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Abstract 18 

Until now, existing methods for identifying lncRNA related miRNA sponge modules mainly 19 

rely on lncRNA related miRNA sponge interaction networks, which may not provide a full 20 

picture of miRNA sponging activities in biological conditions. Hence there is a strong need 21 
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of new computational methods to identify lncRNA related miRNA sponge modules. In this 22 

work, we propose a framework, LMSM, to identify LncRNA related MiRNA Sponge 23 

Modules from heterogeneous data. To understand the miRNA sponging activities in 24 

biological conditions, LMSM uses gene expression data to evaluate the influence of the 25 

shared miRNAs on the clustered sponge lncRNAs and mRNAs. We have applied LMSM to 26 

the human breast cancer (BRCA) dataset from The Cancer Genome Atlas (TCGA). As a 27 

result, we have found that the majority of LMSM modules are significantly implicated in 28 

BRCA and most of them are BRCA subtype-specific. Most of the mediating miRNAs act as 29 

crosslinks across different LMSM modules, and all of LMSM modules are statistically 30 

significant. Multi-label classification analysis shows that the performance of LMSM modules 31 

is significantly higher than baseline’s performance, indicating the biological meanings of 32 

LMSM modules in classifying BRCA subtypes. The consistent results suggest that LMSM is 33 

robust in identifying lncRNA related miRNA sponge modules. Moreover, LMSM can be 34 

used to predict miRNA targets. Finally, LMSM outperforms a graph clustering-based strategy 35 

in identifying BRCA-related modules. Altogether, our study shows that LMSM is a 36 

promising method to investigate modular regulatory mechanism of sponge lncRNAs from 37 

heterogeneous data. 38 

Author summary 39 

Previous studies have revealed that long non-coding RNAs (lncRNAs), as microRNA 40 

(miRNA) sponges or competing endogenous RNAs (ceRNAs), can regulate the expression 41 

levels of messenger RNAs (mRNAs) by decreasing the amount of miRNAs interacting with 42 

mRNAs. In this work, we hypothesize that the “tug-of-war” between RNA transcripts for 43 

attracting miRNAs is across groups or modules. Based on the hypothesis, we propose a 44 

framework called LMSM, to identify LncRNA related MiRNA Sponge Modules. Based on 45 
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the two miRNA sponge modular competition principles, significant sharing of miRNAs and 46 

high canonical correlation between the sponge lncRNAs and mRNAs, LMSM is also capable 47 

of predicting miRNA targets. LMSM not only extends the ceRNA hypothesis, but also 48 

provides a novel way to investigate the biological functions and modular mechanism of 49 

lncRNAs in breast cancer. 50 

Introduction 51 

Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides (nts) 52 

in length [1]. More and more evidence has shown that lncRNAs play important functional 53 

roles in many biological processes, including human cancers [2-4]. As a major class of non-54 

coding RNAs (ncRNAs), lncRNAs have attracted increasing interest from researchers in their 55 

exploration of non-coding knowledge from the ‘junk’. 56 

Among the wide range of biological functions of lncRNAs, their role as competing 57 

endogenous RNAs (ceRNAs) or miRNA sponges is in the limelight. As a family of small 58 

ncRNAs (~18nts in length), miRNAs are important post-transcriptional regulators of gene 59 

expression [5,6]. According to the ceRNA hypothesis [7], lncRNAs contain abundant miRNA 60 

response elements (MREs) for competitively sequestering target mRNAs from miRNAs’ 61 

control. This regulation mechanism of lncRNAs when acting as miRNA sponges is highly 62 

implicated in various human diseases [8], including breast cancer [9]. For example, lncRNA 63 

H19, an imprinted gene is associated with breast cancer cell clonogenicity, migration and 64 

mammosphere-forming ability. By sponging miRNA let-7, H19 forms a H19/let-7/LIN28 65 

reciprocal negative regulatory circuit to play a critical role in the breast cancer stem cell 66 

maintenance [10]. 67 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2020. ; https://doi.org/10.1101/841502doi: bioRxiv preprint 

https://doi.org/10.1101/841502
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

To systematically investigate the functions of lncRNAs as miRNA sponges in human 68 

cancer, a series of computational methods have been developed to infer lncRNA related 69 

miRNA sponge interaction networks. The methods can be divided into three categories 70 

according to the statistical or computational techniques employed: pair-wise correlation based 71 

approach, partial association based approach, and mathematical modelling approach [11]. 72 

It is commonly known that to implement a specific biological function, genes tend to 73 

cluster or connect in the form of modules or communities. Consequently, based on the 74 

identified lncRNA related miRNA sponge interaction networks, several methods [12-17] 75 

using graph clustering algorithms were developed to identify lncRNA related miRNA sponge 76 

modules. For the identification of sponge lncRNA-mRNA pairs, most of existing methods 77 

only consider pair-wise correlation of them. Since the lncRNA related miRNA sponge 78 

interaction networks are created by simply putting together sponge lncRNA-mRNA pairs, 79 

when the expression levels of each sponge lncRNA-mRNA pair are highly correlated, the 80 

collective correlation between the set of sponge lncRNAs and the set of mRNAs in the same 81 

identified module is not necessarily high. As we know, the pair-wise positive correlation 82 

between the expression levels of a lncRNA and a mRNA pair is commonly used to identify 83 

the sponge interactions between them. For the identification of lncRNA related miRNA 84 

sponge modules, it is also necessary to investigate whether the clustered sponge lncRNAs and 85 

mRNAs in a module have high collective positive correlation or not. Moreover, these 86 

methods do not consider the influence of the shared miRNAs on the expression of the 87 

clustered sponge lncRNAs and mRNAs. It is known that the “tug-of-war” between sponge 88 

lncRNAs and mRNAs is mediated by miRNAs. Therefore, it is extremely important to 89 

consider the influence of the shared miRNAs in identifying lncRNA related miRNA sponge 90 

modules. 91 
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Recently, to study lncRNA, miRNA and mRNA-associated regulatory modules, Deng et 92 

al. [18] and Xiao et al. [19] have proposed two types of joint matrix factorization methods to 93 

identify mRNA-miRNA-lncRNA co-modules by integrating gene expression data and 94 

putative miRNA-target interactions. However, it is still not clear how the shared miRNAs 95 

influence the expression level of the sponge lncRNAs and mRNAs in a module. 96 

To address the above issues, we firstly hypothesize that sponge lncRNAs form a group to 97 

competitively release a group of target mRNAs from the control of the miRNAs shared by 98 

the lncRNAs and mRNAs (details see Section Methods). We name this hypothesis the miRNA 99 

sponge modular competition hypothesis in this paper. Then based on the hypothesis, we 100 

propose a novel framework to identify LncRNA related MiRNA Sponge Modules (LMSM). 101 

The framework firstly uses the WeiGhted Correlation Network Analysis (WGCNA) [20] 102 

method to generate lncRNA-mRNA co-expression modules. Next, by incorporating matched 103 

miRNA expression and putative miRNA-target interactions, LMSM applies three constraints 104 

(see Section Methods) to obtain lncRNA related miRNA sponge modules (also called LMSM 105 

modules in this paper). One of the constraints, high canonical correlation, is used to assess 106 

whether the group of sponge lncRNAs and the group of mRNAs in the same module have a 107 

high collective positive correlation or not. The other constraint, adequate sensitivity canonical 108 

correlation conditioning on a group of miRNAs, is used to evaluate the influence of the 109 

shared miRNAs on the clustered sponge lncRNAs and mRNAs. 110 

To evaluate the LMSM approach, we apply it to matched miRNA, lncRNA and mRNA 111 

expression data, and clinical information of breast cancer (BRCA) dataset from The Cancer 112 

Genome Atlas (TCGA). The modular analysis results demonstrate that LMSM can help to 113 

uncover modular regulatory mechanism of sponge lncRNAs in BRCA. LMSM is released 114 
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under the GPL-3.0 License, and is freely available through GitHub repository 115 

(https://github.com/zhangjunpeng411/LMSM). 116 

Materials and methods 117 

A hypothesis on miRNA sponge modular competition 118 

The ceRNA hypothesis [7] indicates that a pool of RNA transcripts (known as ceRNAs) 119 

regulate each other’s transcripts by competing for the shared miRNAs through MREs. Based 120 

on this unifying hypothesis, a large-scale gene regulatory network including coding and non-121 

coding RNAs across the transcriptome can be formed, and it plays critical roles in human 122 

physiological and pathological processes. However, by using MREs as letters of language, 123 

the hypothesis only depicts the crosstalk between individual RNA transcript (e.g. coding 124 

RNAs, lncRNAs, circRNAs or pseudogenes) and mRNA at the pair-wise interaction level 125 

and the crosstalk between RNA transcripts and mRNAs at the module level is still an open 126 

question.  127 

There has been evidence showing that for the same transcriptional regulatory program, 128 

biological process or signaling pathway, genes tend to form modules or communities to 129 

coordinate biological functions [21]. These modules correspond to functional units in 130 

complex biological systems, and they play important role in gene regulation. Based on these 131 

findings, in this paper, we hypothesize that regarding miRNA sponging, the crosstalk 132 

between different RNA transcripts is in the form of modular competition. We call the 133 

hypothesis the miRNA sponge modular competition hypothesis. 134 

As shown in Fig 1, based on our hypothesis, instead of having pair-wise competitions, 135 

miRNA sponges form groups to compete at module level for common miRNAs. Here, a 136 
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miRNA sponge module consists of a competing group (other coding RNA group, pseudogene 137 

group, circRNA group or lncRNA group) and a mRNA group. Here, other coding RNAs also 138 

include mRNAs. From the perspective of modularity, the hypothesis at module level extends 139 

the ceRNA hypothesis and provides a new channel to look into the functions and regulatory 140 

mechanism of miRNA sponges or ceRNAs. Since the available resources of lncRNAs are 141 

more abundant than those of other non-coding RNAs (e.g. circRNAs and pseudogenes), in 142 

this paper, we focus on the competition between lncRNAs and mRNAs to validate and 143 

demonstrate the proposed miRNA sponge modular competition hypothesis. Our goal is to 144 

discover lncRNA related sponge modules, or LMSM modules. Here each LMSM module 145 

contains a group of lncRNAs which compete collectively with a group of mRNAs for 146 

sponging the same set of miRNAs.  147 

 148 
Fig 1. An illustration of the miRNA sponge modular competition hypothesis. The four 149 
types of miRNA sponges (other coding RNAs, lncRNAs, circRNAs or pseudogenes), 150 
miRNAs and their target mRNAs are shown. Each miRNA sponge module consists of a 151 
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group of the same type of miRNA sponges, e.g. a group of lncRNAs and a group of target 152 
mRNAs. In the same module, the group of miRNA sponges competes with the group of 153 
target mRNAs for binding with a set of miRNAs. If the miRNA sponges win the competition, 154 
the group of target mRNAs will be released from repression and they will be translated into 155 
proteins. If the miRNA sponges lose the competition, the group of target mRNAs will be 156 
post-transcriptionally repressed and degraded. 157 

The LMSM framework 158 

Overview of LMSM. As shown in Fig 2, the proposed LMSM framework comprises two 159 

stages. In stage 1, the WGCNA method [20] is used for finding lncRNA-mRNA co-160 

expression modules from matched lncRNA and mRNA expression data. Then in stage 2, 161 

LMSM identifies LMSM modules from the lncRNA-mRNA co-expression modules using 162 

three criteria. That is, a co-expression module is considered as a LMSM  module if the group 163 

of lncRNAs and the group of mRNAs in the co-expression module: (1) have significant 164 

sharing of miRNAs, (2) have high canonical correlation between their expression levels, and 165 

(3) have adequate sensitivity canonical correlation conditioning on their shared miRNAs. 166 

LMSM checks the criteria one by one, and once a co-expression module does not meet a 167 

criterion, it is discarded and will not be checked for the next criterion. In the following, we 168 

will describe the two stages in detail. 169 

Identifying lncRNA-mRNA co-expression modules. For identifying lncRNA-mRNA co-170 

expression modules, we use the WGCNA method. WGCNA is a popular method for 171 

identifying co-expressed genes across samples and it can be used to identify clusters of highly 172 

co-expressed lncRNAs and mRNAs. In our task, we use the matched lncRNA and mRNA 173 

expression data as input to the WGCNA R package [20] to identify lncRNA-mRNA co-174 

expression modules. We use the scale-free topology criterion for soft thresholding. The 175 

coefficient of determination R2 (the range is from 0 to 1) is used to quantify the goodness of 176 

scale-free topology, and larger R2 values mean better scale-free topology. Normally, the R2 177 
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value larger than 0.8 in power law curve fit is ranked as good-level in the WGCNA method. 178 

Therefore, the desired minimum scale free topology fitting index R2 is set as 0.8 in this work. 179 

 180 
Fig 2. Workflow of LMSM. Firstly, we use the WGCNA method to infer lncRNA-mRNA 181 
co-expression modules from the matched lncRNA and mRNA expression. Then by using 182 
miRNA expression data and putative miRNA-target interactions, we infer lncRNA related 183 
miRNA sponge modules (LMSM) by applying three criteria: significant sharing of miRNAs 184 
by the group of lncRNAs and the group of target mRNAs in the same co-expression module, 185 
high canonical correlation between the lncRNA group and the target mRNA group, and 186 
adequate sensitivity canonical correlation between the lncRNA group and the target mRNA 187 
group conditioning on shared miRNAs. Each LMSM module must contain at least two 188 
sponge lncRNAs and two target mRNAs.  189 
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Inferring lncRNA related miRNA sponge modules. To identify lncRNA related miRNA 190 

sponge modules from the co-expression modules obtained in stage 1, we propose three 191 

criteria (detailed below) by following the key tenet of our miRNA sponge modular 192 

competition hypothesis. That is, a group of lncRNAs (acting as miRNA sponges) competes 193 

with a group of mRNAs with respect to a set of miRNAs shared by the two groups. 194 

The first criterion requires that the group of lncRNAs and the group of mRNAs in a 195 

miRNA sponge module have a significant sharing of a set of miRNAs. LMSM uses a 196 

hypergeometric test to assess the significance of the sharing of miRNAs between the group of 197 

lncRNAs and the group of mRNAs in a co-expression module, based on putative miRNA-198 

target interactions. The p-value for the test is computed as: 199 

                                               
1

1

1 1 1

1
1 1 1

0 1

1

1
L

i

M N M

i K i
p value

N

K

−

=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠− = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                                             (1) 200 

In the equation, N1 is the number of all miRNAs in the dataset, M1 and K1 denote the total 201 

numbers of miRNAs interacting with the group of lncRNAs and the group of mRNAs in the 202 

co-expression module respectively, and L1 (e.g. 3) is the number of miRNAs shared by the 203 

group of lncRNAs and the group of mRNAs in the co-expression module. 204 

The second criterion is to assure that the sponge modular competition between the group 205 

of lncRNAs and the group of mRNAs in a miRNA sponge module is strong enough. In 206 

existing work, to identify lncRNA related mRNA sponge interactions, a principle followed is 207 

that the expression level of a lncRNA and the expression level of a mRNA need to be 208 

strongly and positively correlated. Following the same principle on strong positive correlation 209 

in expression levels while considering our modular competition hypothesis, LMSM requires 210 
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the collective correlation between the expression levels of the group of lncRNAs and the 211 

group of target mRNAs in the same module to be strong and positive. To assess the collective 212 

correlation, we perform canonical correlation analysis [22] to obtain the canonical correlation 213 

between the group of lncRNAs and the group of mRNAs in a co-expression module. Let the 214 

two column vectors 1 2( , ,..., )T
mX x x x= and 1 2( , ,..., )T

nY y y y= represent the group of 215 

lncRNAs and the group of mRNAs in a co-expression module respectively. XXΣ , YYΣ and 216 

XYΣ are the variance or cross-covariance matrices calculated from the expression data of X 217 

and Y. The canonical correlation analysis seeks the canonical vectors a ( ma ∈ ¡ ) and b 218 

( nb∈¡ ) which maximize the correlation of ( , )T Tcorr a X b Y . The canonical correlation 219 

between the group of lncRNAs and the group of mRNAs, denoted as CClncR-mR, is then 220 

calculated as follows with the found canonical vectors: 221 

( )
T

T T XY
lncR mR T T

XX YY

a b
CC =corr a X ,b Y

a a b b
−

∑=
∑ ∑

                              (2) 222 

In this work, we use the PMA R package [23] to compute canonical correlation. 223 

Finally, the third criterion adapted from the sensitivity correlation [24] is employed to 224 

assess if the miRNAs shared by the group lncRNAs and the group of mRNAs in a module 225 

have large enough influence on the modular competition between the two groups of RNAs. 226 

To check according to this criterion, we incorporate miRNA expression data, and compute 227 

SCClncR-mR the sensitivity canonical correlation between the group of lncRNAs and the group 228 

of mRNAs in a co-expression module as follows:  229 

lncR mR lncR mR lncR mRSCC CC -PCC− − −=                                             (3) 230 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2020. ; https://doi.org/10.1101/841502doi: bioRxiv preprint 

https://doi.org/10.1101/841502
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

 

where PCClncR-mR is the partial canonical correlation between the group of lncRNAs and the 231 

group of mRNAs, i.e. the canonical correlation conditioning on the expression of their shared 232 

miRNAs in the co-expression module, or the canonical correlation between the two groups of 233 

RNAs when the influence of the shared miRNAs is eliminated. Therefore, from Eq. (3), we 234 

see that SCClncR-mR implies the correlation between the two groups of RNAs under the 235 

influence of their shared miRNAs. 236 

PCClncR-mR in Eq. (4) can be calculated as:  237 

2 21 1
lncR mR miR mR miR lncR

lncR mR

miR mR miR lncR

CC -CC CC
PCC

CC CC
− − −

−

− −

=
− −

                                   (4) 238 

where CCmiR-mR (CCmiR-lncR) is the canonical correlation between the set of miRNAs in the co-239 

expression module and the group of mRNAs (lncRNAs) in the co-expression module. 240 

In this study, empirically, a lncRNA-mRNA co-expressed module with p-value < 0.05 for 241 

the hypergeometric test of miRNA sharing (criterion 1), CClncR-mR > 0.8 for modular 242 

competition strength assessment (criterion 2) and SCClncR-mR > 0.1 for miRNA influence 243 

(criterion 3) is regarded as a lncRNA related miRNA sponge module (a LMSM module). 244 

Evaluating statistical significance of LMSM modules 245 

To evaluate the statistical significance of LMSM modules, we adapt the null model method 246 

proposed in [25]. The null model method hypothesizes that the shared miRNAs do not affect 247 

the correlation between two genes, i.e. the sensitivity correlation (the difference between 248 

correlation and partial correlation) between two genes is 0, and has been successfully applied 249 

to evaluate statistical significance of ceRNA interactions. Similar to [25], LMSM is also 250 

adapted from the Sensitivity Correlation (SC) method [24]. Therefore, the null model method 251 

can be applied to evaluate the statistical significance of LMSM modules. In our null model, 252 
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the null hypothesis is that the group of the shared miRNAs does not influence the canonical 253 

correlation between the group of lncRNAs and the group of mRNAs, i.e. SCClncR-mR = 0. For 254 

each LMSM module, a group of lncRNAs or a group of mRNAs corresponds to a gene, and a 255 

group of the shared miRNAs corresponds to a miRNA in the null model. For obtaining more 256 

precise p-values, the number of datasets sampled is set to 1E+06 for the null model. Since the 257 

sampling procedure is computationally intensive, we use the pre-computed sets of covariance 258 

matrices in SPONGE R package [25] to build our null model. Based on the constructed null 259 

model, we can infer adjusted p-values (adjusted by Benjamini and Hochberg method [26]) for 260 

each LMSM module. A LMSM module with adjusted p-value less than 0.05 is regarded as a 261 

statistically significant module. 262 

Application of LMSM in BRCA 263 

BRCA enrichment analysis. Instead of performing Gene Ontology (GO) and Kyoto 264 

Encyclopedia of Genes and Genomes Pathway (KEGG) enrichment analysis, to investigate 265 

whether an identified LMSM module is functionally associated with BRCA, we focus on 266 

conducting BRCA enrichment analysis by using a hypergeometric test. For a LMSM module, 267 

the p-value for the test is calculated as: 268 

                                     
2

2

2 2 2

1
2 2 2

0 2

2

1
L

i

M N M

i K i
p value

N

K

−

=

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠− = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑                                                     (5) 269 

where N2 is the number of genes (lncRNAs and mRNAs) in the dataset, M2 denotes the 270 

number of BRCA genes in the dataset, K2 represents the number of genes in the LMSM 271 

module, and L2 is the number of BRCA genes in the LMSM module. A LMSM module with 272 

p-value < 0.05 is regarded as a BRCA-related module. 273 
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Module biomarker identification in BRCA. The module survival analysis can imply whether 274 

the identified LMSM modules are good biomarkers of the metastasis risks of cancer patients 275 

or not, and it can give us the hint whether the LMSM modules may be related to and 276 

potentially affect the metastasis or survival of cancer patients. For each BRCA sample, we fit 277 

the multivariate Cox model (proportional hazards regression model) [27] using the genes 278 

(lncRNAs and mRNAs) in LMSM modules to compute its risk score. All the BRCA samples 279 

are equally divided into the high risk and the low risk groups according to their risk scores. 280 

The Log-rank test is used to evaluate the difference of each LMSM module between the high 281 

and the low risk BRCA groups. Moreover, we also calculate the proportional hazard ratio 282 

(HR) between the high and the low risk BRCA groups. In this work, the survival R package 283 

[28] is utilized, and a LMSM module with Log-rank p-value < 0.05 and HR > 2 is regarded 284 

as a module biomarker in BRCA. 285 

Identification of BRCA subtype-specific modules. As is known, BRCA is a heterogeneous 286 

disease with several molecular subtypes, and the choice of chemotherapy for each BRCA 287 

subtype is different. This diversity indicates that the genetic regulation of each BRCA 288 

subtype is specific. To identify BRCA subtype-specific modules, we firstly identify BRCA 289 

molecular subtypes using the PAM50 classifier [29]. By using a 50-gene subtype predictor, 290 

the PAM50 classifier classifies a BRCA sample into one of the five “intrinsic” subtypes: 291 

Luminal A (LumA), Luminal B (LumB), HER2-enriched (Her2), Basal-like (Basal) or 292 

Normal-like (Normal). In this work, we use the genefu R package [30] to predict molecular 293 

subtypes of each BRCA sample in the dataset used in our study. 294 

To identify BRCA subtype-specific LMSM modules, we firstly need to estimate the 295 

enrichment scores of LMSM modules in BRCA samples. To calculate the enrichment score 296 

of each LMSM module in BRCA samples, the gene set variation analysis (GSVA) method 297 
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[31] is used. To calculate the enrichment score, the GSVA method uses the Kolmogorov-298 

Smirnov (KS) like random walk statistic as follows: 299 

                                      1 1
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∑

l l

l                             (6) 300 

where τ (τ =1 by default) is the weight of the tail in the random walk, rij is the normalized 301 

expression-level statistics of the i-th gene in the j-th sample as defined in [31], kγ is the k-th 302 

LMSM module, ( ( ) )kI g i γ∈ is the indicator function on whether the i-th gene belongs to the 303 

LMSM module kγ , | |kγ is the number of genes in the k-th LMSM module, and p is the 304 

number of genes in the dataset. 305 

To transform the KS like random walk statistic into an enrichment score (ES, also called 306 

GSVA score), we calculate the maximum deviation from zero of the random walk of the j-th 307 

sample with respect to the k-th LMSM module in the following: 308 

                                                    max

1,...,
[arg max ( ( ( )))]jk jk jk

p
ES v abs v

=
=

l
l                                        (7) 309 

For each LMSM module kγ , the formula generates a distribution of enrichment scores that is 310 

bimodal (see the reference [31] for a more detailed description). 311 

Based on the enrichment scores of LMSM modules in each BRCA sample, we further 312 

identify two types of BRCA subtype-specific LMSM modules, up-regulated modules and 313 

down-regulated modules. For one type of regulation pattern (up or down regulation), a 314 

LMSM module is regarded to be specific to a BRCA subtype. For an up-regulated BRCA 315 

subtype-specific LMSM module, the enrichment score of the LMSM module in the specific 316 

BRCA subtype samples is significantly larger than the score in the other BRCA subtype 317 
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samples. For a down-regulated BRCA subtype-specific LMSM module, the enrichment score 318 

of the LMSM module in the specific BRCA subtype samples is significantly smaller than the 319 

score in the other BRCA subtype samples. For example, if a LMSM module kγ  is up-320 

regulated Basal-like specific, the enrichment scores of the LMSM module in Basal-like 321 

samples should be significantly larger than those in Luminal A, Luminal B, HER2-enriched 322 

and Normal-like samples. In this work, for each LMSM module, we use Welch's t-test [32] to 323 

calculate the significance p-value for the difference of the average enrichment scores between 324 

any two BRCA subtype samples. Given a BRCA subtype, a LMSM module is considered as 325 

an up-regulated (or down-regulated) module specific to this BRCA subtype if the module’s 326 

average enrichment score in samples of the given subtype is higher (or smaller) than the 327 

average enrichment score in samples of any other subtype and the significance p-value of the 328 

Welch’s t-test between the samples of this subtype and any other subtype is less than 0.05. 329 

Performance of LMSM modules in classifying BRCA subtypes. In this section, to check the 330 

biological relevance of the discovered LMSM modules, we conduct module classification of 331 

BRCA subtypes. Here, classifying BRCA subtypes (LumA, LumB, Her2, Basal and Normal) 332 

is a multi-class classification (also known as a special case of multi-label classification). To 333 

understand the classification performance of the feature genes in each LMSM module, we 334 

apply a state-of-the-art multi-label learning strategy called Binary Relevance (BR) [33] 335 

implemented in the utiml R package [34] to conduct multi-label classification analysis. For 336 

the BR strategy, we use the Support Vector Machine (SVM) classifier [35] with default 337 

parameters implemented in e1071 R package [36] as the base algorithm to build the multi-338 

label model. We select two commonly used multi-label classification measures: Subset 339 

accuracy and Hamming loss, and conduct 10-fold cross-validation to evaluate the 340 

performance of each LMSM module. In this work, Subset accuracy denotes the percentage of 341 
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correct predictions and Hamming loss is the fraction of wrong predictions to the total number 342 

of predictions. Higher values of Subset accuracy and smaller values of Hamming loss 343 

indicate better classification performance. In addition, for the evaluation, we use the baseline 344 

method in [37], a commonly used multi-label classification method as the baseline for 345 

comparison. The base algorithm of the baseline method is also the SVM classifier with 346 

default parameters implemented in e1071 R package [36]. 347 

Results 348 

Heterogeneous data sources 349 

We collect matched miRNA, lncRNA and mRNA expression data, and clinical data of BRCA 350 

dataset from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/). A lncRNA 351 

or mRNA without a corresponding gene symbol in the expression data of BRCA dataset is 352 

removed. To obtain a unique expression value for replicates of miRNAs, lncRNAs or 353 

mRNAs, we compute the average expression value of the replicates. As a result, we obtain 354 

the matched expression data of 674 miRNAs, 12711 lncRNAs and 18344 mRNAs in 500 355 

BRCA samples. 356 

We retrieve putative miRNA-target interactions (including miRNA-lncRNA and miRNA-357 

mRNA interactions) from several high-confidence miRNA-target interaction databases and 358 

use the combined database search results. Specifically, the putative miRNA-lncRNA 359 

interactions are obtained from NPInter v3.0 [38] and the experimental module of DIANA-360 

LncBase v2.0 [39], and miRNA-mRNA interactions are from miRTarBase v8.0 [40], 361 

TarBase v7.0 [41] and miRWalk v2.0 [42]. 362 
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The BRCA related mRNAs are from DisGeNET v5.0 [43] and COSMIC v86 [44], and the 363 

BRCA related lncRNAs are from LncRNADisease v2.0 [45], Lnc2Cancer v2.0 [46] and 364 

MNDR v2.0 [47]. The ground truth of lncRNA related miRNA sponge interactions is 365 

obtained by integrating the interactions from miRSponge [48], LncCeRBase [49] and 366 

LncACTdb v2.0 [50]. 367 

Most of the mediating miRNAs act as crosslinks across LMSM modules 368 

Following the steps shown in Fig 2, we have identified 17 LMSM modules (details can be 369 

seen in S1 Data). The average size of the identified modules is 672.53 and the average 370 

number of the shared miRNAs in a module is 232.82. In total, there are 549 unique miRNAs 371 

mediating the 17 LMSM modules, and 90.16% (495 out of 549) miRNAs mediate at least 372 

two LMSM modules (details can be seen in S2 Data). This result indicates that most of the 373 

mediating miRNAs act as crosslinks across different LMSM modules. 374 

LMSM modules are all statistically significant 375 

In this section, by computing null-model-based p-values, we evaluate whether the identified 376 

LMSM modules are statistically significant or not. As a result, the adjusted p-values for the 377 

identified 17 LMSM modules (details can be seen in S3 Data) are all statistically significant 378 

(adjusted p-value = 1.00E-06). This result demonstrates that LMSM modules are all 379 

statistically significant. 380 

Most of LMSM modules are implicated in BRCA 381 

To investigate whether the identified LMSM modules are related to BRCA or not, we 382 

conduct BRCA enrichment analysis and identify BRCA module biomarkers using the 383 

methods described in Section Methods. For the BRCA enrichment analysis, we have 384 
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collected a list of 4819 BRCA genes (734 BRCA lncRNAs and 4085 BRCA mRNAs) 385 

associated with the matched lncRNA and mRNA expression data (details in S4 Data). As 386 

shown in Table 1, 10 out of 17 LMSM modules are functionally enriched in BRCA at a 387 

significant level (p-value < 0.05). In Table 2, 15 out of 17 LMSM modules are regarded as 388 

module biomarkers in BRCA at a significant level (Log-rank p-value < 0.05 and HR > 2). 389 

Particularly, 90% (9 out of 10, excepting LMSM 14) of the BRCA-related LMSM modules 390 

can act as module biomarker in BRCA. These results show that most of LMSM modules are 391 

functionally implicated in BRCA. 392 

Table 1. BRCA-related LMSM modules. L2 is the number of BRCA genes in each LMSM 393 
module, K2 represents the number of genes in each LMSM module, the number of BRCA 394 
genes in the dataset (M2) is 4819, and the number of genes in the dataset (N2) is 31055.  395 

Module ID L2 K2 p-value 

LMSM 2 327 1338 0 
LMSM 3 259 1340 7.34E-05 
LMSM 4 78 392 1.14E-02 
LMSM 5 89 449 8.07E-03 
LMSM 6 88 370 1.97E-05 
LMSM 8 275 880 0 
LMSM 12 24 110 4.95E-02 
LMSM 13 20 76 1.05E-02 
LMSM 14 252 1004 8.88E-16 
LMSM 16 48 182 1.11E-04 

Table 2. Survival analysis of LMSM modules in BRCA. HRlow95 and HRup95 represent 396 
the lower and upper of 95% confidence interval of HR, respectively.  397 

Module ID Chi-square p-value HR HRlow95 HRup95 

LMSM 1 170.37  0 10.75  5.88  19.65  
LMSM 2 107.34  0 6.03  3.12  11.66  
LMSM 3 90.62  0 5.43  2.94  10.01  
LMSM 4 138.81  0 14.94  8.83  25.27  
LMSM 5 148.49  0 8.64  4.63  16.13  
LMSM 6 142.64  0 13.40  7.83  22.92  
LMSM 7 161.91  0 13.97  8.01  24.36  
LMSM 8 103.63  0 5.91  3.07  11.37  
LMSM 10 144.86  0 8.63  4.74  15.71  
LMSM 11 120.79  0 9.49  5.55  16.23  
LMSM 12 49.31  2.19E-12 5.46  3.38  8.80  
LMSM 13 60.08  9.10E-15 5.72  3.48  9.41  
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LMSM 15 83.26  0 12.00  7.46  19.32  
LMSM 16 110.94  0 11.25  6.79  18.66  
LMSM 17 106.96  0 9.14  5.42  15.41  

LMSM modules are mostly BRCA subtype-specific 398 

In this section, we firstly divide the 500 BRCA samples into five “intrinsic” subtypes 399 

(Luminal A, Luminal B, HER2-enriched, Basal-like and Normal-like). The numbers of 400 

LumA, LumB, Her2, Basal and Normal samples are 190, 155, 52, 85 and 18, respectively. 401 

Then we calculate the enrichment scores of the identified 17 LMSM modules in the BRCA 402 

subtype samples respectively (details in S5 Data). 403 

As illustrated in Fig 3, out of the 17 LMSM modules, 4 and 6 modules are identified as 404 

up-regulated and down-regulated BRCA subtype-specific LMSM modules, respectively. For 405 

the up-regulated BRCA subtype-specific LMSM modules, the numbers of Basal-specific, 406 

LumB-specific and Normal-specific modules are 1, 1 and 2, respectively. The numbers of 407 

Basal-specific, LumB-specific and Normal-specific modules are 3, 1 and 2 respectively 408 

among the down-regulated BRCA subtype-specific LMSM modules. In particular, only 1 409 

module (LMSM 2) can act as both up-regulated and down-regulated BRCA subtype-specific 410 

LMSM module. In total, the unique number of BRCA subtype-specific LMSM modules is 9, 411 

indicating that most of LMSM modules are BRCA subtype-specific. 412 
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 413 
Fig 3. Heatmap of the enrichment scores of BRCA subtype-specific LMSM modules in 414 
five BRCA subtype samples. (A) Up-regulated BRCA subtype-specific LMSM modules. (B) 415 
Down-regulated BRCA subtype-specific LMSM modules.  416 

The performance of LMSM modules is significantly higher than baseline’s performance 417 

in classifying BRCA subtypes  418 

For the identified 17 LMSM modules, the average Subset accuracy and Hamming loss in 419 

classifying BRCA subtypes is 0.7547 and 0.0892, respectively (details can be seen in S6 420 

Data), The Subset accuracy and Hamming loss of the baseline are 0.3800 and 0.2480, 421 

respectively. By using Welch’s t-test method, the Subset accuracy achieved using the 17 422 

LMSM modules is significantly larger (better) than the Subset accuracy of the baseline (p-423 

value < 2.20E-16), and the Hamming loss of the 17 LMSM modules is significantly smaller 424 

(better) than the Hamming loss of the baseline (p-value < 2.20E-16). The better performance 425 

than the baseline method indicates that LMSM modules are biological meaningful in 426 

classifying BRCA subtypes. 427 
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Several lncRNA-related miRNA sponge interactions are experimentally confirmed 428 

For the ground truth used in the validation, we have collected 581 experimentally validated 429 

lncRNA-related miRNA sponge interactions associated with the matched lncRNA and 430 

mRNA expression data (details in S4 Data). After we merge the sponge lncRNA-mRNA 431 

pairs in the identified 17 LMSM modules, we have predicted 1471664 unique lncRNA-432 

related miRNA sponge interactions (details at https://github.com/zhangjunpeng411/LMSM). 433 

For each LMSM module, the number of shared miRNAs, lncRNAs, mRNAs, predicted 434 

lncRNA-related miRNA sponge interactions can be seen in S7 Data. 435 

As shown in Table 3, there are 4 LMSM modules (LMSM 2, LMSM 3, LMSM 5 and 436 

LMSM 8) containing 14 experimentally validated lncRNA-related miRNA sponge 437 

interactions in total. It is noted that all the lncRNAs and mRNAs in these confirmed lncRNA-438 

related miRNA sponge interactions are BRCA-related genes, indicating they may have 439 

potentially involved in BRCA. 440 

Table 3. Validated lncRNA-related miRNA sponge interactions. 441 

Module ID Validated lncRNA-related miRNA sponge interactions 

LMSM 2 H19: HMGA2, H19:IGF2, H19:ITGB1, H19: TGFB1, H19: VIM, 
H19:RUNX1, H19:CDH13, H19:KLF4, H19:TGFBI, H19:VDR 

LMSM 3 LINC00152: MCL1 
LMSM 5 NEAT1: EMP2 
LMSM 8 LINC00324: BTG2, DLEU2: CCNE1 

LMSM is capable of predicting miRNA targets 442 

LMSM use high-confidence miRNA-target interactions as seeds to predict miRNA-target 443 

interactions. A miRNA-mRNA or miRNA-lncRNA pair in a LMSM module has the potential 444 

to be a miRNA-target pair for the following reasons. Firstly, at sequence level, the sponge 445 

lncRNAs and mRNAs in each LMSM module have a significant sharing of miRNAs. 446 

Secondly, at expression level, the sponge lncRNAs and mRNAs in each LMSM module are 447 
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highly correlated. As a result, the sponge lncRNAs and mRNAs of each LMSM module have 448 

a high chance to be target genes of the shared miRNAs. Thus, based on the identified LMSM 449 

modules, we have predicted 2820524 unique miRNA-target interactions (including 2023304 450 

miRNA-lncRNA and 797220 miRNA-mRNA interactions) (details at 451 

https://github.com/zhangjunpeng411/LMSM). For each LMSM module, the numbers of 452 

predicted miRNA-lncRNA interactions and miRNA-mRNA interactions can be seen in S7 453 

Data. 454 

In addition, we investigate the intersection of the miRNA-target interactions predicted by 455 

LMSM with the other well-cited miRNA-target prediction methods. In terms of miRNA-456 

mRNA interactions, we select TargetScan v7.2 [51], DIANA-microT-CDS v5.0 [52], 457 

starBase v3.0 [53] and miRWalk v3.0 [54] for investigation. We choose starBase v3.0 [53] 458 

and DIANA-LncBase v2.0 [39] for investigation in terms of miRNA-lncRNA interactions. 459 

As shown in the UpSet plot [55] of Fig 4A, the number of miRNA-mRNA interactions 460 

identified by all the five methods is only 21842. However, the percentage of overlap between 461 

LMSM and each of the other four methods achieves ~63.74% (1289620 out of 2023304). As 462 

shown in Fig 4B, the number of miRNA-lncRNA interactions identified by all the three 463 

methods is only 1160. Since the miRNA-lncRNA interactions are still limited, most of the 464 

miRNA-lncRNA interactions (~93.90%, 748609 out of 797220) are individually predicted by 465 

LMSM.  466 
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 467 
Fig 4. Overlaps and differences between predicted miRNA-target interactions by 468 
LMSM and other methods. (A) Predicted miRNA-mRNA interactions between LMSM and 469 
TargetScan, DIANA_microT_CDS, starBase, miRWalk. (B) Predicted miRNA-lncRNA 470 
interactions between LMSM and starBase, DIANA_LncBase. Each column corresponds to an 471 
exclusive intersection that includes the elements of the sets denoted by the dark or red circles, 472 
but not of the others. The overlap size between different methods denotes exclusive overlaps, 473 
i.e. the overlap set not in a subset of any other overlap set. 474 
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Graph clustering-based strategy [12-17] is an alternative approach to identifying lncRNA 476 

related miRNA sponge modules. As there is no graph clustering-based strategy specifically 477 

designed for finding lncRNA related miRNA sponge modules, so we create a baseline Graph 478 

Clustering-based method (called GC in this paper) which uses well-known network 479 

construction and graph clustering methods as described in the following. The GS method 480 

includes two steps: i) identifying lncRNA related miRNA sponge interaction network, and ii) 481 

identifying lncRNA related miRNA sponge modules from the identified network. In step 1, 482 

we adapt the well-cited Sensitivity Correlation (SC) method [24] implemented in the 483 

miRspongeR R package [56] to infer lncRNA related miRNA sponge interaction network. A 484 

lncRNA-mRNA pair is considered as an interacting pair in the network if they have 485 

significant sharing of the miRNAs, significant correlation and adequate sensitivity correlation. 486 

We require that the pairs must share at least 3 miRNAs and their sensitivity correlation (the 487 

difference between correlation and partial correlation) must be larger than 0.1. The 488 

statistically significance of the miRNA sharing and positive correlations are tested using 489 

hypergeometric test and Welch's t-test respectively, with a significant level at 0.05. In step 2, 490 

we use the well-cited Markov cluster (MCL) algorithm [57] to infer lncRNA related miRNA 491 

sponge modules. Here, each obtained cluster corresponds to a module. Each module should 492 

contain at least 2 sponge lncRNAs and 2 target mRNAs. In total, by using the GC method, we 493 

have obtained 108 lncRNA related miRNA sponge modules. 494 

We compare LMSM and GC in terms of the percentage of BRCA-related modules, the 495 

percentage of module biomarkers in BRCA, the classification performance (mean Subset 496 

accuracy and mean Hamming loss) in classifying BRCA subtypes, and the number of 497 

validated lncRNA-related miRNA sponge interactions. As shown in Table 4, the comparison 498 

result indicates that LMSM always performs better than the GC method. The detailed results 499 

of the GC method can be seen in S8 Data. 500 
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Table 4. Comparison results between LMSM and GC. 501 

Method %BRCA-related 
modules 

%Module 
biomarkers 

Mean Subset 
accuracy 

Mean Hamming 
loss 

#Validated 
interactions 

LMSM 58.82% 88.24% 0.7547 0.0892 14 
GC 32.41% 66.67% 0.6586 0.1319 2 

LMSM is robust 502 

To demonstrate the robustness of the LMSM workflow, we use the sparse group factor 503 

analysis (SGFA) method [58], instead of the WGCNA method to identify lncRNA-mRNA 504 

co-expression modules. The SGFA method is extended from the group factor analysis (GFA) 505 

method [59-61], and it can reliably infer biclusters (modules) from multiple data sources, and 506 

provide predictive and interpretable structure existing in any subset of the data sources. Given 507 

B biclusters to be identified, the SGFA method assigns each column (lncRNA or mRNA) or 508 

row (sample) a grade of membership (association) belonging to these biclusters. The range of 509 

the values of the associations is [-1, 1]. We use the absolute value of association (AVA) to 510 

evaluate the strength of lncRNAs and mRNAs belonging to a bicluster, and the cutoff of AVA 511 

is also set to 0.8. Specifically, we use the GFA R package [58] to identify lncRNA-mRNA 512 

co-expression modules. The parameter settings for inferring lncRNA-related miRNA sponge 513 

modules are the same. 514 

By using the SGFA method, we have identified 51 LMSM modules (details can be seen in 515 

S1 Data). The average size of these LMSM modules is 277.63 and the average number of the 516 

shared miRNAs is 135.65. There are 490 unique miRNAs mediating the 51 LMSM modules, 517 

and 84.90% (416 out of 490) miRNAs mediate at least two LMSM modules (details can be 518 

seen in S2 Data). As the result obtained using the WGCNA method, the result with the SGFA 519 

method also implies that the mediating miRNAs mostly act as crosslinks across different 520 

LMSM modules. In addition, by using a null-model-based p-value computation method, the 521 
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identified 51 LMSM modules are also all statistically significant with adjusted p-value ≤  522 

5.00E-06 (details can be seen in S3 Data).  523 

As shown in S1 Table of S1 File, 3 out of the 51 LMSM modules are functionally 524 

enriched in BRCA at a significant level (p-value < 0.05). Moreover, 49 out of the 51 LMSM 525 

modules are regarded as module biomarkers in BRCA (see in S2 Table of S1 File). The 526 

results indicate that most of LMSM modules are related to BRCA. 527 

We also compute the enrichment scores of the identified 51 LMSM modules in the BRCA 528 

subtype samples (details in S5 Data). As illustrated in S1 Fig of S1 File, out of the 51 LMSM 529 

modules, 33 and 24 modules are regarded as up-regulated and down-regulated BRCA 530 

subtype-specific LMSM modules, respectively. For the up-regulated BRCA subtype-specific 531 

LMSM modules, the numbers of Basal-specific, Her2-specific, LumB-specific and Normal-532 

specific modules are 27, 2, 2 and 2, respectively. The numbers of Basal-specific, Her2-533 

specific, LumA-specific, LumB-specific and Normal-specific modules are 2, 3, 15, 3 and 1 534 

respectively for the down-regulated BRCA subtype-specific LMSM modules. Particularly, 16 535 

modules can act as both up-regulated and down-regulated BRCA subtype-specific LMSM 536 

module. Overall, the unique number of BRCA subtype-specific LMSM modules is 41. This 537 

result also indicates that the identified LMSM modules are mostly BRCA subtype-specific. 538 

The average value of Subset accuracy and Hamming loss of the identified 51 LMSM 539 

modules in classifying BRCA subtypes is 0.6921 and 0.1135, respectively (details can be 540 

seen in S6 Data). In classifying BRCA subtypes, the baseline value of Subset accuracy and 541 

Hamming loss is 0.3800 and 0.2480, respectively. By using Welch’s t-test method, the value 542 

of Subset accuracy for 51 LMSM modules is significantly larger (better) than the baseline 543 

value of Subset accuracy (p-value < 2.20E-16), and the value of Hamming loss for 51 LMSM 544 

modules is significantly smaller (better) than the baseline value of Hamming loss (p-value < 545 
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2.20E-16). The better performance than the baseline method also indicates that LMSM 546 

modules are biological meaningful in classifying BRCA subtypes. 547 

Moreover, we have predicted 605456 unique lncRNA-related miRNA sponge interactions 548 

in the identified 51 LMSM modules (details at https://github.com/zhangjunpeng411/LMSM). 549 

The number of the shared miRNAs, lncRNAs, mRNAs, predicted lncRNA-related miRNA 550 

sponge interactions of each LMSM module can be seen in S7 Data. Since the experimentally 551 

validated lncRNA-related miRNA sponge interactions are still limited, only 4 LMSM 552 

modules containing 4 lncRNA-related miRNA sponge interactions (see S3 Table of S1 File) 553 

are experimentally validated. All lncRNAs and mRNAs in the confirmed lncRNA-related 554 

miRNA sponge interactions are also BRCA-related genes. 555 

LMSM also has identified a large number of potential miRNA-target interactions 556 

(1646449 in total, including 435345 miRNA-mRNA and 1211104 miRNA-lncRNA 557 

interactions, details at https://github.com/zhangjunpeng411/LMSM). The number of 558 

predicted miRNA-lncRNA interactions, predicted miRNA-mRNA interactions, putative 559 

miRNA-lncRNA interactions and putative miRNA-mRNA interactions can be seen in S7 560 

Data. As illustrated in S2 Fig of S1 File, the number of the miRNA-mRNA interactions 561 

identified by all the five methods is 4897 and the number of the miRNA-lncRNA interactions 562 

identified by all the three methods is 1149. Most of the identified miRNA-mRNA interactions 563 

by LMSM (~58.55%, 254910 out of 435345) are also predicted by one of the other four 564 

methods. In terms of the predicted miRNA-lncRNA interactions, ~94.23% (1141232 out of 565 

1211104) miRNA-lncRNA interactions are also individually predicted by LMSM. 566 

Finally, in terms of the percentage of BRCA-related modules, the percentage of module 567 

biomarkers in BRCA, the classification performance (mean Subset accuracy and mean 568 

Hamming loss) in classifying BRCA subtypes, and the number of validated lncRNA-related 569 
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miRNA sponge interactions, LMSM also generally performs better than the GC method (see 570 

S4 Table of S1 File). 571 

Altogether, the above results are consistent with those obtained using the WGCNA 572 

method, indicating that our LMSM workflow is robust for studying lncRNA-related miRNA 573 

sponge modules. 574 

Discussion 575 

The crosstalk between different RNA transcripts in a miRNA-dependent manner forms a 576 

complex miRNA sponge interaction network and depicts a novel layer of gene expression 577 

regulation. Until now, several types of RNA transcripts, e.g. lncRNAs, pseudogenes, 578 

circRNAs and mRNAs, have been confirmed to act as miRNA sponges. Since lncRNAs are a 579 

large class of ncRNAs and function in many aspects of cell biology, including human 580 

cancers, we focus on identifying lncRNA related miRNA sponge modules in this work. 581 

By integrating multiple data sources, previous studies mainly investigate the identification 582 

of lncRNA related miRNA sponge interaction network. Based on the identified lncRNA 583 

related miRNA sponge interaction network, they use graph clustering algorithms to further 584 

infer lncRNA related miRNA sponge modules. Different from existing computational 585 

methods on lncRNA related miRNA sponge modules, in this work, we propose a novel 586 

method named LMSM to directly identify lncRNA related miRNA sponge modules from 587 

heterogeneous data. It is noted that the LMSM method depends on our presented hypothesis 588 

of miRNA sponge modular competition. In the hypothesis, miRNA sponges tend to form a 589 

group to compete with a group of target mRNAs for binding with miRNAs. 590 
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We have applied the LMSM method to the BRCA dataset from TCGA. For the putative 591 

miRNA-target interactions, we integrate high-confidence miRNA-target interactions from 592 

several databases. The analysis results demonstrate that our LMSM method is useful in 593 

identifying lncRNA related miRNA sponge modules, and it can help with understanding 594 

regulatory mechanism of lncRNAs. 595 

LMSM is a flexible method to investigate miRNA sponge modules in human cancer. 596 

Firstly, any biclustering or clustering algorithm (e.g. the joint non-negative matrix 597 

factorization methods presented by Deng et al. [18] and Xiao et al. [19]) can be plugged in 598 

stage 1 of LMSM to identify lncRNA-mRNA co-expression modules. The only condition for 599 

using these algorithms is that they can be used to identify biclusters or clusters from high-600 

dimensional expression data. Secondly, LMSM is a parametric model, and the parameter 601 

settings of LMSM can be replaced according to the practical requirements of researchers. For 602 

example, the threshold of the three metrics in stage 2 for identifying lncRNA related miRNA 603 

sponge modules can be looser or stricter. Thirdly, LMSM can also be extended to study other 604 

ncRNA (e.g. circRNA and pseudogene) related miRNA sponge modules. For instance, if we 605 

change the matched lncRNA expression data and the miRNA-lncRNA interactions to 606 

matched circRNA expression data and the miRNA-circRNA interactions respectively, the 607 

pipeline of LMSM is to identify circRNA related miRNA sponge modules. 608 

It is noted that each LMSM module contains many sponge lncRNAs and mRNAs, so it is 609 

hard to experimentally validate such a module by follow-up wet-lab experiments. This is a 610 

common issue of existing computational methods, including LMSM. We suggest that 611 

biologists can select some sponge lncRNAs and mRNAs of interest in each LMSM module, 612 

and then validate the modular competition between the selected sponge lncRNAs and target 613 

mRNAs. We believe that LMSM is still useful in shortlisting high-confidence sponge 614 
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lncRNAs and mRNAs for experimental validation. For example, previous study [62] has 615 

shown that lncRNA MIR22HG is functionally complementary to lncRNA H19. In the 616 

identified LMSM module no. 2 (LMSM 2), lncRNA H19 is experimentally validated to 617 

compete with 10 target mRNAs (HMGA2, IGF2, ITGB1, TGFB1, VIM, RUNX1, CDH13, 618 

KLF4, TGFBI and VDR). Thus, biologists can select 2 lncRNAs (H19 and MIR22HG) and 10 619 

target mRNAs (HMGA2, IGF2, ITGB1, TGFB1, VIM, RUNX1, CDH13, KLF4, TGFBI and 620 

VDR) in LMSM 2 to validate the modular competition between them.  621 

Taken together, based on the hypothesis of miRNA sponge modular competition, we 622 

propose a new approach to identifying lncRNA related miRNA sponge modules by 623 

integrating expression data and miRNA-target binding information. Our method not only 624 

extends the ceRNA hypothesis, but also provides a novel way to investigate the biological 625 

functions and modular mechanism of lncRNAs in BRCA. We believe that our method can be 626 

also applied to other human cancer datasets assists in human cancer research. 627 

Supporting information 628 

S1 Data. The identified LMSM modules.  629 

S2 Data. The distribution of the shared miRNAs in LMSM modules.  630 

S3 Data. Statistically significant analysis results of LMSM modules. 631 

S4 Data. BRCA-related genes and experimentally validated lncRNA related miRNA sponge interactions. 632 

S5 Data. The enrichment scores of the identified LMSM modules in the BRCA subtype samples. 633 

S6 Data. Classification analysis results of LMSM modules in classifying BRCA subtypes. 634 

S7 Data. The number of shared miRNAs, lncRNAs, mRNAs, predicted interactions for each LMSM 635 

module.  636 

S8 Data. The results of a graph clustering-based strategy. 637 
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S1 File. Supporting file. Supplementary file. 638 
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