergoing mitosis at a time duration of up to 90 minutes 

following replication of the tetR labeled array.
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