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Abstract 

Brain electrical activity in different spectral bands has been associated with diverse mechanisms 

underlying Brain function. Deeper reconnoitering of these mechanisms entails mapping in 

grayordinates (Gray Matter coordinates), the spectral features of electrophysiological Brain signals. 

Such mapping is possible through MEG/EEG signals, due to their wide Brain coverage and excellent 

temporal resolution in reflecting neural -electrical- activity. This process -coined Electrophysiological 

Source Imaging (ESI)- can only produce approximated images of Brain activity, which are severely 

distorted by leakage: a pervasive effect in almost any imaging technique. It has been proposed that 

leakage control to tolerable levels can be achived through using priors or regularization within ESI, 

but their implementation commonly yields meager statistical guaranties. We introduce bottom-up 

control of leakage: defined as maximum Bayesian evidence search braced with priors precisely on 

the spectral responses. This is feasible due to an instance of Bayesian learning of complex valued 

data: spectral Structured Sparse Bayesian Learning (sSSBL). “Spectral” refers to specific spatial 

topologies that are reflected by the MEG/EEG spectra. We also present a new validation benchmark 

based on the concurrency between high density MEG and its associated pseudo-EEG of lower density. 

This reveals that prevealing methods like eLORETA and LCMV can fall short of expectations 

whereas sSSBL exibits an exellent performance. A final qualitative assesment reveals that sSSBL can 

outline brain lessions using just low density EEG, according to the T2 MRI shine through of the 

affected areas. 
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Introduction  

Band specific synchronized -spectral- activity is the underlying mechanism for large scale Brain 

integration or networks of functionally specialized regions from which coherent behavior and 

cognition emerge [Engel et al., 2001; Varela et al. 2001; Valdes-Sosa et al 1992; Nunez and 

Srinivasan 2006; Vidaurre et al 2018]. Its cause dwells mostly microscopically in the neural 

architecture and interactions within layers at the cortical columns [Freeman 1975; Jirsa 1997], but 

still macroscopically its topological organization -spatial distribution and connectivity pattern- at the 

macroscopic level possesses a tremendous descriptive power in behavioral and clinical aspects of 

healthy, developing, aging, and diseased human brains [Bullmore and Sporns 2009; Rubinov and 

Sporns 2010; Sporns 2011].  

An important part in describing this spectral activity involves mapping its spatial distribution alone, 

by the localization of responsive areas at the observational level of experimental techniques like 

Functional Magnetic Resonance Imaging (fMRI) and Electro/Magnetoencephalogram (EEG/MEG) 

[Mantini 2007]. For either technique, mapping these responses cannot be tackled directly from the 

observed data: the spectral composition of fMRI signals is severely distorted (spectral leakage) by 

the slow metabolic-hemodynamic cascade of processes following the actual neural activations 

[Buxton 1998; Logothetis 2001], whereas EEG/MEG signals are affected in a different manner, their 

low resolution and blurring effect of head volume conduction (activation leakage) [Haufe et al 2013, 

Stokes et al 2017, Van de Steen et al 2019].  

However, MEG/EEG signals have purely electrophysiological causes. Synchronic neural activity, at 

both microscopic and macroscopic Brain scales, elicit observable currents that are sensed through 

EEG electrodes or MEG gradiometers. Therefore, these signals are a sharper reflection of neural 

activity 𝜾(𝑡), converted directly into voltage 𝒗(𝑡) or magnetic field 𝒃(𝑡) by the laws of the 

electromagnetic field in media alone. In the neuroimaging context this is denominated forward 

equation, a linear model whose operator is coined with the term Lead Field (LF) 𝐋𝒗𝜾 [Grech et al 

2008; Nunez et al 1994, Burle et al 2015], see Figure1. Full details on the notation in Section 1 of the 

“Supporting Information” (SI) SI-1. Thus, EEG/MEG carry on rich information of the neural 

mechanisms underpinned by purely electrical activity, that is registered with excellent temporal 

resolution and without spectral distortion. This is the reason why they have -initially EEG and later 
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MEG- provided most of the existent knowledge on the healthy brain dynamics [Freeman 1975, Lopes 

da Silva 2013, Larson-Prior 2013].  

 

Figure 1: Illustration of the mechanisms underlying the generation of MEG/EEG signals. Their actual 

causes sojourn in the time variable (𝑡) pattern of macroscopic currents at gray mater points (𝑞) represented 

as 𝜾(𝑡, 𝑞) (a). These currents, originated from a homogeneous polarization of the pyramidal layers, sustain 

a local electromagnetic mean field (b) that can be observed externally through MEG/EEG sensors 

(electrodes or gradiometers) 𝒗(𝑡) (a). Whereas the spatial distribution of the external signal attributed to a 

single gray mater generator is explained in terms of a stationary linear equation for the electromagnetic 

field in media 𝐋𝒗𝜾(: , 𝑞) (a). From the principle of superposition stems the linear generative model of 

MEG/EEG signals explaining the composited effect of currents distributed across the whole gray mater 

𝒗(𝑡) ← 𝑳𝒗𝜾𝜾(𝑡)+ 𝝃(𝑡) (c). Where the process 𝝃(𝑡) represents the effect of instrumental or environmental 

noise. 

 

Leakage of electrophysiological source imaging   

The basic flaw is the pervasive activation leakage of routine Electrophysiological Source Imaging 

(ESI) solutions, pledged with the coarse spatial undertone of sensed EEG/MEG responses with Gray 

Matter (in grayordinates or Gray Matter coordinate system) activations [Hämäläinen et al 1994; 

Pascual-Marqui et al 1994; Pascual-Marqui 1999; Srinivasan 1999, Babiloni et al 2001, Pascual-

Marqui 2002, He et al 2019]. Where ESI is defined as the pseudo-inversion of the operator 𝐋𝒗𝜾 of the 

Forward equation. This inversion process or ESI is formally expressed through a transfer operator 𝐓𝜾𝒗 
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that attempts to explain in grayordinates the neural causes of signals [Nunez et al 1994, Burle et al 

2015], see Figure 2.  

 

Figure 2: Basic leakage problem with ESI estimation. Attempting to retrieve the source activity via certain 

operator 𝑻𝜾𝒗 (this can be linear/nonlinear and encode different prior information) typical methods produce 

a blurred estimation �̂�(𝑡). This carries on spurious (false positive) activations that extend beyond the truly 

active areas. 

 

The pitfall of leakage has been followed by the deployment of several “generations” of ESI methods 

within just two decades [Gonzalez-Moreira et al 2018b]. The term “generation” coins basic 

differences of the statistical learning method towards the construction of the EEG/MEG source 

transfer operator -via Linear, Nonlinear Univariate, Nonlinear Multivariate models- and the inclusion 

of prior information in order to ameliorate Leakage, we defer details on this to SI-2.  

More sophisticated models (Nonlinear Multivariate) leveraged by the 3rd ESI generation (SI-2) can 

lead to very inaccurate results without adequate prior variable selection of 2nd generation methods, 

that could possibly constrain the grayordinate active subspace. This flaw is caused by inaccurate high 

dimensional computations and ill-conditioning of the coactivation matrix (which regard multivariate 

patterns) used in their nonlinear algorithms [Friston et al 2007; Paz-Linares et al 2018; Gonzalez-

Moreira et al 2018a; 2018b; 2018c]. Likewise, this is critical for EEG/MEG connectivity methods 

preceded by any ESI solution [Coulclogh, 2016; Marinazzo et al 2019; Haufe et al 2013, Stokes et al 

2017, Van de Steen et al 2019]. Learning the truly responsive sources in the spectral domain remains 

an uneasy enterprise underscoring any further source space analysis. This is connected first, to the 

selection of priors for controlling leakage, second, statistical guarantees of the inference framework, 

and third, appropriate experimental confirmation.  

Bottom-up control of leakage 

We aknowledge a major dificulty with leakage control in ESI arises from a very general 

methodological unconsitency, this is the top-down  approach to a composited problem (Figure 3) in 
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two steps, first a procedure targeting the solution to an ill posed problem at the top a) but which affects 

ireversibly derived statistical quantities intended to gauge a given effect at the bottom b). We are 

concerned with the case in which a) is stated as the discovery of hidden source activity from 

MEG/EEG observations in time or spectral domain via ESI (Figure 3a); and b) as the statistical 

relevance of spectral responses upon which the Leakage effect is ultimately observed. The latter are 

irrversibly affected by ESI inacurracy and therefore are a common target of Leakage corrections 

(Figure 3b). 

 

Figure 3: Transit from observations (a) to hidden source activation (b) via three possible ESI routes. The 

starting point is a tensor structure containing MEG/EEG signals (a1) that are recorded through time (𝒕) and 

for different trials (𝓶). These are used to discover spectral properties encoded by the cross-spectrum tensor 

(b3), i.e. the activations (tensor diagonal entries) and coactivation (tensor off-diagonal entries). From left 

to right, the ESI routes to define the source transfer operator stride across qualitatively different learning 

paths: via independent instances in time a1=>b1 and frequency a2=>b2 domains or unifidely via the cross-

spectrum a3=>b3. 

 

As Figure 3 illustrates, the alternatives for solving leakage stride across three different ESI routes ak 

→ bk, k = 1,2,3, in the transit from observations a) to hidden source activation b). Note that the 
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segregation of ESI routes refres to the form in which the data is used for statistical learning of the 

transfer operator 𝐓𝜾𝒗 and in disregar to the type of solution which can be either Linear, Nonlinear 

univariated or Nonlinear multivariated. We enphasize that the top-down inconsistency relies on the 

lack of statistical guaranties in leakage control upon b3 via ESI routes a1 → b1 and a2 → b2, in other 

words, by means of priors on independent instances of source activity. Therefore, the only available 

alternative is bottom-up Leakage control by placing priors directly on the cross-spectrum b3 whose 

estimation is carried out via ESI route a3 → b3. 

Indeed this explains why some implementions of 2nd and 3rd generation methods are far superior to 

the linear methods in the first generation. The reason relies on the idea that, within the nonlinear 

learning process, parameters underlaying the estimation across samples are prone to perform leakage 

control. An importamt limitation hitched to direct spectral ESI solutions is the unavailability of 

learning models for complex valued data. Aknowledging these facts, we present a spectral modality 

of ESI provided with the property of botom-up control of leakage. The target of our method is to 

directly estimate the cross-spectrum tensor b3, with complex valued structured sparsity priors via 

Bayesian learning. We refer to this method as Spectral Structured Sparse Bayesian Learning (sSSBL).   

Spectral Structured Sparse Bayesian Learning (sSSBL) and extensions (sSSBL++) 

The basic principle stems behind the idea of EEG/MEG scalp-spectral features are caused by 

focalized cortical topologies and are therefore a better target for sparse ESI inversion (Figure 4a). 

sSSBL targets individual topologies by means of a group penalization model upon the sample space 

of spectral source reponses (𝜾1(𝜈)⋯ 𝜾𝓂(𝜈)) that may possibly explain the observed cros-sspectum 

(𝐒𝒗𝒗(𝜈)) (Figure 4b). This translates into a sparse univariate model for the selection of rows/colums 

corresponding to diagonal elements on the source cross-spectrum (𝐒𝜾𝜾(𝜈)), whose statistical relevance 

is controled locally through the variances 𝝈𝜾
2 of the Hierarchical Elastic Net model. The global level 

of sparsity is controlled via a flexible twofolded regularization model with parameters (α, 𝜌) (Figure 

4c). See the details on the formulation of the model underlying the sSSBL model in SI-3 and SI-4.  
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Figure 4: Model of the Spectral Structured Sparse Bayesian Learning. Priors are used directly on the 

spectral domain of the MEG/EEG generative model, to target source activity that explains a statistical 

tendency (a) at a given frequency of the observed cross-spectrum 𝑺𝒗𝒗(𝜈). Gaussianity is assumed at two 

levels (b): First, on the spectral noise process 𝝃𝓂(𝜈), as many typical ESI methods do in the time domain, 

which yields in this case a hermitian Gaussian model of the MEG/EEG cross-spectrum with variance 

spectral noise 𝝈𝝃
2. Second, on the spectral activations 𝜾𝓂(𝜈), but through a joint model of the different 

instances 𝓂. The statistical relevance of a given activation pattern common for all instances 𝓂 is 

determined by the variances 𝝈𝜾
2. The estimation of these variances is based on the Hierarchical Elastic Net 

(c), with sparse variable selection performed through the parameters 𝜸 of Truncated Gamma distribution. 

The global level of sparsity or shrinkage is controlled by 𝛼 and 𝜌. 

 

The statistical gurantees in part rely on the maximum evidence towards determination of the variances 

that control leakage. Within the inference process these variances directly affect the source transfer 
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operator 𝐓𝜾𝒗, whose estimation is carried out here suboptimally, but highly eficientlly, via the 

Expectation-Maximization (E-M) algorithm. See the graphical sSSBL algorithm in the section 1 of 

“Materials and Methods” (MM) MM-1. With “suboptimal” we highlight the E-M limited capacity to 

only provide a local optima of the model evidence, but which can be higly accurate with the further 

inclusion of priors. We denominate this expanded sSSBL (sSSBL++). A critical set of five priors is 

introduced onto the model of Figure 4 serving to the purpose of not only constraining the optimal 

evidence search process but providing the estimated source activation with relevant physical features.  

We use a joint activation field model, which introduces two different type of links (Figure 5a). First, 

a link onto its three spatial directions, via probabilistic 2D rotational invariance or isotropy (Figure 

5b) reducing the degree of freedom, but still regarding surface normals as the field preferential 

direction. This diverges from the use of rigid constrains in assuming that surface normals are the only 

plausible orientation for the field of cortical currents. Second, a link onto the fields of neighbour 

cortical points via the Laplacian, which builds on assumptions of a graph structure underlaying the 

acitve sources spatial distribution (Figure 5c).  

We aknowledge that ESI solutions based on cortical space can be wrapped at or biased towards 

surface giri due to atenuation of fields in the deeper sulci areas. Therefore we introduce a 

compensation factor based on curvature coeficients to unwrapping the Lead Field (Figure5d). To 

avoid the reverse bias towards sulci the final estimator is computed as the average of two preliminar 

solutions, one favoring the sulci activation and a second one doing so onto the giri. 
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Figure 5: Links introduced in the Gaussian distribution of the spectral activations via the composited effect 

of two operators (a). First, reducing the field components 3D degeneracy through the normal projection 

operator (𝑵) and second, introducing dependencies between neighbor activations through the Laplacian 

operator (𝑫). 𝑵 yields rotational invariance of the activations Gaussian probability model, with pivot axis 

on the surface normal (𝒏𝒊) at every cortical point (𝒊). The probability decreases as the orientation of activity 

deviates from the normal direction. Whereas with 𝑫 the probabilities are not assigned individually to cortical 

points (𝒊), but to its linear weighted combination with neighbors (𝒋). With weights of the Laplacian matrix 

elements (𝒅𝒊𝒋). Compensation of ESI curvature wrap or bias towards gyri (d). The operator (𝑪) represents 

the curvature of the cortical surface to unwrapping the Lead Field and therefore the ESI solution. 

 

We also extended the sample-space group penalization to a 3D cartesian space, with the inclusion of 

two aditional spaces (Figure 6a). First, the space of frequencies within a spectral band carrying on 

common MEG/EEG scalp topologies (Figure 6b) as typicaly observed in real data. Second, the space 

of generators within cortical parcels, asuming the coactivation of generators within areas that are 

defined upon a structural or functional atlas (Figure 6c).  
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Figure 6: Group penalization of the Hierarchical Elastic Net with implications in the estimation of the 

variances 𝝈𝜾 (a), which determine the statistical relevance of activation patterns. As a consequence of this 

penalization the variances are computed from a single parameter 𝛾𝒶𝒷 that performs a variable selection of 

groups of parameters. These are representing certain activations belonging to the interception of two groups 

𝔽𝒷 (band) and 𝔾𝒶 (parcel). First, for a spectral range 𝔽𝒷 corresponding to an electrophysiological band 

(b), with common observable spatial patterns for all the frequency components within this band. Second, 

activity corresponding to generators within a cortical area 𝔾𝒶 (c), defined into a given neuroanatomical 

Atlas, which acknowledges activations within delimited areas are highly integrated and thus prone to appear 

simultaneously. 

 

Results and Discussion  

Concurrency of sSSBL++ in the low-density pseudo-EEG of a high-density MEG 

In evaluating the sSSBL++ performance we diverge from the use of synthetic MEG/EEG signal 

simulations, typically stablished upon idealization of the spatial distribution and spectral composition 

of underlaying neural activity [Pascual-Marqui et al 2014; Haufe and Arne 2016]. This is a major 

flaw of the state-of-the-art validation methods that deserves special attention here. We aim to resolve 

this by leveraging the concept of concurrency between neuroimaging techniques (Wang, 2019), 

through introducing a completely new validation benchmark based on the comparison between ESI 

solutions for the MEG and EEG modalities (Figure 7). One from a high-density real MEG signal 

(Figure 7a) to establish a landmark for source activation (Figure 7b), that is later used to simulate the 

pseudo signal of a low-density EEG (Figure 7c). The other, attempting to retrieve the original source 

activation from the pseudo EEG signal alone (Figure 7d). 
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Figure 7: Novel methodology for ESI validation, based on the concurrency between MEG and its pseudo 

EEG. a) Actual distribution of MEG sensors in the subject’s native space and time frequency composition a 

frontal sensor signal. b) A landmark for alpha band spectral activity construed through sSSBL++ for the 

MEG signals, with Brainstorm head model of the three overlapping spheres. c) 10-20 EEG system adjusted 

to the native subject’s space, used to produce pseudo-EEG from the projected MEG alpha source landmark, 

with a Brainstorm head model of the Boundary Element Method. With sSSBL++ we achieve a concurrent 

pseudo-EEG to judge from the time-frequency composition of the signal for the frontal sensor analogous to 

that of the MEG. Concurrent alpha source activity retrieved from the pseudo-EEG with the sSSBL++. 

 

Following the scheme of Figure 7 we studied the sSSBL++ concurrency on real MEG -pseudo EEG- 

data in five bands of frequency (delta 0-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, beta 12-16 Hz and gamma 

16-32 Hz). The real MEG was selected from the Human Connectome Project (HCP) database [Van 

Essen et al 2013], opportunely after its selection by Brainstorm team [Tadel et al 2011] to illustrate 

the MEG database usage, see details in MM-2. 
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The sSSBL++ exhibited a good performance in the concurrency test (Figure 8a), to judge roughly for 

its similarity in performance with typical examples of idealized simulations [Haufe et al 2013, Stokes 

et al 2017, Van de Steen et al 2019]. In SI-7 we offer an example of the results for sSSBL++ and 

other methods in such simulations. Meaning that major activations retrieved from the pseudo-EEG 

across areas coincided with the real-MEG landmark with only minor leakage distortion. This was also 

supported by the concurrency of fluctuations across frequency from activity in the slow band delta to 

the faster beta band. For both pseudo-EEG and real-MEG, these transited smoothly from frontal areas 

(delta) to occipital areas (alpha) as reported by multiple studies [da Silva 2013]. The same effect was 

observed for the transition bands theta (delta → alpha) and beta (alpha → gamma). Leakage of the 

pseudo-EEG persisted but relevantly did not overpass specific anatomical areas where major 

activations were detected. 

The evaluation was extended to a prevalent instance of ESI: The Exact Low-Resolution Tomographic 

Analysis (eLORETA) [Pascual-Marqui et al 2011] (Figure 8b). See details on methods used for 

comparison in MM-2. Roughly, only few activations were expressed concurrently in both the pseudo-

EEG and real-MEG eLORETA solutions, which were also persistent across the different frequency 

bands. Interestingly, their results did defer greatly from those in idealized simulations (Section 7 of 

SI), meaning in this realistic concurrency scenario its performance was severely affected by leakage.  
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Figure 8: Hot colormaps with results of the concurrency evaluation for (a) sSSBL++ and (b) eLORETA on 

4 spectral bands (delta, theta, alpha and beta). The topographies at the sensor level represent the cross-

spectrum slices for different spectral bands used for the ESI estimation with MEG (top) and EEG (bottom). 

The performance can be judged qualitative by comparing the source activity (cortical maps) estimated from 

the MEG (top) and its pseudo-EEG (bottom). 

 

A quantitative analysis of concurrency, through the surface based Earth Mover’s Distance (EMD) 

metric [Paz-Linares et al., 2017], confirms this dramatic effect of leakage in eLORETA for all 

frequencies (Figure9). The EMD quantifies effort to draw leaked activity, produced in the estimation 

with the pseudo-EEG, back to the MEG landmark. In this situation we use EMD values rated by the 

ESI differences in the spectral domain, due to the lack of gold standard, in order to discriminate 
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concurrency from bias undergoing ESI estimation, see MM2. The evaluation was extended to the 

Linearly Constrained Minimum Variance (LCMV), the second generation ESI method selected by 

HCP for the study of brain connectome based electrophysiology [Van Essen et al 2013; Larson-Prior 

et al 2013], see MM-2 and SI-2. The leakage for the LCMV solution measured in terms of EMD 

reaches far beyond that of eLORETA.  

The values of EMD for sSSBL++ were representative of the results in Figure 8, lower to those of 

eLORETA and therefor much lower in comparison to those of LCMV. This quantitative analysis was 

also extended to several instances of sSSBL++, adding on each of the proposed priors to confirm their 

possible effect on leakage in isolation. See the summary of these in Figures 5 and 6. Importantly, 

overall the performance of sSSBL++ was far more superior than that of any instance of sSSBL, only 

outperformed by the 2D field isotropy in some spectral bands. Also, overall all sSSBL instances 

performed better than eLORETA and LCMV only falling behind for the gamma band the spectral 

smoothness (sSSBL) and parcel smoothness (sSSBLparcelled), which performed very similar.   

 

Figure 9: Radar graph with values of Earth Movers’ Distance (EMD) for sSSBL with several instances of 

priors and state-of-the-art-methods eLORETA and LCMV, in 5 spectral bands (delta, theta, alpha, beta, 

gamma). The priors introduced produce the following effects: spectral smoothness that we refer simply with 

sSSBL (Figure6b), parcel smoothness sSSBLparcelled (Figure6c), neighbors link sSSBLlaplacian 

(Figure5c), field rotational invariance sSSBL2Disotrpy (Figure5b), curvature compensation 

sSSBLunwrapped (Figure5d). These were added in isolation to evaluate their effect on leakage 

independently and altogether denominated sSSBL++. Here the EMD is quantifying the present amount of 
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leakage produced by any method in the concurrency evaluation of Figure7, rated by the EMD for the 

deviation of these methods across the spectral bands, see MM-2. 

 

These results suggest, first a universal lack of rigor in ESI validation procedures, which are limited 

to evaluate the performance only in idealized circumstances [Haufe and Ewald 2016], and second 

that the effect of leakage in real data for typical ESI methods might be much more severe than usually 

expected [Van de Steen et al 2019]. Therefore, it would be required for future efforts to consider a 

validation benchmark like the one proposed here or at least fair simulations of brain activity. 

Relevantly, in this scenario the sSSBL++ bottom-up approach allows curtailing of this effect 

considerably.  

We acknowledge the concurrency test based on real-MEG/pseudo-EEG, although superior to 

previous validation methods, is lacking an actual landmark for brain activity. But for different reasons 

this is not readily accessible by means of noninvasive techniques, e.g. fMRI. Previous works on 

MEG/fMRI concurrency have provided maps with positively correlated features, but with no account 

for those expressed exclusively in either technique, which precisely explain their flaws manifested in 

form of leakage.  

Confirmation of sSSBL++ with the MRI of brain lesions  

We propose an alternative solution to discriminate on the effect of leakage in ESI methods based on 

the comparison of EEG sources with the MRI shine through of hemorrhagic brain lesions. This is 

possible due to the good definition of this type of lesion in the MRI image and their abnormal 

electrophysiological responses that could possibly be observed through EEG in any spectral band. In 

this scenario we define leakage as the responses estimated ESI on the affected areas that could be 

classified as normal. See details in MM-3. 

The MRI and EEG collected belong to an infant born at 36 gestational weeks without any noticeable 

obstetric or clinical complication (Apgar 9/9, birth weight of 2,370 grams). However, at the age of 2 

months an intracranial hemorrhage was detected, caused by hemorrhagic disease of the newborn 

(HDN). HDN is a common cause of the “acquired homeostatic disorder of newborn infants”, which 

can take place without the presence of any underlying disorder [Bör et al 2000]. The HDN diagnosis 

was confirmed through a T2 MRI study, see the three views at Figure10top. This shows clearly an 

extended subdural hematoma and right hemispheric stroke located in the area surrounding the middle 

and posterior cerebral artery.  

EEG data was recorded a month later (3 months of age) in expectancy of a higher degree of maturity 

-in terms of electrophysiological brain age- in which not only delta spectral features but the faster 
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band theta may possibly be appreciated [Niedermeyer and da Silva 2005; André et al 2010]. Aiming 

to reconstruct the source of all neurophysiological activity, that may possibly be expressed in the 

EEG, we computed the sSSBL++ solution for a broad spectral band (0-7 Hz) unifying the delta and 

theta bands. See in Figure10middle the results in red color, where the red emphasis corresponds to 

activity classified as abnormal for the broad range of electrophysiological frequencies.  

These are in high correspondence with the lesions mapped through the T2 MRI, provided all the 

abnormal areas detected by sSSBL++ were in the left hemisphere. Also, their distribution across 

different lobes and extension resemble that of the hemorrhage, which involved the occipital, temporal, 

tempo-parietal, frontal and fronto-parietal areas. Importantly, no perceptible normal activity 

infiltrating inwards to affected areas could be observed in the sSSBL++ solution. Rather, the areas 

detected as abnormal were extended far beyond the lesions.  
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Figure 10: Detection of abnormal source electrophysiological activity caused by hemorrhagic brain lesions 

that were observed in the MRI T2 of the subject (top). The results of ESI with eLORETA (middle) and 

sSSBL++ were obtained from the signal of a 19 channel EEG in the electrophysiological range of 

frequencies. The performance can be judged qualitative in terms of the undertone of the areas detected as 

abnormal by the methods with their MRI T2 shine-through. 

 

On the contrary the abnormal activity detected with eLORETA exhibited great differences with the 

MRI shine through of the lesions. Most of the abnormal activity was detected in the left hemisphere 

which cannot be justified to judge for the normal T2 contrast of this. Also, in the right hemisphere 

there was a wide mismatch between the shine through of lesions and the abnormal areas detected by 

eLORETA.  

Notice that the ESI solutions were computed with an average head model and therefore in different 

space as the MRI. A T1 MRI -adequate structural space to define the individual head model- was not 

registered anticipating the typically deficient tissue contrast observed in T1 relaxation of newborns. 

An adequate quantification of the present amount of leakage would require projection of both the T2 

MRI and EEG to a common structural space. Up to now we lacked a processing pipeline that could 

perform with acceptable precision the registration, segmentation and head model construction based 

on the T2 MRI of infants. This process, if performed by means of the standardized tools, would 

produce a roughly approximated head model, therefore requiring further developments.      

 

Materials and Methods (MM) 

MM-1  sSSBL algorithm  

sSSBL pursues estimation of the cross-spectrum through a maximum “evidence” search via the 

Expectation-Maximization algorithm. Where evidence is defined as the conditional probabilities of 

two groups of parameters, given the available data samples or MEG/EEG cross-spectrum 𝐒𝒗𝒗(𝜈): 

these are 𝝈𝜾, that controls the statistical relevance the source cross-spectral components 𝐒𝜾𝜾(𝜈), and 

𝜎𝝃, that controls the level of noise of the observations. This is done through an iterated scheme that 

produces an approximated representation of the evidence (expectation) followed by its maximization, 

that guarantees convergence to a local maximum. See in Figure 11 the algorithm for the expectation 

step illustrated in graphical form. In SI-5 and SI-6 we provide the derivation of the later, extended 

with all priors included in the sSSBL++.  
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Figure 11: Graphical representation of the sSSBL Expectation algorithm that precedes the Maximization. 

The red color identifies quantities (circles) and mathematical operations (arrows) associated to source 

activity, whereas the green identifies those for observation noise. The constant 𝑳𝒗𝜾 (Lead Field) and its 

transconjugated 𝑳𝜾𝒗 is identified with a gray circle. Workflow 1 uses the variances of noise �̂�𝝃
(𝑘)

 and 

activations �̂�𝜾
(𝑘)

 to produce two locally linear transfer operators: one asymmetric for the re-estimation of 

ESI solution (𝑻𝜾𝒗 and its transconjugated 𝑻𝒗𝜾)  and another one symmetric for the noise re-estimation 𝑻𝝃𝝃. 

Workflow 2 produces the effective empirical covariances of source activity �̂�𝜾𝜾
(𝑘)

 and noise �̂�𝝃𝝃
(𝑘)

, used in the 

Maximization step. 

 

The maximization step is carried out via estimation formulas that we refer to here as the group 

Hierarchical Elastic Net, see Figure 12. This resembles the estimation formulas of the vector 

regression Elastic Net [Paz-Linares et al., 2017] and the Sparse Bayesian Learning [Wipf et al., 2009], 

but in this case through the arithmetic mean 𝝍𝜾 of typical vector regression inputs corresponding to 

the samples. See the derivation of these formulas in SI-7 also extended to the sSSBL++. Although 
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not shown here, we perform control of the global sparsity level through estimating the parameters 𝛼 

and 𝜌, in completely analogous form to the procedure in [Paz-Linares et al., 2017], see SI-7.  

 

Figure 12: Graphical representation of the sSSBL Maximization algorithm, following the Expectation. The 

red color identifies quantities (circles) and mathematical operations (arrows) associated to source activity, 

whereas the green identifies those for observation noise. Workflow 3 uses the effective empirical covariance 

of the activations �̂�𝜾𝜾
(𝑘)

 to produce the source variance �̂�𝜾
(𝑘+1)

. Workflow 4 uses the effective empirical 

covariance of the noise �̂�𝝃𝝃
(𝑘)

to produce the noise variances �̂�𝝃
(𝑘+1)

. The variances are used in the Expectation 

step of the next iteration. 

 

To help with the reproducibility we provide in SI-8 a standard pseudocode (nongraphical) and all 

formulas in a compact way. The code is freely available in GitHub as part of a more general toolbox 

for MEG/EEG source analysis (BC-VARETA) [Paz-Linares et al 2018; Gonzalez-Moreira et al 

2018a; 2018b; 2018c]. 

MM-2 MEG/EEG concurrency study  

The MEG corresponded to 246 channel preprocessed resting state data of the subject 175237 from 

the HCP database [Van Essen et al 2013; Larson-Prior et al 2013]. We construed the MEG head 

model following the Brainstorm pipeline [Tadel et al 2011], designed specifically to utilize HCP 

structural and functional data, and which illustrates the head model processing with the subject cited 
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above (175237). The cross-spectral tensor used in ESI (Figure3a3) was computed at a frequency 

resolution of about 0.5 Hz from 172 Fourier coefficients samples (trials), extracted through the 

Fourier transformation of the recordings spanning about 2 seconds at a sampling rate of 508Hz for 

each trial. The EEG head model corresponded to 19 channels in the 10-20 system, computed also 

following Brainstorm recommendations via Boundary Element Method upon 3 tissue layers (inner 

skull, outer skull, scalp) extracted with FSL [Smith et al 2004; Jenkinson et al 2012] and on 6K 

generators of a discretization of the midthickness. 

We performed the concurrency evaluation, according to the illustration in Figure8, following three 

steps. First, the inversion of real MEG spectral data upon the MEG head model, via ESI with a given 

method. Second, the generation through the EEG head model of the pseudo EEG spectral data, 

corresponding to spectral activity determined in the first step. Third, the inversion of the pseudo EEG 

spectral data upon the EEG head model, via ESI with the same method as in the first step. The code 

and data to reproduce these results is freely available in GitHub (sSSBL-Concurrency).   

One of the two methods proposed for comparison (eLORETA) belongs to the class of linear methods 

therefore not provided of any capacity towards bottom-up leakage control (see SI-2) [Pascual-Marqui 

et al., 2006]. The other method (LCMV) was a Beamformer that belongs to the second ESI generation, 

which can provide bottom-up control of leakage. But it does partially, due to its lack of a specific 

spectral model. Nevertheless, we leverage a more efficient implementation provided in fieldtrip that 

provides eLORETA the capacity to perform the direct computation of the source cross-spectrum via 

a linear transfer function and with regularization parameters that can be adjusted with complex 

variable cross-validation [Oostenveld et al. 2011].   

To judge the quality of methods or leakage in the concurrency evaluation we used an implementation 

of Earth Movers’ Distance on surface [Paz-Linares et al., 2017]. In this case their values for the 

difference between the MEG and EEG solutions in the concurrency test were rated by their values for 

the difference between delta and alpha bands of the MEG. This turns the validation metrics sensitive 

to detecting possible bias of the methods, towards certain cortical areas, as with the case of eLORETA 

and LCMV. Bias makes it difficult to judge, in the absence of the “gold standard” as is the case of 

our concurrency evaluation, whether the present similarities can be explained with good quality or 

with low sensitivity to changes in the spectral domain.   

MM-3 MRI/EEG confirmatory study 

Acquisitions like the EEG and T2 MRIs used in the confirmatory study here are part of the routine 

examination following the admission of cases in the neurotherapeutic area of the Neurodevelopment 
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Research Unit located in Queretaro campus of UNAM. The data used for the confirmatory study will 

be available upon request of the readers.  

EEG was recorded in resting state condition with eyes closed on 19 channels defined in the 10-20 

system using a Medicid™ IV (Neuronic Mexicana, S.A.; Mexico). The contact impedance for all 

electrodes was tuned down to a level of 5 kΩ or below and the bandwidth of the amplifiers was set 

within the limits of 0.3 Hz to 30 Hz. The preprocessing was performed off-line and through manual 

artifact rejection guided by expert hands on the standards of the International Federation of Clinical 

Neurophysiology (IFCN). The preprocessing yielded an amount of 16 artifact-free trails each 

spanning over 2.56 seconds. To construct the head model for ESI we used the Brainstorm default 

anatomy ICBM152, via Boundary Element Method upon 3 tissue layers (inner skull, outer skull, 

scalp) and on 6K generators of a discretization of the midthickness. 

Structural T2 MRIs were acquired using a 3T scanner (General Electric Healthcare, Milwaukee, 

Wisconsin, US) with 16-channels of a head neurovascular coil (HDNV). The infant was awake, laying 

back and wearing earplugs for protection against the MR room noises. Figure11c shows structural 

images acquired with two different pulse sequences: A T2-weigthed spin echo sequence (Left and 

Right), TR/TE 2500/68 ms, flip angle 90°, slices 196, slice thickness 1 mm, matrix 224 x 224, FoV 

220 x 220 mm2, voxel sizes of 0.8 x 1.0 x 0.8 mm3. A T2-weigthed turbo spin echo sequence (Center), 

TR/TE 7000/100 ms, flip angle 111°, slices 70, slice thickness 2 mm, matrix 448 x 352, FoV 220 x 

220 mm2, voxel sizes of 0.4 x 0.4 x 2.0 mm3.  

The classification of abnormal activity was carried out in statistical comparison with norms for EEG 

source activity in infants of the same range of age [Otero et al 2011]. For each method (eLORETA 

and sSSBL) the norm of source activity was computed using the EEG of 179 newborns collected on 

the basis discussed at the beginning of this section. Then, the estimated activity for the pathological 

patient for every method was compared to the mean and standard deviation of its norm. The criteria 

for the selection of abnormal areas was according to the difference, across all frequencies, between 

the norm mean and the estimated activity for the patient. The threshold used for classification was 

twice the standard deviation of the norm.  

 

Conclusions 

We demonstrated that the impact of leakage in common Electrophysiological Source Imaging 

methods can be much more severe than expected. Shedding light on the actual extent of leakage 

required completelly new validation procecedures slanted towards a landmark based on the real data 
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rather than in simulations of Brian electrical activity. This was furnished here via two different 

instances, that according to our knowledge are lacking of any precedent and may else serve to future 

efforts: First, concurrency of the ESI solution in the low-density pseudo-EEG of a high-denstity 

MEG. Second, comparison against the MRI shine through of brain lesions which turn the affected 

areas into a source of abnormal electrophysiological activity.  

We proposed ESI via direct sparse Bayesian learning of spectral responses -coined spectral Structured 

Sparse Bayesian Learning (sSSBL) and its extension with multiple priors (sSSBL++). This procedure 

is hitched to technical difficulties for the statistical learning of complex valued data models, that we 

have solved here. The results with sSSBL++ display far more control of leakage benchmarked in our 

validation framework against commonly used methods eLORETA and LCMV. This strongly 

supports our working hypothesis of bottom-up control on leakage, where a possible suggested route 

is through using ESI priors and learning process directly to the ultimate estimators targeted by 

leakage.  
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Supporting Information (SI) 

SI-1 Mathematical notation  

𝔼 Sensor space for EEG/MEG. 

𝔾 Generator space from a discretization of the Gray Matter. 

𝔽 Frequency domain for EEG/MEG signals. 

𝕄 Random sample space of Fourier coefficients from EEG/MEG signals. 

𝔸 Pacellation space from a given functional or structural atlas of the Gray Matter.  

𝐩 Number of sensors p = |𝔼|.  

𝐪 Number of generators q = |𝔾|.  

𝐟 Number of frequency components f = |𝔽|.  

𝐦 Number of random samples m = |𝕄|. 

𝒍 Number of parcells 𝑙 = |𝔸|. 

𝓮 ∈ 𝔼 Indices for sensors ℯ = 1…p. 

𝓰 ∈ 𝔾 Indices for generators ℊ = 1…q. 

𝝂 ∈ 𝔽 Indices for frequencies 𝜈 = 1… f. 

𝓶 ∈ 𝕄 Indices for samples 𝓂 = 1…m. 

𝓪 ∈ 𝔸 Indices for parcels 𝒶 = 1… 𝑙. 

𝒗𝓶(𝝂) Sampled complex vector of the Fourier coefficients for EEG/MEG data 

coreresponding to a frequency component (observed variables or data). 

𝜾𝓶(𝝂) Sampled complex vector of the Fourier coefficients for EEG/MEG source activity 

coreresponding to a frequency component (hidden variables or spectral activations). 

𝐋𝒗𝜾 Lead Field matrix of p × q size.  
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𝝃𝓶(𝝂) Sampled complex vector of the Fourier coefficients for EEG/MEG noise 

coreresponding to a frequency component (observation noise process or spectral 

noise). 

𝚺𝜾𝜾 Hermitian and positive semidefinite Posterior Covariance matrix of spectral 

EEG/MEG source activity. 

𝚺𝝃𝝃 Hermitian and positive semidefinite Posterior Covariance matrix of spectral 

EEG/MEG noise. 

𝝈𝜾 Variances of spectral EEG/MEG source activity. 

𝝈𝝃 Variances of spectral EEG/MEG noise. 

𝝀 Regularization parameters or tuning hyperparameters vector of the general penalty 

function. 

𝐓𝜾𝒗
(𝒌)

 EEG/MEG assymetric Data to Source Transfer operator. 

𝐓𝝃𝝃
(𝒌)

 EEG/MEG Hermitian Data to noise Transfer operator. 

𝐒𝜾𝜾
(𝒌)

 Hermitian and positive semidefinite empirical Covariance matrix of spectral 

EEG/MEG source activity. 

𝐒𝝃𝝃
(𝒌)

 Hermitian and positive semidefinite empirical Covariance matrix of spectral 

EEG/MEG source activity. 

𝚿𝜾𝜾
(𝒌) Hermitian and positive semidefinite effective empirical Covariance matrix of spectral 

EEG/MEG source activity. 

𝚿𝝃𝝃
(𝒌) Hermitian and positive semidefinite effective empirical Covariance matrix of spectral 

EEG/MEG source activity. 

𝐒𝒗𝒗 Complex Hermitian matrix EEG/MEG data Fourier coefficients Covariance matrix. 

 

SI-2 ESI concepts and generations 

The derived inverse problem of ESI contains three main elements: (i) EEG/MEG data observed in p-

sensors; (ii) anatomically constrained EEG/MEG space of q-generators from a brain tissue 

segmentation of cortical mid-thickness surface or volume; (iii) px3q Lead Field matrix (an  

electromagnetic vector field weighting the contribution q generators) given a volume conductor 
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model that entails nonbrain tissue segmentation, sensor positioning and nature of observed data 

(electric or magnetic fields) [Grech et al 2008]. 

Estimation of the neural causes can be done by inversion of the EEG forward model [Hämäläinen et 

al 1994; Pascual-Marqui et al 1994; Pascual-Marqui 1999]. In this case we propose a space-frequency 

analysis by directly inverting its spectral equivalent in virtue of the linearity of the Discrete Fourier 

Transform (DFT):   

𝒗𝓂(𝜈) = 𝐋𝒗𝜾𝜾𝓂(𝜈) + 𝝃𝓂(𝜈)        [2.1] 

where 𝜈 represents frequencies in the spectral domain, 𝓂 time segments used to compute the DFT, 

𝐋𝒗𝜾 is the p × 3q  Lead Field matrix. The spectral vectors in the equation represent the EEG 𝒗𝓂(𝜈) 

of size p × 1, source activation 𝜾𝓂(𝜈) of size 3q × 1 and a sensor noise process 𝝃𝓂(𝜈) of size p × 1 

Usually the vector fields (𝐋𝒗𝜾(𝑖, : ) and 𝜾) are projected by the scalar product with another vector field 

𝒅 (structural not electromagnetic) of Gray Matter tissue directions yielding only q-p degeneracy 

(〈𝐋𝒗𝜾
′ (𝑖, : ), 𝒅〉 and 〈𝜾, 𝒅〉).  

ESI methods target solving the 3q-p degeneracy EEG/MEG inverse problem kernel (space defining 

all possible solutions that could explain the recordings) in analogy to the general inverse problem 

[Groetsch et al 1993]. Reducing the degeneracy beyond further anatomical constraints (Gray Matter 

ROIs or tissue directionality) is only achievable through regularization or inclusion of some 

mathematical a priori information [Hämäläinen et al 1994, Baillet et al 1997, Friston et al 2008], 

which produces a new system with stable unique solution. 

The pitfall of leakage has been followed by the deployment of several “generations” of ESI methods 

within just two decades [Gonzalez-Moreira et al 2018b]. The term “generation” coins basic 

differences of the statistical learning method towards the construction of the EEG/MEG source 

transfer operator -via Linear, Nonlinear Univariate, Nonlinear Multivariate models- and the inclusion 

of prior information in order to ameliorate Leakage. See in Table1 a deeper reconnoitering of such 

models.    

 

Table 1: Family of Linear/Nonlinear univariate/Nonlinear multivariate ESI methods 
 Parameters 

Covariance 
Data 

Conditional 
Covariance 

Algorithm Linear/ 
Nonlinear/ 
Nonlinear 

Multivariate 

Minimum Norm Estimator 
(MME) (Hämäläinen and 

Ilmoniemi, 1994) 

Constrained to 
Scaled Identity 
Matrix. Fixed 

value. 

Constrained 
to Scaled 
Identity 

Explicit Parameters 
Posterior Mean estimator. 

Linear 
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Connectivity-
Postprocessing. 

Matrix. 
Fixed value. 

Low Resolution 
Electromagnetic 

Tomography (LORETA) 
(Pascual-Marqui et al., 

1994). 

Fixed Laplacian 
Operator. 

Connectivity-
Postprocessing. 

Full Matrix. 
Prior Free. 

Iterated Explicit Parameters 
Posterior Mean estimator 
and empirical formulas of 

the Conditional Data 
Covariance. 

Linear 

Exact Low Resolution 
Electromagnetic 

Tomography (eLORETA) 
(Pascual-Marqui et al., 

2006). 

Constrained to a 
Diagonal Matrix. 

Prior Free. 
Connectivity-

Postprocessing. 

Full Matrix. 
Prior Free. 

Iterated Explicit Parameters 
Posterior Mean estimator 
and empirical formulas of 

the Conditional Data 
Covariance and Parameters 

Variances. Provides Zero 
Localization Error in case of 

a single Source 
reconstruction. 

Nonlinear 

Standardized Low 
Resolution Electromagnetic 

Tomography 
(sLORETA/eLORETA) 

(Pascual-Marqui, 2002). 

Full Matrix 
(Connectivity). 

Prior Free. 

Full Matrix. 
Prior Free. 

Iterated Explicit Parameters 
Posterior Mean estimator 
and empirical formulas of 

the Conditional Data 
Covariance and Parameters 

Covariances.  

Nonlinear 

Variable Resolution 
Tomographic Analysis 

(VARETA) (Valdes-Sosa, 
1996, Bosch-Bayard, et al., 

2001). 

Full Matrix 
(Connectivity). 

Prior Free. 

Constrained 
to Scaled 
Identity 

Matrix. Prior 
free. 

Iterated Explicit Parameters 
Posterior Mean estimator 

and Expectation 
Maximization (EM) 

formulas of the Conditional 
Data Variance and 

Parameters Covariance. 

Nonlinear 
Multivariate 

Automatic Relevance 
Determination (ARD) (Neal, 
1998; Tipping, 2001; Sato et 
al., 2004; Wipf et al., 2006; 

Wipf and Rao, 2007; 
Daunizeau and Friston, 

2007). 

Constrained to a 
Diagonal Matrix. 
Jeffrey Improper 

Priors. 
Connectivity-

Postprocessing. 

Constrained 
to Scaled 
Identity 

Matrix. Prior 
free. 

Iterated Explicit Parameters 
Posterior Mean estimator 
and Empirical Bayes (EB) 

formulas of the Conditional 
Data Variance and 

Parameters Variances. 
Induces Sparsity by pruning 
the Parameters Variances 

estimates. 

Nonlinear 

Restricted Maximum 
Likelihood (ReLM) 

(Patterson and Thompson, 
1971, Harville, 1977; Friston 

et al., 2007; Wipf et al., 
2009; Belardinelli et al., 
2012; Wu et al., 2016) 

Full Matrix 
(Connectivity) 

hyper-
parametrized on 
Function Basis. 

Sparse Priors on 
the Function Basis 
Hyperparameters

. 

Constrained 
to Scaled 
Identity 

Matrix. Prior 
free. 

Iterated Explicit Parameters 
Posterior Mean estimator 
and Maximum Likelihood 
plus Restrictions formulas 

of the Conditional Data 
Variance and Function Basis 

Hyperparameters. 

Nonlinear 
Multivariate 

Structured Sparse Bayesian 
Learning (SSBL) (Wipf et al., 
2010; Zhang and Rao, 2011; 
Babacan et al., 2012; Wan et 
al., 2014; Balkan et al. 2014; 

Constrained to a 
Diagonal Matrix 

(or Block 
Diagonal). Sparse 

Gamma Priors. 

Constrained 
to Scaled 
Identity 
Matrix. 
Jeffrey 

Iterated Explicit Parameters 
Posterior Mean estimator 
and Empirical Bayes (EB) 

formulas of the Conditional 

Nonlinear 
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Paz-Linares et al., 2017; 
Zhang et al., 2016; Zhang et 

al., 2017). 

Connectivity-
Postprocessing. 

Improper 
Prior. 

Data Variance and 
Parameters Variances. 

 

Summarizing ESI methodologies, we may refer as Zero-generation those endeavors of the pre-ESI 

period, pledged with the search of association between sensor level information and processes at the 

Gray Matter level [Blinowska et al 2004, Kus et al 2004, Blinowska 2011, Sakkalis 2011], and which 

has been fairly haunted by critics [Haufe et al 2013, Stokes et al 2017, Van de Steen et al 2019].  

First-generation, linear nature ESI solution which imposes regularization on the LF ill-conditioning 

via static priors and which reflects -due it independence of the sensed activity and linearity- similar 

properties of the Zero-generation with exception of improved anatomical association, e.g. Minimum-

Norm Estimates (MNE) [Hämäläinen et al 1994] and LORETAs [Pascual-Marqui et al 1994, Pascual-

Marqui 1999]. 

  

FIRST GENERATION METHODS 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Second-generation, nonlinear nature ESI solution for which the transfer function depends on the 

sensed activity and that usually pursues a sparsity pattern of activation, introduced in form of flexible 

and univariate priors that improve variable selection, e.g. Exact LORETA (eLORETA) [Pascual-

Marqui et al 2006, Pascual-Marqui, 2007], Multiple Penalized Least Squares (MPLS) [Vega-

Hernández et al., 2008], and Structured Sparse Bayesian Learning (SSBL) [Paz-Linares et al., 2017]. 

 

 

 

Source Activity Prior: 

𝑁q
ℂ(𝜾𝓂|𝟎, 𝜆𝚺𝜾𝜾)   

 
𝔾 

Noise Process Prior: 
𝑁p
ℂ(𝝃𝓂|𝟎, 𝚺𝝃𝝃)       

𝔾 

𝔼 

 

𝔼 

 

𝔼 

𝓂 ∈ 𝕄  

Sample Space 

  

= 

 

𝔾 

𝔾 

Minimum Norm (MN)        
𝚺𝜾𝜾 == 𝐈q        

Low Resolution Tomographic 
Analysis (LORETA)                                            

𝚺𝜾𝜾 == (𝐃𝐃
†)
−1

, 𝐃 (Laplacian) 

 

 

 

𝜆 
Estimated by 

statistical criteria of 
“goodness” 

𝜾𝓶   𝐋𝒗𝜾 

 

 𝒗𝓶 

 𝚺𝜾𝜾 

 

𝝃𝓶 
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SECOND GENERATION METHODS 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Third-generation: nonlinear and multivariate nature ESI solution which acknowledges possible 

coactivation due to the link between active sources, and therefore leads in some cases to improved 

determination of activity and its statistical dependencies, e.g. Variable Resolution Tomographic 

Analysis (VARETA) [Valdes-Sosa et al 1996, Bosch-Bayard et al 2001], Restricted Likelihood 

Maximization (ReLM) [Patterson and Thompson 1971, Harville 1977, Mattout et al 2006, Friston et 

al 2007, Friston et al 2008, Wipf et al 2009, Belardinelli et al, 2012] and Brain Connectivity VARETA 

(BC-VARETA) [Paz-Linares et al 2018, Gonzalez-Moreira et al 2018a, 2018b, 2018c]. (ESI 

generations) 

 

 

  
𝔾 

Noise Process Prior: 
𝑁p
ℂ(𝝃𝓂|𝟎, 𝚺𝝃𝝃)       

𝔾 

𝔼 

 

𝔼 

 

𝔼 

𝓂 ∈ 𝕄  

Sample Space 

  

= 

 

𝜾𝓶   𝐋𝒗𝜾 

 

 𝒗𝓶 𝝃𝓶 

Source Activity Prior: 

𝑁q
ℂ(𝜾𝓂|𝟎, 𝑑𝑖𝑎𝑔(𝝈𝜾

2))   

Source Variances 

Prior: 𝑝(𝝈𝜾
2) 

𝝈𝜾
2 

 

𝔾 
Exact Low Resolution Tomographic 
Analysis (eLORETA)                                     

𝝈𝜾
2 (estimated by empirical formula) 

 

Automatic Relevance Determination (ARD) 

Multiple Penalized Least Squares (MPLS): 
Elastic Net, Smooth LASSO, Fused LASSO,  

Mixed Norms (MXN): Group LASSO, Elitist 
LASSO, Other higher order/level Norms.                                       
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THIRD GENERATION METHODS 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SI-3 Andrews and Mallows Lemma for the complex variable Hierarchical Elastic Net  

The results hierarchical Elastic Net can be extended to complex domain by modifying the corollary 

of Andrews and Mallows Lemma for Real ENET Gibbs pdf (Gaussian-Laplace) in [Andrews and 

Mallows, 1974]. For the complex case, the integral representation holds. 

 𝑒−𝛼1|𝑧|−𝛼2|𝑧|
2
∝ ∫𝑁1(|𝑧||0, 𝑓(𝛾))𝑝(𝛾)𝑑𝜏       [3.1] 

Where the variances are defined as 𝑓(𝛾) =
1

2𝛼2
(1 −

𝛼1
2

4𝛼2𝛾
). The measurable space in which the 

variable 𝑧|𝛾 is defined has a unnormalized density function given by the Gaussian pdf 𝑝(𝑧|𝛾) =

𝑁1(|𝑧||0, 𝑓(𝛾)) and its variance 𝑓(𝛾) is dependent on the random variable 𝛾 which has Truncated 

Gamma pdf. 

𝑝(𝛾) = 𝑇𝐺𝑎 (𝛾|
1

2
, 1, (

𝛼1
2

4𝑎2
, ∞))       [3.2] 

So, the measure in the space product of 𝑧 and 𝑝(𝛾) is had density represented as an unnormalized 

product of Gaussian and Gamma densities. 

𝑝(𝑧, 𝛾) ∝ 𝑁1(|𝑧||0, 𝑓(𝛾))𝑇𝐺𝑎 (𝛾|
1

2
, 1, (

𝛼1
2

4𝛼2
, ∞))     [3.3] 

 

  
𝔾 

Noise Process Prior: 
𝑁p
ℂ(𝝃𝓂|𝟎, 𝚺𝝃𝝃)       

𝔾 

𝔼 

 

𝔼 

 

𝔼 

𝓂 ∈ 𝕄  

Sample Space 

  

= 

 

𝜾𝓶   𝐋𝒗𝜾 

 

 𝒗𝓶 𝝃𝓶 

Source Activity Prior: 

𝑁q
ℂ(𝜾𝓂|𝟎, 𝚺𝜾𝜾)   

Source Covariance 

Prior: 𝑝(𝚺𝜾𝜾) 

 

𝔾 

Restricted Maximum Likelihood (ReML)   

𝚺𝜾𝜾 = ∑ 𝛾𝑖𝐁𝑖𝑖∈𝔹 ← 𝐺𝑎𝑚𝑚𝑎 (𝛾𝑖|
1

2
, 1),  

𝐁𝑖 (covariance basis) 

Brain Connectivity Variable Resolution 

Tomographic Analysis (BC-VARETA)                  

Connectivity Prior:                                 

𝚺𝜾𝜾 = 𝚯𝜾𝜾
−1 ← 𝑒𝑥𝑝(Π(𝚯𝜾𝜾, 𝐀)|𝜆)                

𝐀  (DTI maps, spatially invariant kernels)      

𝜆 (Estimated by statistical criteria of 

“goodness”)                                            

  

 

𝚺𝜾𝜾 

 

𝔾 
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SI-4 Tensor spatio-frequency prior probabilities of the group Hierarchical Elastic Net. 

We introduce tensor group penalization on the 3D cartesian space of generators, samples and 

frequencies with: 

|𝑧| = √∑ ∑ ∑ |�̃�𝓂(𝜈; ℊ)|
2

ℊ∈𝔾𝒶𝜈∈𝔽𝒷𝓂∈𝕄        [4.1] 

where 

�̃�𝓂(𝜈) = 𝐃𝐍𝜾𝓂(𝜈), 𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽  

𝒶 refers to a specific Gray matter area 𝒶 ∈ 𝔸 

𝒷 refers to a specific frequency band 𝒷 ∈ 𝔹 

Then the transformed prior of the parameters is described analytically by the following distribution 

{
 
 

 
 {�̃�𝓂(𝜈; ℊ),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷 , ℊ ∈ 𝔾𝒶}~

𝑒
−
1
2
𝑓(𝛾𝒶)

−1 ∑ ∑ ∑ |�̃�𝓂(𝜈;ℊ)|2ℊ∈𝔾𝒶𝜈∈𝔽𝒷𝓂∈𝕄

|2𝜋𝑓(𝛾𝒶)|
1
2

𝑜𝑟

�̃�𝓂(𝜈; ℊ)~
𝑒
−
1
2
�̃�𝓂
† (𝜈;ℊ)𝑓(𝛾𝒶)

−1�̃�𝓂(𝜈;ℊ)

|2𝜋𝑓(𝛾𝒶)|

1
2q𝒶f𝒷m

,𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷 , ℊ ∈ 𝔾𝒶

  [4.2] 

where 𝑓(𝛾𝒶) =
1

2𝑎2
(1 −

𝛼1
2

4𝛼2𝛾𝒶
) and 𝛾𝒶 ∼ 𝑇𝐺𝑎 (𝛾𝒶 |

1

2
, 1, (

𝑎1
2

4𝑎2
, ∞)) 

In vector form they are expressed as 

{
�̃�𝓂(𝜈)~𝑁q

𝑢𝑛𝑛(|�̃�𝓂(𝜈)||0, 𝑑𝑖𝑎𝑔(𝝈𝜾
2)),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷

𝑜𝑟
𝜾𝓂(𝜈)~𝑁q

𝑢𝑛𝑛(|𝐃𝐍𝜾𝓂(𝜈)||0, 𝑑𝑖𝑎𝑔(𝝈𝜾
2)),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷

    [4.3] 

where 

𝑁q
𝑢𝑛𝑛 is the unnormalized distribution 𝑒−

1

2
�̃�𝓂
† (𝜈)𝑑𝑖𝑎𝑔(𝝈𝜾

2)
−1
�̃�𝓂(𝜈) |2𝜋𝑑𝑖𝑎𝑔(𝝈𝜾

2)|
1

2 (∏ q𝒶𝒶∈𝔸 )f𝒷m⁄   

𝝈𝜾
2(ℊ) = 𝑓(𝛾𝒶), ℊ ∈ 𝔾𝒶, 𝒶 ∈ 𝔸  are the variances  

The full vector Bayesian model is as follows: 

𝒗𝓂(𝜈)~𝑁p
ℂ(𝒗𝓂(𝜈)|𝐋𝒗𝜾𝜾𝓂(𝜈), 𝜎𝝃

2𝐈), 𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷 “Likelihood”   [4.4] 

𝜾𝓂(𝜈)~𝑁q
𝑢𝑛𝑛(|𝐃𝐍𝜾𝓂(𝜈)||0, 𝑑𝑖𝑎𝑔(𝝈𝜾

2)), 𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷 “Parameters prior” [4.5] 

𝝈𝜾
2(ℊ) = 𝑓(𝛾𝒶), ℊ ∈ 𝔾𝒶, 𝒶 ∈ 𝔸  “Variance parametrization”   [4.6] 
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𝜸 ∼ ∏ 𝑇𝐺𝑎 (𝛾𝒶 |
1

2
, 1, (

𝛼1
2

4𝛼2
, ∞))𝒶∈𝔸  “Hyperparameters prior”   [4.7] 

SI-5 Parameters posterior probability  

For the joint distribution of data and parameters 𝑝(𝒗𝓂(𝜈), 𝜾𝓂(𝜈)) the following factorization holds, 

for simplicity we avoid the use of argument for frequency 𝜈 and samples 𝑚:  

𝑁p
ℂ(𝒗|𝐋𝒗𝜾𝜾, 𝜎𝝃

2𝐈)𝑁q
𝑢𝑛𝑛(|𝐃𝐍𝜾||0, 𝑑𝑖𝑎𝑔(𝝈𝜾

2)) =

                                              |𝜋�̌�𝜾𝜾|𝑁q
ℂ(𝜾|�̂�, �̌�𝜾𝜾)𝑁p

ℂ(𝒗|𝐋𝒗𝜾�̂�, 𝜎𝝃
2𝐈)𝑁q(|𝐃𝐍�̂�||0, 𝑑𝑖𝑎𝑔(𝝈𝜾

2))  [5.1] 

The quantities �̂� (posterior mean) and �̌�𝜾𝜾 (posterior covariance) are defined as follows 

�̂� = �̌�𝜾𝜾𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝒗 “Posterior mean”       [5.2] 

�̌�𝜾𝜾 = (𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾 +

1

2
𝚺𝜾𝜾
−1)

−1
  “Posterior Covariance”    [5.3] 

where 𝚺𝜾𝜾
−1 = (𝐃𝐍)𝒯(𝑑𝑖𝑎𝑔(𝝈𝜾

2))
−1
𝐃𝐍 

This can be demonstrated by writing their distributions explicitly. 

𝑁p
ℂ(𝒗|𝐋𝒗𝜾𝜾, 𝜎𝝃

2𝐈) =
𝑒
−(𝒗−𝐋𝒗𝜾𝜾)

†(𝜎𝝃
2𝐈)

−1
(𝒗−𝐋𝒗𝜾𝜾)

|𝜋𝜎𝝃
2𝐈|

  “Likelihood” 

𝑁q(|𝐃𝐍𝜾||0, 𝑑𝑖𝑎𝑔(𝝈𝜾
2)) =

𝑒
−
1
2
𝜾†𝚺𝜾𝜾

−1𝜾

|2𝜋𝑑𝑖𝑎𝑔(𝝈𝜾
2)|

1

2 (∏ q𝒶𝒶∈𝔸 )f𝒷m

    “Parameters prior” 

The form of the resultant distribution can be found by analyzing the terms that depend on the 

parameters (exponential argument) in the formula above 

−𝒗†(𝜎𝝃
2𝐈)

−1
𝒗 − 𝜾†𝐋𝜾𝒗(𝜎𝝃

2𝐈)
−1
𝐋𝒗𝜾𝜾 + 𝒗

†(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾𝜾 + 𝜾

†𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝒗 −

1

2
𝜾†𝚺𝜾𝜾

−1𝜾  

Reorganizing 𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾 +

1

2
𝚺𝜾𝜾
−1 of terms 2 and 5 to render �̌�𝜾𝜾

−1 and 𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝒗 in terms 3 and 

4 to render �̂�  

−𝒗†(𝜎𝝃
2𝐈)

−1
𝒗 + (�̌�𝜾𝜾𝐋𝜾𝒗(𝜎𝝃

2𝐈)
−1
𝒗)

†
�̌�𝜾𝜾
−1𝜾 + 𝜾†�̌�𝜾𝜾

−1 (�̌�𝜾𝜾𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝒗) 

                                                                                                 −𝜾† (𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾 +

1

2
𝚺𝜾𝜾
−1) 𝜾 [5.4] 

−𝒗†(𝜎𝝃
2𝐈)

−1
𝒗 + �̂�†�̌�𝜾𝜾

−1𝜾 + 𝜾†�̌�𝜾𝜾
−1�̂� − 𝜾†�̌�𝜾𝜾

−1𝜾      [5.5]  
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Completing with the term +�̂�†�̌�𝜾𝜾
−1�̂�  

−(𝜾 − �̂�)†�̌�𝜾𝜾
−1(𝜾 − �̂�) − 𝒗†(𝜎𝝃

2𝐈)
−1
𝒗 + �̂�†�̌�𝜾𝜾

−1�̂�      [5.6] 

Completing with the terms −𝒗†(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾�̂�, −�̂�

†𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝒗 and +�̂�†𝐋𝜾𝒗(𝜎𝝃

2𝐈)
−1
𝐋𝒗𝜾�̂� we obtain: 

−(𝜾 − �̂�)†�̌�𝜾𝜾
−1(𝜾 − �̂�) − (𝒗 − 𝐋𝒗𝜾�̂�)

†(𝜎𝝃
2𝐈)

−1
(𝒗 − 𝐋𝒗𝜾�̂�) − 𝒗

†(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾�̂�  

−�̂�†𝐋𝒗𝜾
𝒯 (𝜎𝝃

2𝐈)
−1
𝒗 + �̂�†𝐋𝜾𝒗(𝜎𝝃

2𝐈)
−1
𝐋𝒗𝜾�̂� + �̂�

†�̌�𝜾𝜾
−1�̂�  [5.7] 

Then terms 3, 4 and 6 can be reorganized into −�̂�†�̌�𝜾𝜾
−1�̂� since 𝐋𝒗𝜾

𝒯 (𝜎𝝃
2𝐈)

−1
𝒗 = �̌�𝜾𝜾

−1�̂�† to obtain: 

 −(𝜾𝑚 − �̂�)
†�̌�𝜾𝜾

−1(𝜾𝑚 − �̂�) − (𝒗𝑚 − 𝐋𝒗𝜾�̂�)
†(𝜎𝝃

2𝐈)
−1
(𝒗𝑚 − 𝐋𝒗𝜾�̂�) 

−�̂�†�̌�𝜾𝜾
−1�̂� + �̂�†𝐋𝜾𝒗(𝜎𝝃

2𝐈)
−1
𝐋𝒗𝜾�̂�  [5.8] 

But combining terms 3 and 4 yields −
1

2
�̂�†𝚺𝜾𝜾

−1�̂� 

 −(𝜾 − �̂�)†�̌�𝜾𝜾
−1(𝜾 − �̂�) − (𝒗 − 𝐋𝒗𝜾�̂�)

†(𝜎𝝃
2𝐈)

−1
(𝒗 − 𝐋𝒗𝜾�̂�) −

1

2
�̂�†𝚺𝜾𝜾

−1�̂�   [5.9]  

From this, it holds that: 

𝑁p
ℂ(𝒗|𝐋𝒗𝜾𝜾, 𝜎𝝃

2𝐈)𝑁q
𝑢𝑛𝑛(|𝐃𝐍𝜾||0, 𝑑𝑖𝑎𝑔(𝝈𝜾

2)) = 

                                |𝜋�̌�𝜾𝜾|𝑁q
ℂ(𝜾|�̂�, �̌�𝜾𝜾)𝑁p

ℂ(𝒗|𝐋𝒗𝜾�̂�, 𝜎𝝃
2𝐈)𝑁q

𝑢𝑛𝑛(|𝐃𝐍�̂�||0, 𝑑𝑖𝑎𝑔(𝝈𝜾
2))   [5.10] 

SI-6 Empirical Bayes and hyperparameters posterior probability  

From the joint distribution 𝑝({(𝒗𝓂(𝜈), 𝜾𝓂(𝜈)),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷}) we can derive iteratively and 

approximated representation the Type II-Likelihood 𝑝(𝑘)({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷}): 

𝑝({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷}) = ∏ ∏ ∫𝑝(𝒗𝓂(𝜈), 𝜾𝓂(𝜈))𝑑𝜾𝓂(𝜈)𝓂∈𝕄𝜈∈𝔽𝒷   [6.1]  

𝑝({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷}) ≈ 𝑝
(𝑘)({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷})   [6.2] 

where  

𝑝(𝑘)({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷}) = ∏ ∏ ∫𝑁p
ℂ(𝒗𝓂(𝜈)|𝐋𝒗𝜾𝜾𝓂(𝜈), 𝜎𝝃

2𝐈) ×𝓂∈𝕄𝜈∈𝔽𝒷   

𝑁q
𝑢𝑛𝑛(|𝐃𝐍𝜾𝓂(𝜈)||0, 𝑑𝑖𝑎𝑔(𝝈𝜾

2))𝑑𝜾𝓂(𝜈)  [6.3] 

The analysis of section 5 yields 

∫𝑁p
ℂ(𝒗𝓂(𝜈)|𝐋𝒗𝜾𝜾𝓂(𝜈), 𝜎𝝃

2𝐈)𝑁q
𝑢𝑛𝑛(|𝐃𝐍𝜾𝓂(𝜈)||0, 𝑑𝑖𝑎𝑔(𝝈𝜾

2))𝑑𝜾𝓂(𝜈) =  
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|𝜋�̌�𝜾𝜾|𝑁p
ℂ(𝒗𝓂(𝜈)|𝐋𝒗𝜾�̂�𝓂(𝜈), 𝜎𝝃

2𝐈)𝑁q
𝑢𝑛𝑛(|𝐃𝐍�̂�𝓂(𝜈)||0, 𝑑𝑖𝑎𝑔(𝝈𝜾

2)) [6.4] 

Then iteratively upon fixed values of the parameters �̂�𝓂
(𝑘)(𝜈) the Type II-Likelihood is expressed as:  

 𝑝(𝑘)({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷}) =  

{
  
 

  
 ∏ ∏ |𝜋�̌�𝜾𝜾|𝑁p

ℂ (𝒗𝓂(𝜈)|𝐋𝒗𝜾�̂�𝓂
(𝑘)(𝜈), 𝜎𝝃

2𝐈) ×𝓂∈𝕄𝜈∈𝔽𝒷

                                                                                 𝑁q
𝑢𝑛𝑛 (|𝐃𝐍�̂�𝓂

(𝑘)(𝜈)| |0, 𝑑𝑖𝑎𝑔(𝝈𝜾
2))

𝑜𝑟
|𝜋�̌�𝜾𝜾|

f𝒷m

|𝜋𝜎𝝃
2𝐈|

f𝒷m
|2𝜋𝑑𝑖𝑎𝑔(𝑓(𝜸))|

1
2

𝑒
−
f𝒷m

2
𝑡𝑟(𝑑𝑖𝑎𝑔(𝝈𝜾

−2)�̃�𝜾𝜾
(𝑘)
)
𝑒
−f𝒷m𝜎𝝃

−2𝑡𝑟(𝐒𝝃𝝃
(𝑘)
)

 [6.5] 

Where the covariances  �̃�𝜾𝜾
(𝑘)

 and 𝐒𝝃𝝃
(𝑘)

 are 

�̌�𝜾𝜾 = (𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾 +

1

2
𝚺𝜾𝜾
−1)

−1
 with 𝚺𝜾𝜾

−1 = (𝐃𝐍)𝒯(𝑑𝑖𝑎𝑔(𝝈𝜾
2))

−1
𝐃𝐍 

�̃�𝜾𝜾
(𝑘) = 𝐃𝐍𝐒𝜾𝜾

(𝑘)(𝐃𝐍)𝒯 with 𝐒𝜾𝜾
(𝑘) =

1

f𝒷m
∑ ∑ �̂�𝓂

(𝑘)(𝜈) (�̂�𝓂
(𝑘)(𝜈))

†

𝓂∈𝕄𝜈∈𝔽𝒷   

𝐒𝝃𝝃
(𝑘) =

1

f𝒷m
∑ ∑ (𝒗𝓂(𝜈) − 𝐋𝒗𝜾�̂�𝓂

(𝑘)(𝜈)) (𝒗𝓂(𝜈) − 𝐋𝒗𝜾�̂�𝓂
(𝑘)(𝜈))

†

𝓂∈𝕄𝜈∈𝔽𝒷   

Parameter estimators 

The parameters �̂�𝓂
(𝑘)(𝜈) are determined in the previous iteration in terms of the iteratively linear source 

transfer operator �̌�𝜾𝒗
(𝑘)

 

�̂�𝓂
(𝑘)(𝜈) = �̌�𝜾𝒗

(𝑘)𝒗𝓂(𝜈)         [6.6] 

The source transfer operator is defined upon fixed values of the hyperparameters:  

�̌�𝜾𝒗
(𝑘) = �̌�𝜾𝜾

(𝑘)𝐋𝜾𝒗 (𝜎𝝃
2(𝑘)𝐈)

−1

        [6.7] 

where 

�̌�𝜾𝜾
(𝑘) = (𝐋𝜾𝒗 (𝜎𝝃

2(𝑘)𝐈)
−1

𝐋𝒗𝜾 +
1

2
𝚺𝜾𝜾
(𝑘)−1)

−1

 with 𝚺𝜾𝜾
(𝑘)−1 = (𝐃𝐍)𝒯 (𝑑𝑖𝑎𝑔 (𝝈𝜾

2(𝑘)))
−1

𝐃𝐍 

This simplifies the computations of 𝐒𝜾𝜾
(𝑘)

 expressed as: 

𝐒𝜾𝜾
(𝑘) = �̌�𝜾𝒗

(𝑘)𝐒𝒗𝒗�̌�𝒗𝜾
(𝑘)

          [6.8] 

where 
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 𝐒𝒗𝒗 =
1

f𝒷m
∑ ∑ 𝒗𝓂(𝜈)𝒗𝓂

†
𝓂∈𝕄𝜈∈𝔽𝒷  

SI-7 Hyperparameter estimators  

The estimation formulas can be derived by applying maximum posterior of the combined Type II 

Likelihood and priors. To do so we reformulate the targeted hyperparameters as follows: 

 𝜌 ←
𝛼1
2

4𝛼2
          [7.1] 

𝛼 ← 𝛼2           [7.2] 

�̃�𝜾
2(𝒶) ← 2𝑎𝝈𝜾

2(ℊ), ℊ ∈ 𝔾𝒶, 𝒶 ∈ 𝔸       [7.3] 

Variances 

First the estimator of variances �̃�𝜾
2(𝒶) can be computed from the stationary values of the expression:  

{
 
 

 
 

𝜕

𝜕�̃�𝜾
2(𝒶)

log (𝑝(𝑘)({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷})𝑝(𝛾𝒶)) = 0

𝑜𝑟
𝜕

𝜕�̃�𝜾
2(𝒶)

(f𝒷mlog|𝜋�̌�𝜾𝜾| −
f𝒷m

2
𝑡𝑟 (𝑑𝑖𝑎𝑔(𝝈𝜾

−2)�̃�𝜾𝜾
(𝑘)))

                                                           −
1

2

𝜕

𝜕�̃�𝜾
2(𝒶)

log 𝑓(𝛾𝒶) +
𝜕

𝜕�̃�𝜾
2(𝒶)

log 𝑝(𝛾𝒶) = 0

  [7.4] 

Due to the chain rule of matrix derivatives the first term can be expressed in a close form, see 

preposition 2.3.2b in [Paz-Linares, 2017]. 

𝜕

𝜕�̃�𝜾
2(𝒶)

(f𝒷mlog|𝜋�̌�𝜾𝜾| −
f𝒷m

2
𝑡𝑟 (𝑑𝑖𝑎𝑔(𝝈𝜾

−2)�̃�𝜾𝜾
(𝑘)
)) =  

{
 
 

 
 

 

∑
𝜕

𝜕𝝈𝜾
2(ℊ)

(f𝒷mlog|𝜋�̌�𝜾𝜾| −
f𝒷m

2
𝑡𝑟 (𝑑𝑖𝑎𝑔(𝝈𝜾

−2)�̃�𝜾𝜾
(𝑘)
))

𝜕𝝈𝜾
2(ℊ)

𝜕�̃�𝜾
2(𝒶)ℊ∈𝔾𝒶

𝑜𝑟

                                                                  
f𝒷m

2
𝝈𝜾
−4(ℊ) (�̌̃�𝜾𝜾

(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾
(𝑘)(ℊ, ℊ))

  [7.5] 

where 

�̃�𝜾𝜾
(𝑘) = 𝐃𝐍𝐒𝜾𝜾

(𝑘)(𝐃𝐍)𝒯 with 𝐒𝜾𝜾
(𝑘) = �̌�𝜾𝒗

(𝑘)𝐒𝒗𝒗�̌�𝒗𝜾
(𝑘)

 

�̌̃�𝜾𝜾
(𝑘) = 𝐃𝐍�̌�𝜾𝜾

(𝑘)(𝐃𝐍)𝒯 

𝜕𝝈𝜾
2(ℊ)

𝜕�̃�𝜾
2(𝒶)

= {
1

2𝛼(𝑘)
, ℊ ∈ 𝔾𝒶

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Yielding: 
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𝜕

𝜕�̃�𝜾
2(𝒶)

(f𝒷mlog|𝜋�̌�𝜾𝜾| −
f𝒷m

2
𝑡𝑟 (𝑑𝑖𝑎𝑔(𝝈𝜾

−2)�̃�𝜾𝜾
(𝑘)
)) =  

f𝒷m
𝛼(𝑘)

(�̃�𝜾
2(𝒶))

2∑ (�̌̃�𝜾𝜾
(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾

(𝑘)(ℊ, ℊ))ℊ∈𝔾𝒶   [7.6] 

The second and third term derivatives are  

𝜕

𝜕�̃�𝜾
2(𝒶)

log 𝑓(𝛾𝒶) =
1

𝑓(𝛾𝒶)

𝜕

𝜕𝜂𝒶
𝑓(𝛾𝒶) =

1

�̃�𝜾
2(𝒶)

      [7.7] 

where 

 𝑓(𝛾𝒶) =
1

2𝛼(𝑘)
�̃�𝜾
2(𝒶) and  

𝜕

𝜕�̃�𝜾
2(𝒶)

𝑓(𝛾𝒶) =
1

2𝛼(𝑘)
   

𝜕

𝜕�̃�𝜾
2(𝒶)

log 𝑝(𝛾𝒶) =
𝜕

𝜕�̃�𝜾
2(𝒶)

log 𝑇𝐺𝑎 (
𝜌(𝑘)

1−�̃�𝜾
2(𝒶)

|
1

2
, 1, (𝑟,∞)) = −

1

2(1−�̃�𝜾
2(𝒶))

−
𝜌(𝑘)

(1−�̃�𝜾
2(𝒶))

2 [7.8]  

Substituting the derivatives, we obtain: 

𝜕

𝜕�̃�𝜾
2(𝒶)

log (𝑝(𝑘)({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷})𝑝(𝛾𝒶)) =  

f𝒷m
𝛼(𝑘)

(�̃�𝜾
2(𝒶))

2∑ (�̌̃�𝜾𝜾
(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾

(𝑘)(ℊ, ℊ))ℊ∈𝔾𝒶 −
1

2

1

�̃�𝜾
2(𝒶)

−
1

2(1−�̃�𝜾
2(𝒶))

−
𝜌(𝑘)

(1−�̃�𝜾
2(𝒶))

2  [7.9] 

But since it holds that −
1

2

1

�̃�𝜾
2(𝒶)

−
1

2(1−�̃�𝜾
2(𝒶))

= −
1

2�̃�𝜾
2(𝒶)(1−�̃�𝜾

2(𝒶))
 the expression is much more 

compact: 

𝜕

𝜕�̃�𝜾
2(𝒶)

log (𝑝(𝑘)({𝒗𝓂(𝜈),𝓂 ∈ 𝕄, 𝜈 ∈ 𝔽𝒷})𝑝(𝛾𝒶)) =  

f𝒷m
𝛼(𝑘)

(�̃�𝜾
2(𝒶))

2∑ (�̌̃�𝜾𝜾
(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾

(𝑘)(ℊ, ℊ))ℊ∈𝔾𝒶 −
1

2�̃�𝜾
2(𝒶)(1−�̃�𝜾

2(𝒶))
−

𝜌(𝑘)

(1−�̃�𝜾
2(𝒶))

2 [7.10] 

Using the auxiliary quantity 𝜂𝒶 so that �̃�𝜾
2(𝒶) =

𝜂𝒶

(𝜌(𝑘)+𝜂𝒶)
 we obtain: 

f𝒷m 𝛼
(𝑘)(𝜌(𝑘))

2
∑ (�̌̃�𝜾𝜾

(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾
(𝑘)(ℊ, ℊ))ℊ∈𝔾𝒶 −

1

2
𝜌(𝑘)𝜂𝒶 − 𝜌

(𝑘)(𝜂𝒶)
2 = 0  [7.11] 

Therefore, the only possible solution for the conditions set by the problem statement and estimator 

can be obtained from 𝜂𝒶 with: 

𝜂𝒶
(𝑘+1) = −

1

4
+√

1

16
+ f𝒷m 𝛼

(𝑘)𝜌(𝑘)∑ (�̌̃�𝜾𝜾
(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾

(𝑘)(ℊ, ℊ))ℊ∈𝔾𝒶    [7.12] 

 �̃�𝜾
2(𝑘+1)(𝒶) =

𝜂𝒶
(𝑘+1)

(𝜌(𝑘)+𝜂𝒶
(𝑘+1)

)
        [7.13] 
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Regularization parameters 𝝆 and 𝜶 

The estimator of the regularization parameters 𝑟 and 𝑎 can be computed from the stationary values 

of the expression below, following the same steps as for the variances, see preposition 2.3.2c in [Paz-

Linares, 2017]: 

{
 
 

 
 

𝜕

𝜕𝜌
log 𝑝(𝜸) +

𝜕

𝜕𝑟
log 𝑝(𝜌) = 0

𝑎𝑛𝑑
𝜕

𝜕𝛼
(f𝒷mlog|𝜋�̌�𝜾𝜾| −

f𝒷m

2
𝑡𝑟 (𝑑𝑖𝑎𝑔(𝝈𝜾

−2)�̃�𝜾𝜾
(𝑘)
))

                                                            −
1

2

𝜕

𝜕𝛼
log|2𝜋𝑑𝑖𝑎𝑔(𝑓(𝜸))| +

𝜕

𝜕𝛼
log 𝑝(𝛼) = 0

 [7.14] 

Writing explicitly the 𝑇𝐺𝑎 distribution and using the chain rule in the derivative 
𝜕

𝜕𝑟
log 𝑝(𝜸): 

𝜕

𝜕𝑟
log 𝑝(𝜸) = ∑ (

𝜕

𝜕𝛾𝒶
log 𝐺𝑎 (𝛾𝒶 |

1

2
, 1, (𝜌,∞))

𝜕𝛾𝒶

𝜕𝑟
−

𝜕

𝜕𝑟
log ∫ 𝐺𝑎 (𝑥|

1

2
, 1) 𝑑𝑥

∞

𝜌
)𝒶∈𝔸  [7.15] 

where  

𝜕

𝜕𝛾𝒶
log𝐺𝑎 (𝛾𝒶 |

1

2
, 1, (𝜌,∞)) = −

1−�̃�𝜾
2(𝒶)

2𝜌
− 1  

𝜕𝛾𝒶

𝜕𝜌
=

1

1−�̃�𝜾
2(𝑘)(𝒶)

  

𝜕

𝜕𝜌
log ∫ 𝐺𝑎 (𝑥|

1

2
, 1) 𝑑𝑥

∞

𝜌
= −𝐺𝑎 (𝜌|

1

2
, 1) ∫ 𝐺𝑎 (𝑥|

1

2
, 1) 𝑑𝑥

∞

𝜌
⁄   

The derivative 
𝜕

𝜕𝜌
log 𝑝(𝜌) is given by: 

𝜕

𝜕𝜌
log 𝑝(𝜌) =

𝑠𝜌

𝜌
− 𝑟𝜌          [7.16] 

where 𝑝(𝜌) ∝ 𝐺𝑎(𝜌|𝑠𝜌 + 1, 𝑟𝜌) with shape (𝑠𝜌 + 1) and rate 𝑟𝜌  

From this we obtain the equation for 𝜌: 

𝜌(𝑘+1) = 𝑧𝑒𝑟𝑜𝜌 (−∑
1

1−�̃�𝜾
2(𝑘)(𝒶)

𝒶∈𝔸 + 𝑙
𝐺𝑎(𝜌|

1

2
, 1)

∫ 𝐺𝑎(𝑥|
1

2
, 1)𝑑𝑥∞

𝜌

+ (𝑠𝜌 −
𝑙

2
)
1

𝜌
− 𝑟𝜌)  [7.17] 

Due to the chain rule of matrix derivatives the first term for the parameter 𝛼 can be expressed as: 

𝜕

𝜕𝛼
(f𝒷mlog|𝜋�̌�𝜾𝜾| −

f𝒷m

2
𝑡𝑟 (𝑑𝑖𝑎𝑔(𝝈𝜾

−2)�̃�𝜾𝜾
(𝑘))) =  

∑ ∑
f𝒷m

2
𝝈𝜾
−4(ℊ) (�̌̃�𝜾𝜾

(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾
(𝑘)(ℊ, ℊ))

𝜕𝝈𝜾
2(ℊ)

𝜕𝛼ℊ∈𝔾𝒶𝒶∈𝔸  [7.18] 
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where 

𝝈𝜾
2(ℊ) =

1

2𝑎
�̃�𝜾
2(𝑘)(𝒶), ℊ ∈ 𝔾𝒶, 𝒶 ∈ 𝔸 

𝜕𝝈𝜾
2(ℊ)

𝜕𝛼
= −

1

2𝑎2
�̃�𝜾
2(𝑘)(𝒶), ℊ ∈ 𝔾𝒶, 𝒶 ∈ 𝔸   

The derivative 
𝜕

𝜕𝛼
log|2𝜋𝑑𝑖𝑎𝑔(𝑓(𝜸))| is given by: 

𝜕

𝜕𝛼
log|2𝜋𝑑𝑖𝑎𝑔(𝑓(𝜸))| = ∑

1

𝑓(𝛾𝒶)
𝒶∈𝔸

𝜕

𝜕𝛼
𝑓(𝛾𝒶)      [7.19] 

where 

𝑓(𝛾𝒶) =
1

2𝑎
�̃�𝜾
2(𝑘)(𝒶)  

𝜕

𝜕𝛼
𝑓(𝛾𝒶) = −

1

2𝑎2
�̃�𝜾
2(𝑘)(𝒶)    

The derivative 
𝜕

𝜕𝜌
log 𝑝(𝜌) is given by: 

𝜕

𝜕𝛼
log 𝑝(𝛼) =

𝑠𝛼

𝛼
− 𝑟𝛼         [7.20] 

 where 𝑝(𝛼) ∝ 𝐺𝑎(𝛼|(𝑠𝛼 + 1), 𝑟𝛼) with shape (𝑠𝛼 + 1) and rate 𝑟𝛼  

From this we obtain the equation for 𝛼: 

−f𝒷m∑
∑ (�̌̃�𝜾𝜾

(𝑘)(ℊ,ℊ)+�̃�𝜾𝜾
(𝑘)(ℊ,ℊ))ℊ∈𝔾𝒶

�̃�𝜾
2(𝑘)(𝒶)

𝒶∈𝔸 +
𝑙

2𝛼
+
𝑠𝛼

𝛼
− 𝑟𝛼 = 0     [7.21] 

                                      or 

𝛼(𝑘+1) = (𝑠𝛼 +
𝑙

2
) (f𝒷m∑

∑ (�̌̃�𝜾𝜾
(𝑘)(ℊ,ℊ)+�̃�𝜾𝜾

(𝑘)(ℊ,ℊ))ℊ∈𝔾𝒶

�̃�𝜾
2(𝑘)(𝒶)

𝒶∈𝔸 + 𝑟𝛼)⁄     [7.22] 

Noise parameter 𝝈𝝃
𝟐 

The estimator of the noise parameter 𝜎𝝃
2 can be computed from the stationary values of the expression 

below, following the same steps as for the variances, see preposition 2.3.2d in [Paz-Linares, 2017]: 

𝜕

𝜕𝜎𝝃
2 (f𝒷mlog|𝜋�̌�𝜾𝜾| − f𝒷m𝜎𝝃

−2𝑡𝑟 (𝐒𝝃𝝃
(𝑘))) − f𝒷m

𝜕

𝜕𝜎𝝃
2 log|𝜋𝜎𝝃

2𝐈| +
𝜕

𝜕𝜎𝝃
2 log 𝑝(𝜎𝝃

2) = 0 [7.23] 

Due to the chain rule of matrix derivatives the first term for the parameter 𝛼 can be expressed as: 
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𝜕

𝜕𝜎𝝃
2 (f𝒷mlog|𝜋�̌�𝜾𝜾| − f𝒷m𝜎𝝃

−2𝑡𝑟 (𝐒𝝃𝝃
(𝑘)
)) = f𝒷m 𝜎𝝃

−4∑  (�̌�𝝃𝝃
(𝑘)(ℯ, ℯ) + 𝐒𝝃𝝃

(𝑘)(ℯ, ℯ))ℯ∈𝔼  [7.24] 

where �̌�𝝃𝝃
(𝑘) = 𝐋𝒗𝜾�̌�𝜾𝜾

(𝑘)𝐋𝜾𝒗 and 𝐒𝝃𝝃
(𝑘) = �̌�𝝃𝒗

(𝑘)𝐒𝒗𝒗�̌�𝒗𝝃
(𝑘)

 with �̌�𝝃𝒗
(𝑘) = 𝐈 − 𝐋𝒗𝜾�̌�𝜾𝒗

(𝑘)
 

The derivative 
𝜕

𝜕𝜎𝝃
2 log|𝜋𝜎𝝃

2𝐈| is given by: 

𝜕

𝜕𝜎𝝃
2 log|𝜋𝜎𝝃

2𝐈| =
p

𝜎𝝃
2         [7.25] 

The derivative 
𝜕

𝜕𝜎𝝃
2 log 𝑝(𝜎𝝃

2) is given by: 

𝜕

𝜕𝜎𝝃
2 log 𝑝(𝜎𝝃

2) = −
𝑠𝝃

𝜎𝝃
2 +

𝑟𝝃

𝜎𝝃
−4        [7.26] 

where 𝑝(𝜎𝝃
2) ∝ 𝐺𝑎(1 𝜎𝝃

2⁄ |(𝑠𝝃 + 1), 𝑟𝝃) with shape (𝑠𝝃 + 1) and rate 𝑟𝝃  

From this we obtain the equation for 𝛼: 

f𝒷m 𝜎𝝃
−4∑  (�̌�𝝃𝝃

(𝑘)(ℯ, ℯ) + 𝐒𝝃𝝃
(𝑘)(ℯ, ℯ))ℯ∈𝔼 − f𝒷m

p

𝜎𝝃
2 −

𝑠𝝃

𝜎𝝃
2 +

𝑟𝝃

𝜎𝝃
−4 = 0   [7.27] 

or 

𝜎𝝃
2(𝑘+1) = (𝑠𝝃 + f𝒷mp) (f𝒷m∑  (�̌�𝝃𝝃

(𝑘)(ℯ, ℯ) + 𝐒𝝃𝝃
(𝑘)(ℯ, ℯ))ℯ∈𝔼 + 𝑟𝝃)⁄    [7.28] 

SI-8 Spectral Structured Sparse Bayesian Learning with multiple priors (sSSBL++)  

Inputs 

𝐋𝜾𝒗 (Lead Field), 𝒔𝒄𝒂𝒍𝒆𝐋 (scale factor for 𝐋𝜾𝒗), {𝐒𝒗𝒗(𝝂), 𝝂 ∈ 𝔽𝓫} (Observed 

cross-spectrum), 𝒔𝒄𝒂𝒍𝒆𝐒 (scale factor for 𝐒𝒗𝒗), 𝐩 (Number of sensors), 𝐟𝓫 

(Band size), 𝐦 (Sample size), 𝐃 (Laplacian) 𝐍 (Normal directions), 

{𝔾𝓪, 𝓪 ∈ 𝔸} (parcels), 𝒍 (Parcellation size), 𝒔𝝃 (noise shape), 𝒓𝝃 (noise ratio), 𝒔𝜶 

(alpha shape), 𝒓𝜶 (alpha ratio), 𝒔𝝆 (rho shape), 𝒓𝝆 (rho shape), maxiter 

(Maximum number of iterations)  

Outputs 
𝐓𝜾𝒗 (Source transfer operator), �̌�𝜾𝜾 (Source posterior covariance), {𝐒𝜾𝜾(𝜈), 𝜈 ∈ 𝔽𝒷} 

(Source covariance or cross-spectrum), 

Initial 

values 

𝛼(0), 𝜌(0), 𝜎𝝃
2(0) and 𝝈𝜾

2(0)  

𝐒𝒗𝒗 =
1

f𝒷
∑ 𝐒𝒗𝒗(𝜈)𝜈∈𝔽𝒷   
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𝐋𝜾𝒗 = 𝐋𝜾𝒗 𝑠𝑐𝑎𝑙𝑒𝐋⁄   

𝐒𝒗𝒗 = 𝐒𝒗𝒗 𝑠𝑐𝑎𝑙𝑒𝐒⁄   

START 

FOR 𝒌 = 𝟏⋯𝒎𝒂𝒙𝒊𝒕𝒆𝒓 

 

Parameters 

 

step 1 𝚺𝜾𝜾
(𝑘)−1 = (𝐃𝐍)𝒯 (𝑑𝑖𝑎𝑔 (𝝈𝜾

2(𝑘)))
−1

𝐃𝐍  

step 2 �̌�𝜾𝜾
(𝑘)

= (𝐋𝜾𝒗 (𝜎𝝃
2(𝑘)𝐈)

−1

𝐋𝒗𝜾 +
1

2
𝚺𝜾𝜾
(𝑘)−1

)
−1

  

step 3 �̌̃�𝜾𝜾
(𝑘)

= 𝐃𝐍�̌�𝜾𝜾
(𝑘)(𝐃𝐍)𝒯  

step 4 �̌�𝝃𝝃
(𝑘) = 𝐋𝒗𝜾�̌�𝜾𝜾

(𝑘)𝐋𝜾𝒗  

step 5 �̌�𝜾𝒗
(𝑘) = �̌�𝜾𝜾

(𝑘)𝐋𝜾𝒗 (𝜎𝝃
2(𝑘)𝐈)

−1

  

step 6 �̌�𝝃𝒗
(𝑘)
= 𝐈 − 𝐋𝒗𝜾�̌�𝜾𝒗

(𝑘)
  

step 7 𝐒𝜾𝜾
(𝑘) = �̌�𝜾𝒗

(𝑘)𝐒𝒗𝒗�̌�𝒗𝜾
(𝑘)

  

step 8 𝐒𝝃𝝃
(𝑘) = �̌�𝝃𝒗

(𝑘)𝐒𝒗𝒗�̌�𝒗𝝃
(𝑘)

 

 

Hyperparameters 

 

FOR 𝓪 = 𝟏⋯𝒍 

step 9 𝜂𝒶
(𝑘+1) = −

1

4
+√

1

16
+ f𝒷m 𝛼

(𝑘)𝜌(𝑘)∑ (�̌̃�𝜾𝜾
(𝑘)(ℊ, ℊ) + �̃�𝜾𝜾

(𝑘)(ℊ, ℊ))ℊ∈𝔾𝒶   

step 10 �̃�𝜾
2(𝑘+1)(𝒶) =

𝜂𝒶
(𝑘+1)

(𝜌(𝑘)+𝜂𝒶
(𝑘+1)

)
   

step 11 𝝈𝜾
2(𝑘+1)(𝔾𝒶) =

1

2𝛼(𝑘)
�̃�𝜾
2(𝑘)(𝒶)  

END 
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step 12 𝜌(𝑘+1) = 𝑧𝑒𝑟𝑜𝜌 (−∑
1

1−�̃�𝜾
2(𝑘)(𝒶)

𝑙
𝒶=1 + 𝑙

𝐺𝑎(𝜌|
1

2
, 1)

∫ 𝐺𝑎(𝑥|
1

2
, 1)𝑑𝑥∞

𝜌

+ (𝑠𝜌 −
𝑙

2
)
1

𝜌
− 𝑟𝜌)  

step 13 𝛼(𝑘+1) = (𝑠𝛼 +
𝑙

2
) (f𝒷m∑

∑ (�̌̃�𝜾𝜾
(𝑘)(ℊ,ℊ)+�̃�𝜾𝜾

(𝑘)(ℊ,ℊ))ℊ∈𝔾𝒶

�̃�𝜾
2(𝑘)(𝒶)

𝑙
𝒶=1 + 𝑟𝛼)⁄   

step 14 𝜎𝝃
2(𝑘+1) = (𝑠𝝃 + f𝒷mp) (f𝒷m∑ (�̌�𝝃𝝃

(𝑘)(ℯ, ℯ) + 𝐒𝝃𝝃
(𝑘)(ℯ, ℯ))

p
ℯ=1 + 𝑟𝝃)⁄   

END 

 

Converged estimators 

 

step 15 𝐓𝜾𝒗 = �̌�𝜾𝒗
(𝑚𝑎𝑥𝑖𝑡𝑒𝑟)

   

step 16 �̌�𝜾𝜾 = �̌�𝜾𝜾
(𝑚𝑎𝑥𝑖𝑡𝑒𝑟)

   

step 17 𝐒𝜾𝜾(𝜈) = 𝐓𝜾𝒗𝐒𝒗𝒗(𝜈)𝐓𝒗𝜾  for 𝜈 ∈ 𝔽𝒷 

END 

 

Algorithm interpretation  

The estimation procedure is based on maximum posterior analysis extended from [Paz-Linares et al 

2017]. The parameters 𝜌 (step 12) and 𝛼 (step 13) tune the global level of sparsity by balancing the 

contribution of the group Hierarchical Elastic Net of step 9. The selection of specific neural causes is 

controlled by 𝝈𝜾
2 (step 11), which does it for the grouped frequency components 𝜈 ∈ 𝔽𝒷, 𝐦 samples 

and generators into an area ℊ ∈ 𝔾𝒶. Thus, allowing to identify the spatial signature of the band 

robustly and area robustly with the information of all samples.  

Algorithm statistics  

The sSSBL or sSSBL++ allows screening out the neural space by thresholding the posterior 

distribution statistic: the ratio of the posterior mean and posterior variances. After convergence the 

estimated source activity can be thresholded by means of an unbiased statistic: this is due to the 

posterior distribution of source activity 𝑁q
ℂ(𝜾|�̂�, �̌�𝜾𝜾) of formula [5.1], where the quantities �̂� (posterior 

mean) and �̌�𝜾𝜾 (posterior covariance) are defined as follows:  

�̂� = �̌�𝜾𝜾𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝒗 “Posterior mean”       [5.2] 
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�̌�𝜾𝜾 = (𝐋𝜾𝒗(𝜎𝝃
2𝐈)

−1
𝐋𝒗𝜾 +

1

2
𝚺𝜾𝜾
−1)

−1
  “Posterior Covariance”    [5.3] 

In this distribution, 𝑑𝑖𝑎𝑔(𝐒𝜾𝜾) is the posterior mean and �̌�𝜾𝜾 the posterior covariance. The z-statistic 

for the analysis of variance has the following form: 𝑧𝑠𝑡𝑎𝑡 = 𝑠𝑞𝑟𝑡(𝑑𝑖𝑎𝑔(𝐒𝜾𝜾). 𝑑𝑖𝑎𝑔(�̌�𝜾𝜾)⁄ ). A plausible 

way to screen out the active sources is to extract the set of nodes 𝓘 that return a value of the z-statistic 

greater than 1: 𝔾0 = {𝜾: 𝑧_𝑠𝑡𝑎𝑡𝜄 ≥ 1}. 

SI-9 Synthetic EEG 

To evaluate the performance of the sSSBL we also use typical synthetic EEG data simulations (𝒗𝓂, 

𝓂 = 1…m) corresponding distributed four sources patches with four different spectral components, 

see an instance of the “Ground True” in next Figure. Source activity is defined as random complex 

vectors (𝜾𝓂, 𝓂 = 1…m) multivariate Gaussian engine with random Hermitic covariance matrix 𝚺𝜾𝜾. 

For more realism the covariance is defined from its inverse or precision matrix 𝚯𝜾𝜾 a graphical 

connectivity model. Synthetic data samples (𝒗𝓂, 𝓂 = 1…m) and its corresponding noisy empirical 

covariance matrix 𝐒𝒗𝒗 were used to evaluate the ESI method performances. To avoid the inverse 

crime, we used different Lead Field for the inversion to the one used for simulations purpose. The 

data was corrupted with noise at both levels: (i) sensor (instrumental) noise (𝝃𝓂
(𝑒𝑒𝑔)

, 𝓂 = 1…m) 

sampled from an univariate Gaussian engine (ii) source (biological) noise (𝝃𝓂
(𝑏𝑖𝑜𝑙)

,𝓂 = 1…m) 

obtained from the Lead Field of an univariate Gaussian engine defined as above. Both types of noise 

were energy normalized and scaled to a fraction of the EEG signal to achieve the specified signal-to-

noise ratio coefficient. See pseudocode for generating synthetic data in next session. For comparison 

purpose, we use the well-stablished ESI methods MNE and eLORETA.  
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Results for three ESI methods (MNE, eLORETA and sSSBL++). Simulation framework was based 

on four patches distributed at cortical surface with different spectral activity.  

For an evaluation of sSSBL++ inference framework, one-hundred random trials of patches centroids 

were generated. Every random trial included three patches with spatially distributed activity over 

thirty nodes correspondingly. The synthetic data empirical covariance matrix was obtained from four-

hundred samples of simulated source activity and noise. The signal to noise ratio was adjusted to four 

different levels of noise: none (∞dB), low (19dB), medium (7dB), and high (0dB), as is showed in 

the next Table. 
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EMD MEASURE IN SOURCE LOCALIZATION PERFORMANCE FOR THREE ESI 

METHODS: MNE, ELORETA, AND SSSBL++. MEAN AND STANDARD DEVIATION ARE 

SHOWED FOR ONE HUNDRED TRIALS WITH FOUR DIFFERENT LEVELS OF NOISE: 

NONE (∞DB), LOW (19DB), MEDIUM (7DB) AND HIGH (0DB). 

NOISE LEVEL \ 

ESI 

MNE eLORETA SSSBL++ 

NONE  8.13 ± 0.64 12.01 ± 2.14 5.99 ± 0.66 

LOW 14.92 ± 0.58 20.39 ± 3.37 11.22 ± 0.85 

MEDIUM 14.86 ± 0.57 41.37 ± 4.81 10.91 ± 0.58 

HIGH  14.89 ± 0.64 51.65 ± 2.18 10.92 ± 0.62 

 

SI-10 Pseudocode for synthetic data generation 

 

Inputs 𝐋 (Lead Field), 𝔾 (Generator space from a discretization of the Gray Matter), 𝔼 

(Sensor space for EEG/MEG), 𝐩 (Number of sensors), 𝐪 (Number of sources), 𝐦 

(Sample size), 𝝈𝝃 (Sensors’ noise) 

Outputs 𝐒𝜾𝜾  (Synthetic source empirical covariance matrix), 𝐒𝒗𝒗 (Synthetic noisy data 

empirical covariance matrix) 

START 

 

Activity 

 

step 1  ℜ(𝚯𝜾𝜾) ← 𝑟𝑎𝑛𝑑𝑛(q, q) Real part in subspace 𝔾 

step 2  ℜ(𝚯𝜾𝜾) ← (ℜ(𝚯𝜾𝜾) + ℜ(𝚯𝜾𝜾)
𝒯) 2⁄  Symmetric property  

step 3  ℑ(𝚯𝜾𝜾) ← 𝑟𝑎𝑛𝑑𝑛(q, q) Imaginary part at subspace 𝔾 

step 4  ℑ(𝚯𝜾𝜾) ← (ℑ(𝚯𝜾𝜾) − ℑ(𝚯𝜾𝜾)
𝒯) 2⁄  Antisymmetric property  

step 5  𝚯𝜾𝜾 ← 𝑐𝑜𝑚𝑝𝑙𝑒𝑥(ℜ(𝚯𝜾𝜾), ℑ(𝚯𝜾𝜾)) Complex compositing 

step 6  Set to zero elements in 𝚯𝜾𝜾 with unconnected indexes 

step 7 If 𝑚𝑖𝑛(𝑠𝑣𝑑𝑠(𝚯𝜾𝜾)) ≤ 0 then correct singular values to be greater than zero 

step 8 (𝜾𝓂)~𝑁q
𝐶(𝜾𝓂|𝟎, 𝚯𝜾𝜾

−𝟏); 𝓂 = 1…𝐦  
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step 9 𝐒𝜾𝜾 ←
1

m
∑ 𝜾𝓂𝜾𝓂

†m
𝓂=1   

 

Noise 

 

step 10 𝝃𝓂
(𝑖𝑛𝑠𝑡)

~𝑟𝑎𝑛𝑑𝑛(p, 1); 𝓂 = 1…𝐦 Instrumental noise  

step 11 
𝐒𝝃𝝃
(𝑖𝑛𝑠𝑡)

←
1

m
∑ 𝝃𝓂

(𝑖𝑛𝑠𝑡)
𝝃𝓂
(𝑖𝑛𝑠𝑡)†m

𝓂=1  Instrumental noise empirical covariance matrix 

step 12 𝝃𝓂
(𝑏𝑖𝑜𝑙)

~𝑟𝑎𝑛𝑑𝑛(q, 1); 𝓂 = 1…𝐦 Biological noise at subspace 𝔾 

step 13 𝝃𝓂
(𝑏𝑖𝑜𝑙)

← 𝐋𝝃𝓂
(𝑏𝑖𝑜𝑙)

; 𝓂 = 1…𝐦 Biological noise at subspace 𝔼 

step 14 
𝐒𝝃𝝃
(𝑏𝑖𝑜𝑙) ←

1

m
∑ 𝝃𝓂

(𝑏𝑖𝑜𝑙)𝝃𝓂
(𝑏𝑖𝑜𝑙)†m

𝓂=1  Biological noise empirical covariance matrix 

 

Signal to noise ratio 

 

step 15 𝐒𝒗𝒗 ← 𝐋𝐒𝜾𝜾𝐋
𝒯 Synthetic ideal data empirical covariance matrix 

step 16 𝝃𝓂
(𝑖𝑛𝑠𝑡) ← 𝝃𝓂

(𝑖𝑛𝑠𝑡)𝑡𝑟(𝐒𝒗𝒗) (𝝈𝝃𝑡𝑟 (𝐒𝝃𝝃
(𝑖𝑛𝑠𝑡)))⁄ ; 𝓂 = 1…𝐦 Instrumental noise 

step 17 𝝃𝓂
(𝑏𝑖𝑜𝑙) ← 𝝃𝓂

(𝑏𝑖𝑜𝑙)𝑡𝑟(𝐒𝒗𝒗) (𝝈𝝃𝑡𝑟 (𝐒𝝃𝝃
(𝑏𝑖𝑜𝑙)))⁄ ; 𝓂 = 1…𝐦 Biological noise 

step 18 𝝃𝓂 ← 𝝃𝓂
(𝑖𝑛𝑠𝑡) + 𝝃𝓂

(𝑏𝑖𝑜𝑙)
; 𝓂 = 1…𝐦 Total Noise 

 

Data 

 

step 19 𝒗𝓂 = 𝐋𝜾𝓂 + 𝝃𝓂, 𝓂 = 1…𝐦 Synthetic Noisy Data 

step 20 𝐒𝒗𝒗 =
1

m
∑ 𝒗𝓂𝒗𝓂

†m
𝓂=1   

END 
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