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ABSTRACT

Both neural activity and behavior of highly trained animals are strikingly variable across repetition
of behavioral trials. The neural variability consistently decreases during behavioral tasks, in both
sensory and motor cortices. The behavioral variability, on the other hand, changes depending on the
difficulty of the task and animal performance.
Here we study a mechanism for such variability in spiking neural network models with cluster
topologies that enable multistability and attractor dynamics, features subserving functional roles such
as decision-making, (working) memory and learning. Multistable attractors have been studied in
spiking neural networks through clusters of strongly interconnected excitatory neurons. However,
we show that this network topology results in the loss of excitation/inhibition balance and does not
confer robustness against modulation of network activity. Moreover, it leads to widely separated
firing rate states of single neurons, inconsistent with experimental observations.
To overcome these problems we propose that a combination of excitatory and inhibitory clustering
restores local excitation/inhibition balance. This network architecture is inspired by recent anatomical
and physiological studies which point to increased local inhibitory connectivity and possible inhibitory
clustering through connection strengths.
We find that inhibitory clustering supports realistic spiking activity in terms of a biologically realistic
firing rate, spiking irregularity, and trial-to-trial spike count variability. Furthermore, with the
appropriate stimulation of network clusters, this network topology enabled us to qualitatively and
quantitatively reproduce in vivo firing rate, variability dynamics and behavioral reaction times for
different task conditions as observed in recordings from the motor cortex of behaving monkeys.
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1 Introduction

The performance of a behavioral task in a human or monkey requires precise processing of sensory cues, rapid decision-
making, and the accurate control of movement. At the level of cortical processing, this involves the highly dynamic and
successive activation of neuronal populations across different cortical areas. Despite the accuracy of behavior in such a
task, it has been observed that neural activity and behavioral performance are highly variable across the repetition of
experimental trials with the same conditions (Renart & Machens, 2014). Over the last few decades, attractor dynamics,
which is the mathematical instantiation of the hypothesis of cell assemblies (Hebb, 1949), has been established as
the most viable computational model for this type of behavioral task. Yet, despite the fact that the basic theory of
attractor dynamics is well understood (Hopfield, 1982; Amit & Brunel, 1997; Roudi & Latham, 2007) and there has
been considerable experimental evidence to support it (Sakai & Miyashita, 1991; Wills et al., 2005; Knierim & Zhang,
2012; Miconi et al., 2016; Pereira & Brunel, 2018; Inagaki et al., 2019), the implementation of this type of framework
in realistic spiking networks, and the link between the precise computational mechanisms and behavioral and neural
trial-to-trial variability remain less clear.

The classical cortical model is a balanced network of excitatory and inhibitory neurons (van Vreeswijk & Sompolinsky,
1998; Brunel, 2000) with random connectivity. This model successfully captures certain aspects of cortical spiking
dynamics, including low firing rates and irregular spiking statistics. However, it fails to explain the trial-to-trial neural
variability in terms of spike counts, behavioral variability in terms of reaction times, and switching between metastable
states observed in cortical activity across various tasks and species. Over recent years, balanced random networks have
been extended to capture neural trial-to-trial variability and multistability by accommodating cluster topology in the
network architecture (Litwin-Kumar & Doiron, 2012; Deco & Hugues, 2012; Mazzucato et al., 2015, 2019; La Camera
et al., 2019). These studies use purely excitatory clustering and neglect a possible structure in the topology of local
inhibitory networks.

Despite the vital role of inhibitory neurons in cortical dynamics, the circuit connectivity of inhibitory neurons has
remained poorly understood until recent years. A series of works found that interneurons connect non-specifically to all
the surrounding pyramidal cells (Packer & Yuste, 2011; Fino & Yuste, 2011), inspiring the term “blanket of inhibition”.
This understanding of the circuit connectivity motivated early studies of clustered networks (Deco & Hugues, 2012;
Litwin-Kumar & Doiron, 2012) to keep the inhibitory connectivity homogeneous and non-specific while forming
clusters only between excitatory neurons. Recent growing interest in inhibitory neurons, however, has brought a more
complete understanding of the role of inhibitory neurons and their circuit connectivity, suggesting a higher degree of
specificity and possible clustering of inhibitory neurons (Xue et al., 2014; Lee et al., 2014; Morishima et al., 2017;
Arkhipov et al., 2018; Khan et al., 2018; Znamenskiy et al., 2018; Shin et al., 2019; Najafi et al., 2020). In particular, it
has been argued based on anatomical and physiological evidence that inhibitory networks can be strongly interconnected
locally. Moreover, excitatory neurons that receive strong excitatory input typically receive strong inhibitory input,
supporting local balance at the level of individual cells (Xue et al., 2014; Okun & Lampl, 2008). In addition, theoretical
studies have corroborated the importance of inhibition in attractor type dynamics and found, based on the analytical
treatment of rate and binary models, that inhibitory clustering strongly improves the robustness of the metastable
dynamics (Rost et al., 2017; Najafi et al., 2020).

In the present study, we propose a novel network architecture for spiking cortical attractor networks using combined
excitatory and inhibitory clustering. We show that inhibitory clustering helps to retain the local balance of excitation
and inhibition and generates the desirable multistability robustly over a wide range of network sizes and parameters.
We utilize our model to mechanistically explain in vivo task-related dynamics of neurons recorded from motor cortex
during a delayed reaching task, where the monkey receives cues that provide different degrees of uncertainty about the
reaching target. We find that our model qualitatively and quantitatively captures in vivo firing rate, variability dynamics,
and reaction times for different task conditions as observed in multiple single-unit recordings from the motor cortex of
the behaving monkey.

2 Results

We start out with analyzing the temporal dynamics of spiking variability across and within trials in single unit recordings
from the motor cortex of the macaque monkey during a delayed center-out reach task. The monkey was instructed to
press one of six target buttons at the end of a 1 s delay period previous to which a varying degree of target certainty
was cued according to one of three experimental conditions ((Bastian et al., 2003; Rickert et al., 2009); see section
"Experimental paradigm and data analysis"). In the present section we consider only the simplest task condition
(condition 1) in which complete target information was provided to the monkey at the onset of the preparatory period
(preparatory signal, PS, indicated by the green circle in Fig. 1a). After the fixed delay period of one second, the monkey
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was prompted to perform the movement by the response signal (RS, indicated by the red circle in Fig. 1a). Correct
execution was rewarded with fruit juice. Extracellular recordings were taken from the primary motor areas.

2.1 Variability dynamics in monkey motor cortex and clustered spiking network models
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Figure 1: Variability dynamics observed experimentally and in clustered spiking network models. a) Experimental
data recorded from the motor cortex of a macaque monkey during a delayed center-out reach task (Rickert et al., 2009).
Time-resolved Fano factor (FF) and coefficient of variation (CV2) are shown in red and black, respectively. Gray
horizontal dashed line shows FF and CV2 for a Poisson process and the vertical dashed lines indicate PS (when green
LED is lit) and RS (when red LED is lit). b) Network model with purely excitatory clusters and global inhibition (E
clustered network). Amplitude of the step-wise external input is shown in shades of gray, time-resolved Fano factors
for different amplitudes are shown in shades of red, and CV2 in shades of gray; the lighter the color, the weaker the
stimulus amplitude. c) Similar to b but for the network model with excitatory and inhibitory clusters (E/I clustered
network). In all three panels, Fano factor (FF) and coefficient of variation (CV2) are computed in a 400 ms sliding
window across 50 trials.

We first quantified spiking variability in our experimental data. Common statistical measures for quantifying the
variability dynamics of spiking neurons are the Fano factor (FF) and the local coefficient of variation of inter-spike
intervals (CV2) (Holt et al., 1996; Nawrot et al., 2008). The FF determines the response variability across the repetition
of the same experimental task (across trials) while the CV2 measures the irregularity of spike occurrences within trials
(for details see section "Quantifying neural variability"). Fig. 1a shows the temporal evolution of FF and CV2 computed
on the experimental data in a sliding window of 400 ms. During the spontaneous activity before cue-onset (PS), FF is
high (FF∼ 1.8) and after the cue-onset, FF decreases (red curve in Fig. 1a). This behavior of FF has been observed
previously in other cortical areas and different experimental tasks (Rickert et al., 2009; Churchland et al., 2010; Riehle
et al., 2018). The irregularity of inter-spike intervals, CV2, on the other hand, is fairly constant over time (black curve
in Fig. 1a) and does not show any dependency on the experimental epochs (note that for Poisson variability, we expect
FF= 1 and CV2 = 1; gray dashed line in Fig. 1a).

Next, we study a biologically plausible spiking network model of cortex which can generate such variability. The
reduction in count variability (FF) is commonly modeled using balanced networks of excitatory and inhibitory units
where only the excitatory population is divided into clusters of stronger internal connectivity (Deco & Hugues, 2012;
Litwin-Kumar & Doiron, 2012; Mazzucato et al., 2015, 2019). We first investigate the variability dynamics in this
network model (which we refer to as E clustered network). The model is composed of 4,000 excitatory (E) and 1,000
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inhibitory (I) exponential integrate-and-fire neurons. The E neurons are organized into Q recurrent clusters (Fig. 1b
top panel). Synaptic connections within each cluster are potentiated by a factor J+ and to maintain overall balance,
connections between E neurons belonging to different clusters are depressed by a factor J−. Inhibitory neurons are
non-specifically connected to themselves and E neurons (see section "Spiking network model" for a detailed explanation
of the model).

We simulate 2000 ms activity of the E clustered network in which ∼ 10% of clusters are stimulated for 1000 ms with
different stimulus amplitudes. We quantify the variability of these simulated data with FF and CV2 in a 400 ms window,
similar to the analysis of the experimental data. The middle panel of Fig. 1b shows the temporal modulation of FF for
different stimulus amplitudes indicated by different shades of red (the darker the color, the stronger the stimulus). The
consistent reduction in FF upon stimulation can be only achieved with a strong stimulus: the E clustered network shows
an increase in variability for stimuli of low and intermediate strength, inconsistent with experimental observations. As
for the regularity dynamics, we observe a reduction in CV2 during stimulation. This reduction tends to be stronger for
stronger stimulation and indicates that spiking activity becomes much more regular in comparison with spontaneous
activity. Such stimulus dependency of regularity is inconsistent with our experimental observation (see Fig. 1a) and to
our knowledge has not been reported in other studies. In summary, the E clustered network suffers from the following
unrealistic dynamics: 1) Reduction in count variability (FF) is achieved only with a strong stimulus, and a weak stimulus
leads to an increase in FF. 2) In the presence of a stimulus, the spiking activity becomes unrealistically regular (low
CV2).

To tackle the unrealistic dynamics observed in the E clustered network model, we suggest a more realistic connectivity
structure. Recent anatomical and physiological studies point to increased local inhibitory connectivity and possible
inhibitory clustering through connection strengths (Xue et al., 2014; Lee et al., 2014; Morishima et al., 2017; Khan
et al., 2018; Znamenskiy et al., 2018; Shin et al., 2019; Najafi et al., 2020). We therefore combine excitatory and
inhibitory clustering as we proposed previously for binary networks (Rost et al., 2017) (Fig. 1c top panel). We simulate
this network model with combined excitatory and inhibitory clusters (which we refer to as E/I clustered network) using
the same parameters as for the E clustered network (see section "Spiking network model"). Fig. 1c shows the variability
dynamics in the E/I clustered network. FF decreases in the presence of the stimulus, even for weak stimulation, and
CV2 does not show stimulus dependency, similar to the experimental observations (Fig. 1a). So far we have shown that
joint excitatory-inhibitory clustering enables the network to display realistic variability dynamics. In the following
sections we investigate the network mechanisms which lead to such realistic dynamics by exploring the E and E/I
clustered networks in detail.

2.2 Variability statistics in E versus E/I clustered networks

In this section we examine the effect of clustering parameters, namely the clustering strength J+ and the total number
of clusters Q, on the emergent variability in both E and E/I clustered networks.

Fig. 2a and c show the FF in relation to the excitatory clustering strength JE+ in E (panel a) and E/I (panel c) clustered
networks for Q = 50 clusters. The statistics are computed over 20 trials of 400 ms duration and averaged over 20
random network realizations. For low values of JE+, the FF remains unchanged on a level similar to that of the
balanced random network (JE+ = 1). At JE+ ≈ 3.2 an increase in FF occurs, spanning a relatively narrow range of
connection strengths. It can be seen in the corresponding inset in Fig. 2a that the activity for intermediate values of JE+

visits different clusters but for larger JE+ the network can get stuck in a state with a single active cluster. Thus, the E
clustered network is able to exhibit winnerless competition, but it is rather fragile. As JE+ is increased further, states
where one cluster wins become dominant and the FF decreases below that of the unstructured networks. The reason is
that the highly active clusters fire near the saturation rate where firing is very regular. This also increases the regularity
of the input to the remaining clusters, which become progressively more silent as cluster strength increases.

In the case of the E/I clustered network (Fig. 2c) the cluster switching dynamics become more moderate and are spread
over a much wider range of JE+. With increasing cluster strength, the duration of individual up-states becomes longer
and their amplitude increases. As long as the up-state duration is not much longer than the estimation window, this
increases the observed rate variance and thereby the FF. The behavior is shown for the whole range of cluster strengths
until the excitatory populations become completely decoupled at JE+ = Q. For JE+ > 15 or so, the average FF
becomes quite noisy despite averaging over 20 random realizations. For those large values, the variance over repeated
simulations is high, as some cases exhibit extensive cycling between clusters while in other cases one or more clusters
win, suppressing the winnerless competition dynamics. At JE+ = Q = 50 coupling between the populations exists
only through the inhibitory connections. This coupling is however still relatively strong, so that most populations are
quieted by a few winners. The whole range is shown for completeness, but the interesting dynamics take place at
relatively low values of JE+.
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So far we showed the variability dynamics in relation to clustering strength JE+ only for Q = 50 clusters. To further
investigate the role of the number of clusters Q, we repeat the analysis from Fig. 2a and c but for different values of Q.
To change Q we keep the total number of neurons N fixed and change the size of each cluster, i.e. larger Q means
a smaller number of neurons per cluster. Fig. 2b shows FF for different values of JE+ and Q. There is only a very
small parameter region in which the E clustered network shows high variability (FF > 1). This makes the E clustered
network highly sensitive to the choice of parameter values, so that stable switching dynamics can be achieved only by
extensive parameter tuning. In the case of the E/I clustered network, as shown in Fig. 2d, the dynamics are much more
robust and a large FF is achieved for a wide range of Q and JE+.

Figure 2: Effect of cluster strength JE+ and number of clusters Q on trial-to-trial variability FF. a, c) FF versus JE+ for
networks with Q = 50 computed on 20 trials of 400 ms and averaged over 50 network realizations. Other parameters as
in Table 2. Insets show two seconds of spiking activity of the excitatory populations. b, d) Pseudocolor representation
of FF for different values of Q and JE+. Orange shaded triangles indicate the zone below JE+ = Q, where the clusters
are completely decoupled. Panels a, b show results for the E clustered network; c, d for the E/I clustered network.

2.2.1 Local balance of excitation and inhibition in the E/I network topology facilitates metastable states and
spiking irregularity

Synaptic excitation and inhibition are opposing effects that together determine the activity and maintain the excitability
of cortical networks (see (Isaacson & Scanziani, 2011) for a review). It has been shown in many studies that these two
synaptic influences are proportional during both spontaneous and evoked cortical activity. This mechanism, known
as "balance" of excitation and inhibition, is crucial for the functionality of cortical networks and disruptions of this
balance can lead to extremes such as seizures (Van Vreeswijk & Sompolinsky, 1996; Anderson et al., 2000; Zhang
et al., 2003; Okun & Lampl, 2008; Isaacson & Scanziani, 2011; Dehghani et al., 2016; Rubin et al., 2017).
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Figure 3: Comparison of attractor dynamics in E clustered (left) and E/I clustered (right) networks. a, b) Raster plots of
nine excitatory clusters for 1000 ms of spontaneous activity. Horizontal lines indicate cluster membership. Red shaded
area shows the region of interest around the jump from down to up state in one of the clusters. c, d) Average firing rate
of the above 9 clusters estimated with a 50 ms triangular kernel. Dashed lines correspond to the red shaded region of
interest in the upper panels. e, f) Synaptic currents Isyn for a randomly chosen unit during the change from down to up
state for the region of interest indicated above. g, h) Membrane potential with superimposed spikes for the unit shown
above in the same time interval.

In this section, we study the balance of excitation and inhibition in E and E/I clustered networks. Using the same
parameters as in the previous sections we simulate 1000 ms of spontaneous activity of E and E/I clustered networks
with Q = 50 clusters. Fig. 3 illustrates the difference between E clustered (left panels) and E/I clustered (right panels)
networks on the level of individual units. The raster plot in Fig. 3a shows the activity of nine sample excitatory clusters
in an E clustered network. All clusters fire at low rates until at about t = 350 ms one cluster switches to the up state.
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The cluster-averaged instantaneous firing rates for each of 9 clusters, estimated with a 50 ms triangular kernel (Nawrot
et al., 1999), are shown in Fig. 3c. The firing rate of the active cluster increases dramatically (∼ 90 spikes/s), while the
rates of the other clusters are suppressed. Fig. 3e shows the synaptic input currents to a single neuron from the cluster
which jumps to the higher activity state around the onset of cluster activation (red area). It can be seen that, while the
excitatory input current increases (IE upper trace) due to self-excitation within the cluster, the net inhibitory input
(II , lower trace) remains constant. Hence, the total input current (Itot, middle trace) increases and spiking becomes
mean-driven rather than fluctuation-driven. This means that a large portion of the units in the active cluster synchronize
and fire extremely regularly at the saturation rate dictated by the refractory period, as can be seen in Fig. 3g, which
depicts the membrane potential of the same unit.

The right-hand side of Fig. 3 shows the equivalent scenario for an E/I clustered network. The raster plot, Fig. 3b, shows
that at this mild stage of winnerless competition, the clusters cycle between short bursts of higher activity and occasional
longer excursions to the up state of one or more clusters. Fig. 3d shows that this cycling takes place at much lower firing
rates than in the E clustered network. Fig. 3f shows the synaptic currents of a sample neuron at the transition from low
to higher activity of its cluster. The effect of inhibitory clustering is that the inhibitory currents also increase during up
states, thereby increasing the variance but not the mean of the synaptic currents, keeping inputs balanced throughout.
Hence the units remain in the fluctuation-driven balanced state with irregular spike trains, as illustrated in Fig. 3h.
Although synchrony arises also in this case as units in the same cluster tend to have correlated rates, the tight locking
seen in Fig. 3a is not observed in the fluctuation-driven regime. This synchrony comes along with regular spike trains of
individual neurons, which explains the drastic decrease of the CV2 shown in Fig. 1b for the E clustered network.

2.2.2 Stimulus dependency of variability dynamics

Having shown that inhibitory clustering is a crucial component to achieve stable attractor dynamics in the spontaneous
activity of spiking networks, we now investigate the role of inhibitory clusters during evoked activity. In Fig. 1 we have
seen that the E clustered network fails to capture the reduction in trial-to-trial variability during stimulation for a weak
stimulus. Here we ask what exactly constitutes a weak stimulus when considered in terms of the resulting neuronal
firing rates.

We simulate the same E and E/I clustered networks as before, where we stimulate 10% of clusters to mimic the evoked
activity. The stimulation consists of a step increase in external current injected into the units making up the chosen
clusters (Fig. 4a, top panel). Next, we choose 1000 ms spiking activity during spontaneous (no stimulation) and evoked
(with stimulation) states and calculate the changes in firing rate (∆rate) and Fano factor (∆FF). Positive ∆ means an
increase in rate or FF from the spontaneous to the evoked state while negative ∆ indicates a decrease in these measures.

Fig. 4b shows the firing rate changes (in spikes/s) caused by different stimulus amplitudes (in pA). Different colors
indicate ∆rate versus stimulus amplitude for units belonging to stimulated clusters and non-stimulated clusters in both
E and E/I clustered networks. Units belonging to the stimulated clusters in E clustered networks increase their firing
rate much faster than those of the E/I clustered networks. The non-stimulated clusters only show a small decrease in
their average firing rate during stimulation. In stimulated clusters, as shown in Fig. 4c, the trial-to-trial variability in
the E clustered network increases (positive ∆) drastically for stimulus amplitude < 0.4 pA. A stimulus amplitude of
0.4 pA gives a ∆rate of 40 spikes/s (vertical dashed line in Fig. 4b). This means that the E clustered network fails to
reproduce the reduction in trial-to-trial variability for weak stimuli that evoke firing rate increases . 40 spikes/s. For
both E clustered and E/I clustered networks, trial-to-trial variability decreases when increasing the stimulus amplitude
(see Fig. 4c and d). The range of changes matches that observed in experimental data (cf. Fig. 1a). Similar behavior
can be seen for the non-stimulated clusters (orange curve in Fig. 4c; purple curve in Fig. 4d: While the E clustered
network sometimes increases its variability for weak stimulation, the variability in the E/I clustered network consistently
decreases. In summary, the E/I clustered network robustly captures the reduction in trial-to-trial variability during
stimulation, while E clustered networks fail to reproduce the reduction in trial-to-trial variability during stimulation for
weak stimuli.
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Figure 4: Stimulus dependency of firing rate and FF. a) Cartoon depicting the transition from spontaneous to evoked
activity. Top panel shows the step change in the external input at time t0, mimicking the stimulus. Bottom panel shows
the changes in the measured FF or rate from spontaneous to evoked activity quantified by ∆. b) Difference in the firing
rate between spontaneous and evoked states ∆rate versus stimulus amplitude. ∆rate is defined as the firing rate in
the evoked minus that in the spontaneous state, i.e. ∆rate = rateevoked − ratespontaneous, and is computed from 1000 ms
spiking data averaged over 100 trials. The network parameters are as before (see section "Spiking network model").
Stimulation is applied to 10% of the clusters (Q = 50), leading to 5 stimulated clusters and 45 non-stimulated ones.
Different colors indicate the behaviors of stimulated and non-stimulated clusters in the E and E/I clustered networks (see
the legend). c) ∆FF (= FFevoked − FFspontaneous) versus stimulus amplitude averaged over units in stimulated clusters
of E clustered networks. d) The same for E/I clustered network. Shaded areas show the standard error calculated over
the given clusters (stimulated or non-stimulated) for each case.

2.3 Functional E/I clustered network as a model of monkey motor cortex

In the previous sections, by comparing E and E/I clustered networks we have shown that including inhibitory clustering
makes the activity of the clustered networks more realistic and robust. In this section, we further analyze the variability
and information content of the motor cortical spike trains during the delay period in our experimental data set. Then,
we examine if the E/I clustered networks can reproduce those observations.

2.3.1 Experimental paradigm and data analysis

The experiment (conducted in Alexa Riehle’s lab at the CNRS Marseille, France) involved three conditions in which
varying amounts of target information were given at the beginning of the trials. The monkey was seated in front of a
panel featuring a hexagonal array of touch-sensitive LEDs. The monkey initiated the trials by touching a seventh LED
at the center. Five hundred ms after trial start (TS), a preparatory signal (PS) was given. The PS consisted of either one,
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two or three of the LEDs lighting up in green depending on the condition, as illustrated in Fig. 5a. After a delay of
1000 ms a single LED lit up in red representing the response signal (RS) which informed the subject where to move
his hand. The times of movement onset (MO) and movement end (ME) were recorded and if the monkey touched the
correct LED, the trial was registered as successful and a drop of juice was given as a reward. Only successful trials
were used for the present study.

The conditions of one, two or three possible targets presented at PS were executed in blocks. In each block, 150
trials with randomized target directions were carried out so that each of the directions appeared on average 25 times
per condition. Note that in order to obtain the same number of possible trial types in all conditions, not all possible
combinations of directions for the preparatory stimulus were used in conditions 2 and 3. Since six combinations are
possible for condition one, only the pairs 1-2, 3-4 and 5-6 were used in condition 2 and for condition 3, only two cases
occurred (6-1-2, 3-4-5).

Extracellular recordings were obtained with a multielectrode microdrive (Reitböck system; Thomas Recording) to insert
transdurally seven independently movable electrodes in motor (M1 close to the central sulcus (Bastian et al., 2003)).
Online spike sorting resulted in up to seven simultaneously recorded single-unit spike trains. On each recording day, all
three conditions were measured so that the responses of individual neurons can be compared across conditions. Some
of the available units were excluded from the analyses because of suspected artifacts.

To allow a fair comparison of variability statistics across conditions, additional precautions were taken. Fano factors
were computed for each unit and direction separately and we required that units had at least ten spikes in the 2 s interval
after trial start and that at least ten trials were recorded per direction. To enable the comparison across conditions, we
only included units and directions where those criteria were met for all conditions.
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Figure 5: Functional E/I clustered model captures context dependency of information encoding and variability dynamics.
a) Experimental protocol of the delayed center-out reach task. Five hundred ms after trial start (TS) a preparatory
stimulus (PS) is presented, indicating either one, two or three adjacent targets, depending on the condition. The response
signal (RS) follows a fixed delay of 1 s after which the monkey is required to execute a movement to the indicated target.
Movement onset (MO), movement end (ME) and the time of reward (RW) depend on behavior and are not fixed in time.
b) Decoding accuracy of direction classification using a pseudo-population constructed from all available neurons in
windows of 400 ms. c) Top, relative Fano factors to the Fano factor at TS; bottom, CV2, computed in sliding windows
of 400 ms. ∗ in top panel indicates significance from Wilcoxon signed rank test (conditions 1-2: p = 0.007, conditions
2-3: p = 0.03). d) Architecture of the E/I clustered model where each cluster represents one direction, similar to the
experiment, with the parameters given in Table 1. Each cluster is assigned a direction for which it receives its external
input. The decoder integrates the average cluster rates and generates a decision. e, f) Similar to b-c but for the spiking
network model.
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Parameter Unit Value
N - 1200(E), 300(I)
EL mV 0
Vth mV 20
VR mV 0
Cm pF 1
τm ms 20(E), 10(I)
τsyn ms 3(E), 2(I)
τr ms 5
pEE - 0.2

pEI , pIE , pII - 0.5
g - 1.2

JEE pA 0.60
JEI pA −1.60
JIE pA 0.46
JII pA −2.44
Ix pA 1.25Ith(E), 0.78Ith(I)
Istim pA 0.15
Q - 6
JE+ - 3.3
RJ - 3/4

Table 1: Parameters used in the spiking network model

To assess how much directional information is contained in the population activity we reproduced the approach of
(Rickert et al., 2009) and constructed pseudo-populations of all available units. This was achieved by combining
spike counts from randomly chosen trials for the same directions from all units and treating them as if they were
simultaneously recorded. Then we computed the classification performance of a logistic regression classifier using
spike counts in windows of 400 ms width. At each point in time the performance was calculated using five-fold
cross-validation as follows: the data set was divided into five groups and each group in turn served as the test set while
the model was trained on the remaining groups, and the average score of the five models was calculated. We applied the
five-fold cross validation to ten randomly assembled populations and computed the decoding accuracy of the predictions
to assess classifier performance. Decoding accuracy is simply the fraction of correctly predicted samples averaged over
classes.

Decoding accuracy =
1

C

C∑
c=1

N c
correct

N c
total

(1)

All classification was performed using the scikit-learn package (Pedregosa et al., 2011).

The resulting decoding accuracies for the three conditions are shown in Fig. 5b. Using these pseudo-populations, the
decoding accuracies approach those theoretically possible given the available information: in condition 1 where full
information is available, the classification accuracy is close to unity, when two possible targets are given, the accuracy
is close to 1/2, and in condition 3 it approaches 1/3. At RS the performance approaches unity for all conditions.

Fig. 5c, top, shows the average relative Fano factor to the Fano factor at TS (∆FF) across all units for the three
conditions. For all conditions, the count variability is quenched at the presentation of the PS. The Fano Factor (FF) then
recovers to different levels depending on the condition. When the complete information is given at the PS, i.e. condition
1, the FF remains at a low value, while for condition 2 it is higher, and it is still higher when three possible targets are
presented. This difference is significant according to a Wilcoxon signed rank test throughout most of the preparatory
period (conditions 1-2: p = 0.007, conditions 2-3: p = 0.03 at 1000 ms after TS). After the response signal, the FF
drops for conditions 2 and 3 but remains more or less constant for condition 1. This may be in part due to the fact that
the movement onset times for condition 1 were more broadly distributed than for the more difficult conditions 2 and
3 where the monkey had to wait for the RS before it could form a decision. Hence for conditions 2 and 3 the trials
are closer to being aligned to MO (see Fig. 6c). As for the spiking irregularity (CV2), shown in Fig. 5c, bottom, all 3
conditions display similar behavior, i.e. CV2 remains constant at a value around 0.8 during the whole experiment.

2.3.2 An Attractor Model of Movement Preparation

Here we propose a mechanistic model employing the E/I clustered network that is based on winnerless competition
and can explain the differences in count variance and information content of single units in the preparatory period as
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well as the difference in reaction times between the three conditions. Movement preparation is often associated with
bringing the firing rates in motor cortex to a certain optimal subspace (Churchland et al., 2006), or initial condition
(Afshar et al., 2011) suitable for the movement to be executed. Alternatively, the neuronal activation associated with a
movement is brought close to threshold. Both types of models assume that a certain combination of firing rates needs to
be achieved before a movement can be executed and that this takes some time. Our findings that average firing rates
are similar while movement direction can still be decoded optimally from populations during the preparatory period
(Fig. 5b) is consistent with this view. Achieving a suitable position in some high-dimensional firing rate space prior to
movement execution could explain the reduction in FF during the preparatory period. Naturally, if the exact movement
direction is known (condition 1), a more optimal initial condition for the movement can be prepared than when the
target is ambiguous (conditions 2, 3), and shorter reaction times can be achieved.

The aim of our model is to show how winnerless competition can lead to the observed temporal evolution of condition-
dependent count variability and information content. We therefore simplify its construction as much as possible. The
architecture is schematically shown in Fig. 5d.

The core of the model consists of a balanced network of integrate-and-fire units with Q = 6 clusters — one for each
direction. Each cluster comprises 200 excitatory units and is assigned a corresponding inhibitory cluster with 50 units.
The clustering parameters JE+ are adjusted so that transitions between clusters occurred and the Fano factors in the
spontaneous state resembled those measured in the physiological data. Due to the small size of the network, the strength
of the external input currents had to be adjusted to obtain firing rates of approximately 3 and 5 spikes per second for the
excitatory and inhibitory populations, respectively. No parameter tuning was otherwise performed. The parameters
used are summarized in Table 1.

Real neurons display various types of tuning curves which can also change over time (Bastian et al., 2003; Rickert et al.,
2009). We do not specifically model tuning or how it arises. We simply stimulate one cluster per direction by applying
a constant current of 0.15 pA to all its units. This means that each unit in our model is sharply selective to a single
direction. The same stimulation protocol as described above for the experiment was applied to our model. For each
condition 150 trials were executed. In each trial one of the six trial types was randomly chosen. The preparatory signal
was applied to the model by direct stimulation of 1, 2, or 3 clusters depending on the condition. The amplitude of the
stimulation current was identical for all conditions. After 1000 ms, i.e. at the end of the preparatory period, the PS
currents were turned off except for the one corresponding to the correct target direction. The target current was applied
for an additional 400 ms to mimic the response signal in the experiment. Trials were cut from one long continuous
simulation. To allow the network to relax to its spontaneous state, inter-trial periods randomly varied between 1500 and
1700 ms. The variance in this relaxation period was intended to avoid any effects of periodicity.

Inspired by previous models of perceptual decision making (Gold & Shadlen, 2007; Meckenhäuser et al., 2014), the
decoder (depicted in Fig. 5d) has a decision variable associated with each cluster. For each direction d, a leaky integrator
governed by an equation of the form

dId(t)

dt
= −Id(t)

τI
+ Cd (2)

sums up the instantaneous spike counts Cd (in 1 ms bins) of the corresponding population and forgets with time constant
τI . Due to the random nature of the balanced network, the firing rates of the individual clusters may vary considerably.
To enable a decision by applying a single threshold θ to all directions, a decision variable DVd(t) is formed for all
directions through normalizing by the sum over all directions:

DVd(t) =
Id(t)∑6
j=1 Ij(t)

(3)

This is similar to multi-class classification, and the decision variable DVd(t) expresses the probability that direction d
is the correct choice at time t. A decision was reached when one of the decision variables crossed the threshold in the
interval where the RS was presented (1000 ms < t <= 1400 ms). Threshold crossings after that period were counted
as unsuccessful trials. If a decision variable was already above threshold at the beginning of RS, the decision was
counted. The threshold θ was adjusted so that the performance of the model was maximized. The time constant of
integration τI was set to 50 ms which represents an intermediate value between very fast reactions directly when the
threshold is reached at RS and very slow integration where the threshold was not reached during the RS-interval.

Fig. 5e-f shows the same analyses as shown for the physiological data (Fig. 5b-c) computed on the spike trains generated
by the model. To allow a fair comparison the same selection conditions were applied as for the experimental data. Since
the number of trials was the same for all units, only the minimum count rate criterion had an effect (10 spikes in the
inspected time window).

The probabilistic nature of switching between prepared directions does produce average decoding accuracies for single
neurons which resemble those seen in the data (Fig. 5b). By following the same classification as in Fig. 5b, performed
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on the entire population of analyzed units simultaneously, we recover the optimal decoding scores of 1, 1/2 and 1/3 for
the three conditions, respectively (Fig. 5e).

Besides showing similar decoding accuracy as in the experimental data, the model captures the condition-dependent
modulation of the average relative Fano factor (∆FF) and spike time irregularity (CV2) (compare Fig. 5c and D). In the
spontaneous state before the PS is turned on, the count variance is high in all conditions. During the preparatory period
the Fano factors are differentially quenched for the three target conditions, as in the physiological data. The differences
are also highly significant with respect to a Wilcoxon signed rank test (conditions 1-2: p = 3.6× 10−13, conditions 2-3:
p = 3.7× 10−30). At the RS onset, a single stimulus is applied in all conditions and the ∆FF converge to the same
value. The Fano factors for condition 2 and 3 exhibit a second strong decrease after RS in the physiological data. This
is again not captured by our model. A possible reason is that the distributions of reaction times are much narrower for
conditions 2 and 3 (see Fig. 6c).

Finally, the operation of the decoder is illustrated in Fig. 6. The threshold is adjusted so that the balanced accuracy over
all sessions is maximized. Fig. 6a shows a raster plot of the excitatory activity for a sample trial of condition 3. The PS
current is applied to clusters 2, 3 and 4 (counting from the bottom). After stimulation, competition arises between these
three clusters. Since three clusters now have to share the higher probability of being active, the number of occurring
rate configurations increases and thereby the reduction in rate variance is weaker. The amount of rate variance in this
model increases with the number of stimulated clusters. If all clusters are stimulated at the same time, their chances
during winnerless competition are again equal and the rate variance level of the spontaneous state is recovered. Hence
for condition 3 the variance is again higher than for condition 2.

The respective decision variables DV (t) are superimposed on each direction. Due to competition between populations,
all decision variables remain below the threshold in this case as a longer period of being in the active state is required
due to the time scale of integration. When the RS is given to the target cluster 3, the wrong cluster is currently in the
active state. It takes a short moment until the stimulus takes effect an the network activity switches to the target cluster.
An even longer time is taken for the decision variable to reach the threshold. In this particular trial a reaction time of
∼ 400 ms is thus produced.

Fig. 6b-c show the distributions of reaction times produced by the model and experimental data, respectively, for each
condition. It can be seen that as in the experimental data the average reaction times in condition 1 were much quicker
than in conditions 2 and 3. In contrast to the experiment, anticipated responses were not penalized in the model. If the
decision variable of the correct direction was already above threshold at RS, the trial was counted as successful. In
condition 1 this was frequently the case. The shape of the reaction time histogram for condition 1 (dark blue in Fig. 6c)
suggests that the monkey displayed a similar behaviour. The difference in response times between conditions 2 and 3 is
not discernible in the model as in the data. The chance of having prepared for the wrong direction in the model hence
explains the difference in reaction times between the full information and the ambiguous conditions.

Our model presents a mechanistic explanation for the models proposed by (Churchland et al., 2006) and (Afshar et al.,
2011). To our knowledge, it is the first model that links attractor dynamics to context dependent variability modulation
in motor cortex and behavioural variability in the form of reaction times.
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Figure 6: E/I decision model generates task dependent reaction times. a) Raster plot of excitatory cluster activity
for an example trial of condition 3. Solid lines represent the associated decision variable (DV ) for each cluster. At
t = 1000 ms the decoder starts integrating as indicated by the vertical dashed line. Horizontal dashed lines show the
level of the decision threshold θ. To the right, direction numbers are indicated. During the preparatory phase, clusters 2,
3 and 4 are stimulated. Target is direction 3. The black dot indicates a successful threshold crossing. b-c) Histograms
of reaction times of the model (b) and the experimental data (c) for the three conditions.

3 Discussion

Conclusion We have proposed a robust mechanistic model of cortical and behavioral variability dynamics and
showed that it accounts for task-related dynamics and coding in motor cortex. The model extends previous spiking
attractor network models featuring excitatory clustering (Amit & Brunel, 1997; Litwin-Kumar & Doiron, 2012; Deco
& Hugues, 2012; Mazzucato et al., 2015, 2019; La Camera et al., 2019) by adding clustered inhibitory connectivity
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motivated by recent experimental (Xue et al., 2014; Lee et al., 2014; Arkhipov et al., 2018; Khan et al., 2018; Shin et al.,
2019; Najafi et al., 2020) and theoretical (Rost et al., 2017; Najafi et al., 2020) studies. We showed that the clustered
inhibition ensures the local balance of excitation and inhibition within each attractor, and increases the robustness of
winnerless competition, able to capture cortical dynamics during decision-making. The model replicates both neural
and behavioral variability of monkey performing a delayed reach task with various degrees of prior information about
the target direction. At the neuronal level, we showed that our model reproduces the spiking irregularity and trial-to-trial
variability of spike counts, and at the behavioral level, our model captures the reaction times during the task. These
findings suggest joint excitatory and inhibitory clustering as a powerful mechanism for decision-related activity in
cortex.

Joint excitatory and inhibitory clustering vs. purely excitatory clustering Previous studies have considered
purely excitatory clustering with a ‘blanket of inhibition’ to explain decision-related activity in cortex and the associated
cortical variability dynamics (Amit & Brunel, 1997; Litwin-Kumar & Doiron, 2012; Deco & Hugues, 2012; Mazzucato
et al., 2015, 2019). We here showed that joint excitatory and inhibitory clustering better accounts for cortical variability
dynamics, thereby more plausibly reflecting the neural mechanisms underlying decision-making. Furthermore, recent
evidence in the literature supports the notion that not only excitatory neurons but also inhibitory neurons in cortex
are clustered (Xue et al., 2014; Lee et al., 2014; Morishima et al., 2017; Arkhipov et al., 2018; Khan et al., 2018;
Znamenskiy et al., 2018; Shin et al., 2019; Najafi et al., 2020).

Cortical neuronal activity is variable on both the single-trial level, in terms of the irregularity of interspike intervals, and
across trials, measured for instance by the Fano factor. Our experimental data show that spike timing irregularity is
comparable during spontaneous and evoked activity, while trial-to-trial variability is lower for evoked activity. Switching
between clusters in a process of winnerless competition is able to account for the high Fano factor during spontaneous
activity, while the variability is quenched during evoked, decision-related activity by selection of a single cluster or
subset of clusters.

Spiking attractor network models with clustering only among excitatory neurons have been successful in explaining the
trial-to-trial variability observed in in vivo recordings. However, this type of model has unrealistic spiking irregularity
and excessive spike rates during cluster activation and exhibits biologically plausible multistability (winnerless competi-
tion) only in a narrow parameter regime (see Fig. 2 and discussion of (Litwin-Kumar & Doiron, 2012; Deco & Hugues,
2012); also (Rost et al., 2017)).

By analyzing the stable fixed points of the mean-field equations for networks with excitatory clusters, Rost et al.
2017 have shown that switching is hampered by the high rates attained in active clusters. Our proposed remedy of
assigning an inhibitory population to each cluster, by increasing the corresponding E→ I, I→ E and I→ I synaptic
strengths, solves both of the above problems. Since inhibition is now also selective, each excitatory population is
held in check by its inhibitory counterpart and hence the fixed points of the active and passive clusters move closer
together. This facilitates switching, and also helps to maintain interval variability because the active clusters remain in
the fluctuation-driven balanced state rather than being forced into saturation (see Fig. 3). Thus, inhibitory clustering
ensures realistic spike timing variability and greatly increases the robustness of the multistability, extending the range
of cluster strengths and sizes over which winnerless competition occurs.

Functional role The balanced random network model with joint excitatory and inhibitory clustering not only accounts
for realistic cortical variability dynamics but also reproduces functional and behavioral aspects of movement-preperation
and decision-making: task-related encoding, variability, and reaction times match the experimental observations. In
our experiment when the monkey has incomplete information during the preparatory period it can only resolve the
ambiguity of multiple targets when the GO signal provides full information and the reaction times are increased. We
observe the same phenomena in our model. The mechanistic explanation is that in the 2 target condition two clusters
compete and the activity switches between them during the preparation period. When the GO signal resolves the
ambiguity, only one of the clusters retains input stimulation. If this cluster has been active at this point in time, activity
level reaches the threshold faster (short reaction times) than in the case where a switch is required, leading to longer
reaction times (Fig. 6). The same mechanistic explanation (is likely to) underlies short and long reaction times in a
recent attractor network model to describe behavioral reaction times in anticipatory versus unexpected cues depending
on pre-stimulus cluster activation ((Mazzucato et al., 2019)). In our model we find a small but significant increase in
reaction times from the 2 target to 3 target condition. The same effect was observed in the monkey’s reaction time. Our
model makes a mechanistic prediction for this effect where, in the case of three competing clusters, the chance is lower
that the one cluster associated with the final goal had been active at time GO.

Multistability and timescales of variability dynamics The timescales on which neural activity varies constitute a
recurring theme in the context of cortical variability. The present work is centered around the hypothesis that rate
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variance across trials is a consequence of slow switching between clusters of neurons. In our model, we have observed
that switching tends to occur less frequently when the clustering is stronger, thereby increasing the time that assemblies
spend in the active state. A number of physiological results support the hypothesis that spontaneous activity is made up
of sequences of structured activity patterns that emerge seemingly at random. The average or typical amount of time
spent in each pattern is still a matter of investigation.

Kenet et al. 2003 used voltage-sensitive dye imaging in the visual cortex of anesthetized cats to show that spontaneous
activity appears to cycle through patterns very similar to those evoked by visual stimuli and reported that transitions
between patterns occurred on a timescale of around 80 ms. Berkes et al. 2011 recorded extracellular activity using
multi-electrode arrays in the visual cortex of developing ferrets. They found that over the course of development,
the spontaneous activity became increasingly similar to evoked responses. The study revealed strong correlations
between activity patterns for delays up to 20 ms. Ponce-Alvarez et al. 2012 fitted a hidden Markov model (HMM) to
simultaneously recorded spike trains from somatosensory and motor cortices in monkeys. During the delay period in
a perceptual decision task, they observed switching through sequences of states with transition times on the order of
50 ms. Mazzucato et al. 2015 applied a similar analysis to spontaneous recordings from the gustatory cortex in rats.
Their HMM analysis yielded exponentially distributed state durations with a mean of ∼ 700 ms. Luczak et al. 2009
examined evoked and spontaneous activity in the auditory and somatosensory cortices of rats and found not only spatial
patterns but temporally stereotyped profiles with durations of ∼ 100 ms.

These results point to timescales on the order of tens to hundreds of milliseconds. Teich et al. 1997 on the other hand
have found that Fano factors of retinal ganglion cells in cats increase with counting window width for observation
intervals of several minutes. For stationary point processes, the FF depends only weakly on window size (Nawrot et al.,
2008). When rate variance is added to the equation, the Fano factor will increase with counting window size until the
window spans several periods of the periodicity of the underlying fluctuations. Such long timescale fluctuations do
not necessarily have to originate from the cluster switching mechanisms described here. It is likely that winnerless
competition dynamics in spontaneous cortical firing will happen on timescales related to the stimulus modalities or
movements a particular region codes for.

The time scales of switching in our model depend on the setting of the cluster parameter JE+. We have adjusted this
parameter so that the networks’ spontaneous activities would exhibit Fano factors similar to those observed in our
data set. We have not measured the durations that attractors spend in the active states, although an HMM analysis
similar to those by Ponce-Alvarez et al. 2012 and Mazzucato et al. 2015 could yield estimates. Inspection of the raster
plots does however suggest that the up states in our model have similar time scales as those reported in the literature
(∼ 20− 200 ms).

It would in principle be desirable to have a theoretical prediction for the time scales of cluster switching in relation to
the model parameters. Lagzi and Rotter (Lagzi & Rotter, 2015) have described the winnerless competition between
two populations using a rate model governed by Lokte-Volterra type equations. If noise is introduced, switching can
also occur in rate models. They found that the survival times of the active states could be well approximated by an
exponential distribution and that the average time between switches grows faster than exponentially with cluster strength.
Rost et al. 2017 used the mean-field description of our network configuration to find the stable rate configurations.
Switching between these stable attractors is a finite size effect due to chaotic fluctuations in the firing of individual units
in the populations which is by definition not captured by the mean field approach. The mean field theory for networks
of binary units also predicts the distribution of activity rates within populations (van Vreeswijk & Sompolinsky, 1998).
From this, it is theoretically possible to compute the 2Q-dimensional joint distribution of cluster rates. Making some
assumptions about the noise caused by the rate fluctuations within clusters may then be possible to make predictions
about the switching dynamics. This analysis was however beyond the scope of the current study.

Outlook In our study, we varied cluster size and found more robust winnerless competition for smaller clusters, below
about 200 neurons per cluster. Switching of activity states is triggered by fluctuations in cluster firing rate. Hence the
probability of switching decreases when clusters become larger, because fluctuations tend to average out (Doiron &
Litwin-Kumar, 2014). While fine-scale clusters have been reported to consist of tens rather than thousands of neurons
(Perin et al., 2011), it is unclear whether the cortical algorithm in reality already breaks down with clusters of a few
hundred units. Future investigations into this issue can include anatomical and physiological estimates of cluster size,
as well as computational modeling attempting to increase the robustness of winnerless competition for large clusters.

Our experimental data is recorded after an extensive training period so that the monkey performs the task with a high
proportion of correct trials. We, therefore, assume in our model that the connectivity has reached a fixed structure and is
no longer plastic. Future work may investigate how the clustered connectivity is learned during training, for instance
through spike-timing-dependent plasticity (STDP) combined with selective stimulation (Ocker et al., 2015; Zenke et al.,
2015; Litwin-Kumar & Doiron, 2014; Wu et al., 2019). To form and recall these clusters in a stable manner over a long
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time some form of homeostatic mechanism is crucial. Zenke et al. 2015 shows that multiple time scales of homeostatic
regulation are necessary to form robust and stable clusters that are functionally relevant. Litwin-Kumar & Doiron 2014
investigate homeostatic mechanisms that act on I→E synapses together with E→E STDP rules to form clusters that
reflect previously experienced stimuli. The inhibitory plasticity in these studies is globally modulated while excitatory
neurons form local clusters and are responsible for functional representations. It will be interesting to investigate how
joint excitatory and inhibitory clustering can stably emerge in neural networks through plasticity, and what role is
played by homeostatic mechanisms in this context.
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4 Materials and Methods

4.1 Spiking network model

Our spiking network model is composed of linear units with exponential synaptic currents where the sub-threshold
evolution of the membrane potential V is described by the differential equation

dV

dt
=
−(V − EL)

τm
+
Isyn + Ix
Cm

. (4)

In the absence of input, the membrane potential decays exponentially to the resting potential EL with time constant τm.
The current Isyn represents the synaptic input, Ix is an externally injected current and Cm is the membrane capacitance.
If the potential reaches the threshold Vth a spike is emitted and V is clamped to a reset voltage Vr for an absolute
refractory period τr. The synaptic current to a neuron i evolves according to the equations

τsyn
dIisyn
dt

= −Iisyn +
∑
j

Jij
∑
k

δ
(
t− tjk

)
(5)

where tjk is the time of the arrival of the kth spike from presynaptic neuron j and δ is the Dirac delta function.

To allow comparison to other clustering results, we use parameters similar to those given in (Litwin-Kumar & Doiron,
2012; Mazzucato et al., 2015) (see table 2). For clarity, we will briefly explain how the parameters used here were
derived in the following.

Parameter Unit Value
N - 4000(E), 1000(I)
EL mV 0
Vth mV 20
VR mV 0
Cm pF 1
τm ms 20(E), 10(I)
τsyn ms 3(E), 2(I)
τr ms 5
pEE - 0.2

pEI , pIE , pII - 0.5
g - 1.2

JEE pA 0.33
JEI pA −0.89
JIE pA 0.25
JII pA −1.34
Ix pA 2.13Ith(E), 1.24Ith(I)

Table 2: Summary of parameters used in the spiking network simulations

Calibration of the Balanced State We follow the same approach as in (Rost et al., 2017) for the binary networks
by requiring that

√
K excitatory action potentials arriving within a short time suffice to drive the membrane potential

form EL to Vth and hence elicit a spike. For that purpose we need to compute the deflection in the membrane potential
caused by a presynaptic spike.

According to equation 5, a spike arriving at t = 0 leads to a postsynaptic current of the form

Ipsc(t) = Je−t/τsyn Θ (t) (6)

where J and Θ are the synaptic efficacy and step function, respectively. Inserting this into equation 4 and integrating
with V = 0 at t = 0 the postsynaptic potential is obtained:

PSP (t) = J
τmτsyn
τm − τsyn

(
e−t/τm − e−t/τsyn

)
Θ (t) (7)

The maximal deflection of the PSP , PSPmax occurs at t =
log

τsyn
τm

(1/τm−1/τsyn) .
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Note that the PSP amplitude depends on the synaptic as well as the membrane time constants and is therefore different
for each synapse type (PSPEEmax, PSPEImax,...). The scale-free weights are then constructed in the same way as for the
binary networks (equations 3 to 8 in (Rost et al., 2017)) but weighted by the respective PSP amplitudes:

jEE =
Vth − EL√
pEEnE

1

PSPEEmax
(8)

jEI = −gjEE
pEEnE
pEInI

PSPEEmax
PSPEImax

(9)

jIE =
Vth − EL√
pIEnE

1

PSP IEmax
(10)

jII = −jIE
pIEnE
pIInI

PSP IEmax
PSP IImax

(11)

where g is the relative strength of inhibition. The final weights Jαβ are obtained by dividing by
√
N .

Since we consider variability dynamics the external inputs are modeled as constant currents to ensure all variability
arises deterministically inside the network rather than stemming from externally generated Poisson input. In analogy to
the threshold rate of (Brunel, 2000) the external current Ix is expressed in terms of the current required to reach the
threshold in the absence of synaptic input:

Ith =
Vth − EL

τm
Cm (12)

A complex interplay exists between theE and I firing rates and the magnitude of the external currents to the populations.
The tuning of the injected currents required to obtain the desired firing rates for 3 and 5 spikes per second for the E
and I populations respectively was therefore achieved by modeling single units with Poissonian inputs mimicking the
network input at the target firing rates. The external inputs could then be increased until the modeled units fired on
average at the required rates.

Before introducing structured connectivity we first ensured that the network configuration was operating in the
asynchronous-irregular (AI) regime. Irregularity was measured using the squared Coefficient of Variation (CV 2) as
explained in section "Quantifying neural variability". Synchrony of measures such as the instantaneous firing rate or
the membrane potential in neural networks can be quantified according to (Golomb & Hansel, 2000) as:

χ =

√
σ2
pop

〈σ2
i 〉

(13)

here σ2
pop is the variance of the the population average and

〈
σ2
i

〉
is the average over the individual units’ variances. The

measure gives unity for totally synchronized activity and for asynchronous activity in networks of size N , one expects
χ ∼ O

(
1√
N

)
. Since recording all membrane potentials in simulations is computationally expensive, we computed χ

on spike counts measured in bins of 20ms.

It can be seen in Fig. 7 that the networks show the usual characteristics of the balanced state. When excitation dominates,
synchronous-regular firing near the saturation rate 1/τr is observed. The AI state occurs when g is sufficiently
large for inhibition to dominate (Fig. 7a). As in the binary network (Rost et al., 2017), we choose g = 1.2, where
χ = 0.02 ∼ 1/

√
N and CV 2 = 0.73 (Fig. 7b). The raster plot shows no discernible structure (Fig. 7c) and the average

firing rate is low and constant over time (Fig. 7d). The synaptic currents from excitatory and inhibitory inputs and
the external current Ix cancel so that the net input fluctuates around zero (Fig. 7e). Hence, the membrane potentials
fluctuate at low values and only occasionally reach the threshold to produce a spike (Fig. 7f). The parameters used for
all simulations in this chapter are summarized in Table 2.

It is worth noting that the synaptic delay had to be set equal to the simulation time step (0.1 ms) in order to avoid
synchronous oscillations. This is not biologically realistic and usually synaptic delays between 0.5 and 2 ms are
used in network simulations (e.g. (Kriener et al., 2014; Ostojic, 2014; Pernice et al., 2011; Morrison et al., 2007)).
Synaptic delays are known to play a role in synchronous oscillations (Brunel, 2000; Bose & Kunec, 2001). We did not
conclusively investigate the origin of these oscillations. It is, however, likely that they are due to the dense connectivity
employed in our model, which we chose to enable comparisons with (Litwin-Kumar & Doiron, 2012) and (Mazzucato
et al., 2015).
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Supplemental Material, Figure 7: Spiking network in the balanced state. Parameters as in Table 2. a) Irregularity CV 2,
synchrony χ and normalized excitatory firing rate versus relative inhibitory strength g. b) Pooled ISI distribution for
the E population. c) Raster plot of one second of spiking activity for 4000 excitatory (from 0 to 4000) and 1000 (from
4000 to 5000) inhibitory neurons. d) E population rate histogram computed in 10 ms bins. e) Synaptic currents of a
randomly selected E unit. f) Membrane potential for same unit as in e. Vertical bars above the threshold (dashed line)
represent action potentials.

E and E/I clustered networks We follow the same connectivity scheme that we introduced for binary networks in
our previous work (see (Rost et al., 2017) for a detailed explanation). Briefly, for the E clustered networks, we first
divide the excitatory population into Q equally sized clusters with uniform connection probability. Then, we potentiate
the synaptic connection within each cluster by a factor J+, which we refer to as cluster strength. J+ = 1 represents
the random balanced network and the larger J+, the stronger the weights within the formed clusters. To maintain the
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overall balance, we decrease the weights among units belonging to different clusters by a factor J− = Q−J+
Q−1 . For

the E/I clustered networks, we divide not only the excitatory population but also the inhibitory population into Q
clusters. Then we require that each excitatory cluster selectively influences its corresponding inhibitory cluster and vice
versa by increasing the corresponding EI, IE and II weights. We have shown in (Rost et al., 2017) that the inhibitory
clustering needs to be weaker than the excitatory clustering to obtain realistic firing rates. Therefore we introduce
separate excitatory and inhibitory clustering strengths, JE+ and JE−. The relation between JE+ and JE− is defined as
follows:

JI+ = 1 +RJ(JE+ − 1),

where RJ is a proportionality factor, i.e. RJ = 1 implies the same cluster strength for inhibitory and excitatory clusters
(JE+ = JI+) and RJ = 0 makes the inhibitory population un-clustered (JI+ = 1, which represents the E clustered
networks). Throughout the current study, we use RJ = 3/4 based on our previous results (Rost et al., 2017) where we
showed that RJ can prevent firing rate saturation in up states.

4.2 Quantifying neural variability

The Fano factor (FF) quantifies the dispersion of spike counts for single neurons across repeated observations of the
same experimental condition or trial.

FF =
σ2
c

µc
, (14)

where σ2
c and µc are the variance and mean count over trials. The estimation of the FF is biased towards unity for small

estimation windows. However, this bias quickly becomes negligible when the estimation window is several multiples of
the mean inter spike interval (ISI) (Nawrot, 2010).

Interval statistics are usually characterized by the Coefficient of Variation (CV) of the ISI distribution,

CV 2 =
σ2
ISI

µ2
ISI

. (15)

Here, σ2
ISI and µISI are the variance and mean of the intervals between action potentials. Estimating the CV 2 requires

some caution, as modulations in firing rate increase the interval variability. Another problem with estimating the CV 2

follows from finite-size estimation windows. In an estimation window of width T , only ISIs < T can be observed. If
the underlying process has non-zero probabilities for larger intervals, the CV 2 will be under-estimated. This effect is
known as right-censoring (Wiener, 2003; Nawrot et al., 2008). However, there are other measures of interval variability
which to some degree overcome the problem of rate-change sensitivity by considering only pairs of consecutive intervals.
CV2 was developed to compare the irregularity of firing of visual neurons in the anaesthetised cat with that in vitro
(Holt et al., 1996):

CV2 = 2

〈
|τ − τ ′|
τ + τ ′

〉
(16)

Here, 〈...〉 denotes averaging and τ and τ ′ are consecutive ISIs.
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