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21 Abstract
22 Population stratification is a strong confounding factor in human genetic association studies. In 

23 analyses of rare variants, the main correction strategies based on principal components (PC) and linear 

24 mixed models (LMM), may yield conflicting conclusions, due to both the specific type of structure 

25 induced by rare variants and the particular statistical features of association tests. Studies evaluating 

26 these approaches generally focused on specific situations with limited types of simulated structure 

27 and large sample sizes.  We investigated the properties of several correction methods in the context 

28 of a large simulation study using real exome data, and several within- and between- continent 

29 stratification scenarios. We also considered different sample sizes, with situations including as few 

30 as 50 cases, to account for the analysis of rare disorders. In this context, we focused on a genetic 

31 model with a phenotype driven by rare deleterious variants well suited for a burden test. For analyses 

32 of large samples, we found that accounting for stratification was more difficult with a continental 

33 structure than with a worldwide structure. LMM failed to maintain a correct type I error in many 

34 scenarios, whereas PCs based on common variants failed only in the presence of extreme continental 

35 stratification. When a sample of 50 cases was considered, an inflation of type I errors was observed 

36 with PC for small numbers of controls (≤100), and with LMM for large numbers of controls (≥1000). 

37 We also tested a promising novel adapted local permutation method (LocPerm), which maintained a 

38 correct type I error in all situations. All approaches capable of correcting for stratification properly 

39 had similar powers for detecting actual associations pointing out that the key issue is to properly 

40 control type I errors. Finally, we found that adding a large panel of external controls (e.g. extracted 

41 from publicly available databases) was an efficient way to increase the power of analyses including 

42 small numbers of cases, provided an appropriate stratification correction was used. 

43

44
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45 Author Summary
46

47 Genetic association studies focusing on rare variants using next generation sequencing (NGS) data 

48 have become a common strategy to overcome the shortcomings of classical genome-wide association 

49 studies for the analysis of rare and common diseases. The issue of population stratification remains 

50 however a substantial question that has not been fully resolved when analyzing NGS data. In this 

51 work, we propose a comprehensive evaluation of the main strategies to account for stratification, that 

52 are principal components and linear mixed model, along with a novel approach based on local 

53 permutations (LocPerm). We compared these correction methods in many different settings, 

54 considering several types of population structures, sample sizes or types of variants. Our results 

55 highlighted important limitations of some classical methods as those using principal components (in 

56 particular in small samples) and linear mixed models (in several situations). In contrast, LocPerm 

57 maintained a correct type I error in all situations. Also, we showed that adding a large panel of external 

58 controls, e.g coming from publicly available databases, is an efficient strategy to increase the power 

59 of an analysis including a low number of cases, as long as an appropriate stratification correction is 

60 used. Our findings provide helpful guidelines for many researchers working on rare variant 

61 association studies.

62
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63 Introduction
64

65 Genetic association studies focusing on rare variants have become a popular approach to 

66 analyzing rare and common diseases. The advent of next-generation sequencing (NGS) and the 

67 development of new statistical approaches have rendered possible the comprehensive investigation 

68 of rare genetic variants, overcoming the shortcomings of classical genome-wide association studies 

69 (GWAS) [1, 2]. The main methods for testing rare variants for association do not test single variants 

70 against a phenotype, as in GWAS, but generally use an aggregation strategy within a genetic unit, 

71 usually a gene. These gene-based tests can be divided into two main categories: burden and variance-

72 component tests [1-4]. Population stratification occurs when study subjects, usually cases and 

73 controls, are recruited from genetically heterogeneous populations. This problem is well known in 

74 association studies with common variants, causing an inflation of the type I error rate and reducing 

75 power. Several statistical approaches can be used to account for population stratification in GWAS. 

76 The most widely used are based on Principal Components (PC) analysis [5, 6] and Linear Mixed 

77 Models (LMM) [7-10]. 

78 Population stratification also affects association studies including rare variants [11-13]. 

79 However, it remains unclear whether the same correction methods can be applied to rare variant 

80 association studies [12, 14], particularly as rare and common variants may induce different types of 

81 population structure [12, 15]. Many studies have investigated the bias introduced by population 

82 stratification in the analysis of rare variants and have highlighted the need for corrective approaches 

83 to obtain meaningful results [12, 16, 17]. The performance of the correction method depends on the 

84 study setting and the method used to analyze the variants [11, 12, 18-21]. PC has been widely 

85 investigated [5, 6, 22-25] and shown to yield satisfactory correction at large geographic scales, but 

86 not at finer scales [20]. LMM have also been studied [19, 26] and shown to account for stratification 

87 well if variance-component approaches are used to test for association [19]. Most of these studies 

88 used simulated genetic data that did not completely reproduce the complexity of real exome 

89 sequences, and limited types of population structures. In addition, they used large numbers of cases 

90 (e.g. generally more than 500), which may not always be possible in practice, particularly in studies 

91 focusing on rare diseases.

92 We aimed at addressing such limitations of classical comparative studies with the 

93 comprehensive evaluation study proposed in this article. We investigated the main correction methods 

94 for rare variant association studies in the context of limited sample sizes, as in studies of rare disorders. 

95 For an accurate assessment of the different approaches, we used real NGS data from two sources: 

96 1000 Genomes data [27] and our in-house cohort, with data for > 5,000 exomes [28]. We focused on 
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97 two population structure scenarios: within-continent stratification (recent separation) and between-

98 continent stratification (ancient separation). We also considered different sample sizes, including 

99 situations with as few as 50 cases, which have, to our knowledge, never been extensively investigated 

100 in this manner. We focused on a classic genetic model for a rare disease with a phenotype driven by 

101 rare deleterious variants well suited for a burden test, such as the cohort allelic sums test (CAST) [3]. 

102 We tested two classical correction methods, PC and LMM, a promising novel correction method 

103 called adapted local permutations (LocPerm) [29] and considered an uncorrected CAST-like test as a 

104 reference. Our global objective here is to provide useful practical insight into how best to account for 

105 population stratification in rare variant association studies.

106

107 Materials and methods
108 Simulation study

109

110 Exome data. For a realistic comparison of the correction approaches, we used two real exome 

111 datasets rather than program-based simulated exomes. Simulated data tend to provide erroneous site 

112 frequency spectra or LD structures [30]. The first dataset used was our HGID (Human Genetic of 

113 Infectious Diseases) database, containing 3,104 samples of in-house WES data generated with the 

114 SureSelect Human All Exon V4+UTRs exome capture kit (https://agilent.com). All study participants 

115 provided written informed consent for the use of their DNA in studies aiming to identify genetic risk 

116 variants for disease. IRB approval was obtained from The Rockefeller University and Necker 

117 Hospital for Sick Children, along with a number of collaborating institutions. The second dataset used 

118 was the 2,504 whole genomes from 1000 Genomes phase 3 (http://www.internationalgenome.org/) 

119 reduced with the same capture kit. We merged all the exomes from these two databases into a single 

120 large dataset before selecting samples. We performed quality control, retaining only coding variants 

121 with a depth of coverage (DP) > 8, a genotype quality (GQ) > 20, a minor read ratio (MRR) > 0.2 and 

122 call-rate > 95% [31]. We then excluded all related individuals based on the kinship coefficient (King's 

123 kinship 2K > 0.1875) [32, 33], resulting in a final set of 4,887 unrelated samples. From these samples, 

124 we created two types of samples, as comparable as possible to those used in practice in association 

125 studies. The first sample, the “European” sample, consisted of samples from patients of European 

126 ancestry, and was used to assess stratification at the continental level. The second, the “Worldwide” 

127 sample, consisted of samples from European individuals together with North-African, Middle-

128 Eastern, and South-Asian samples, for the assessment of intercontinental stratification. 

129

130 European sample. We selected samples from individuals of European ancestry based on a reference 
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131 sample and genetic distance. We first picked a European sample (sample HG00146 from the GBR 

132 population of 1000 Genomes, Figure 1A) and calculated its genetic distance to all other samples in 

133 the combined dataset.  We used a Euclidean distance based on the first 10 PCs: the distance between 

134 individuals i and j is calculated as , where PCCV is the matrix of 𝑑2
𝑖𝑗 = ∑10

𝑘 = 1𝜆𝑘|𝑃𝐶𝐶𝑉
𝑘𝑖 ‒ 𝑃𝐶𝐶𝑉

𝑘𝑗 |2

135 principal components calculated on common variants and  is the eigenvalue corresponding to the 𝜆𝑘

136 k-th principal component . We considered that a sample could be “European” if its distance to 𝑷𝑪𝑪𝑽
𝒌

137 the reference sample was below a certain threshold. This threshold was empirically chosen to ensure 

138 that all individuals of known European ancestry from the 1000 Genomes and our in-house HGID 

139 cohorts were included. The final sample consisted of 1,523 individuals, and included all the European 

140 samples from 1000 Genomes. We empirically separated the samples into three groups on the basis of 

141 ancestry (Figure 1B): Northern ancestry (including principally the FIN samples from 1000 Genomes), 

142 Middle-Europe ancestry (including the CEU and GBR samples from 1000 Genomes) and Southern 

143 ancestry (including the TSI and IBS samples from 1000 Genomes). The sample size for each 

144 subpopulation is shown in Table S1. After removal of the 102,219 private variants, the final sample 

145 contained 328,989 biallelic SNPs (Table S2).

146

147 Worldwide sample. The Worldwide sample was created in a similar manner. We selected four 

148 different reference samples of European (sample HG00146 from the GBR population of 1000 

149 Genomes), South-Asian (sample NA20847 from the GIH population of 1000 Genomes), Middle-

150 Eastern and North-African (samples from our in-house sample with a reported and verified Middle-

151 Eastern or North-African ancestry) ancestry (Figure 2A). The genetic distances between each sample 

152 and the four reference samples were calculated as previously described. Thresholds were applied such 

153 that each sample with a reported ancestry of interest was assigned to the correct population and there 

154 was no overlap between the subpopulations (Figure 2B). The final Worldwide sample included 1,967 

155 individuals separated into four subpopulations (Table S1). Note that all the European samples of this 

156 sample were also present in the European sample. This sample contained 483,762 biallelic SNPs after 

157 removal of the 132,565 private variants (Table S2). 

158

159 Stratification scenarios. We first assessed the various correction approaches on case/control samples 

160 with large sample sizes (i.e with the whole European or Worldwide sample). We used the same three 

161 stratification scenarios for both samples. In each scenario, we considered a fixed proportion of 15% 

162 cases and 85% controls. Thus, in all our scenarios, the case/control ratio was unbalanced, as is often 

163 the case in practice. Comparison studies generally consider balanced scenarios with large numbers of 
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164 cases and controls, corresponding to the ideal situation for most correction approaches, and their 

165 performance in more realistic conditions may therefore be overestimated. We considered a first 

166 scenario without stratification (No PS), in which we randomly selected 15% of the samples in each 

167 subpopulation as cases, the rest being used as controls. The second scenario corresponded to moderate 

168 stratification (Moderate PS), with the cases selected mostly from certain subpopulations. The third 

169 scenario was an extreme situation (High PS), in which all the cases were selected from a single 

170 subpopulation. The distribution of cases for the European and the Worldwide samples is shown, for 

171 each scenario, in Table 1. 

172

173 Table 1: Distribution of the cases in the sub-populations of the European and the Worldwide 

174 samples for the different population stratification (PS) scenarios.

European sample

Scenario Northern-Europe 

(n=127)

Middle-Europe 

(n=651)

Sourthern-Europe 

(n=745)

No PS 19 (15 %)a 98 (15 %) 112 (15 %)

Moderate PS 6 (5 %) 45 (7 %) 177 (24 %)

High PS 0 (0 %) 0 (0 %) 228 (30 %)

Worldwide sample

Scenario Europe

(n=700)

South-Asia 

(n=543)

North-Africa 

(n=359)

Middle-East 

(n=365)

No PS 105 (15 %)a 81 (15 %) 53 (15 %) 54 (15 %)

Moderate PS 177 (25 %) 60 (11 %) 29 (8 %) 29 (7 %)

High PS 294 (42 %) 0 (0 %) 0 (0 %) 0 (0 %)
175 a #cases (% of the sub-population)

176

177 In practice, the samples used in rare variant association studies are frequently not very large. This is 

178 particularly true for rare diseases, for which only small numbers of cases are available. Case numbers 

179 may also be small as a consequence of the WES cost. The usual analysis strategy involves matching 

180 the controls to the cases. One key question is whether the addition of unmatched controls could 

181 increase the power of the analysis when population stratification is taken into account properly. Such 

182 controls are now available in large cohorts, such as the 1000 Genomes (Genomes Project, Auton (27)), 

183 UK10K [34], and UK Biobank [35] cohorts. We decided to investigate such strategies, by considering 

184 several scenarios with 50 cases and various numbers of controls of similar or different ancestries 

185 (Table 2). We considered three possible types of cases: 50 cases from the rather homogeneous 
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186 Southern-Europe subpopulation (50SE), 50 cases from the more heterogeneous whole European 

187 population (50E) and 50 cases selected Worldwide (50W). Four types of controls were considered: 

188 100 controls from the same population as the cases (100SE, 100E, 100W), 1000 controls from the 

189 total European sample (1000E), 1000 controls randomly chosen from the total Worldwide sample 

190 (1000W) and 2000 controls randomly chosen from the total Worldwide sample (2000W). 

191

192 Table 2: Stratification scenarios for the small size study. The first 4 scenarios correspond to cases 

193 from the Southern-Europe sub-population (SE), the following 4 scenarios to cases from whole 

194 European sample (E) and the final 4 to cases from the Worldwide population (W). Controls are 

195 randomly drawn among the Southern-European, European or Worldwide populations.

Scenario Cases Controls 

50SE-100SE 50 from Southern-Europe 100 from Southern-Europe 

50SE-1000E 50 from Southern-Europe 1000 from all Europe

50SE-1000W 50 from Southern-Europe 1000 Worldwide

50SE-2000W 50 from Southern-Europe 2000 Worldwide

50E-100E 50 from all Europe 100 from all Europe

50E-1000E 50 from all Europe 1000 from all Europe

50E-1000W 50 from all Europe 1000 Worldwide

50E-2000W 50 from all Europe 2000 Worldwide

50W-100W 50 Worldwide 100 Worldwide

50W-1000E 50 Worldwide 1000 from all Europe

50W-1000W 50 Worldwide 1000 Worldwide

50W-2000W 50 Worldwide 2000 Worldwide

196

197

198 Type I error rate evaluation. For each type of sample and stratification scenario, the type I error 

199 rate was estimated under the null hypothesis of no association between a gene and the phenotype 

200 (H0). We therefore simulated phenotypes, for the large sample, by randomly assigning the case and 

201 control states according to the stratification proportions provided in Table 1, respecting a fixed 

202 proportion of cases of 15%. Each protein-coding gene was then tested for association with the 

203 phenotype by the various statistical approaches described in the Statistical methods section. The rare 

204 variants included in these tests were biallelic variants with a  in the sample analyzed. We 𝑀𝐴𝐹⩽5%

205 included only genes with at least 10 rare variant carriers, resulting in 17,619 genes being studied in 
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206 the European sample, and 17,854 genes in the Worldwide sample. A similar simulation process was 

207 applied to the small samples, according to the proportions of cases and controls described in Table 2. 

208 In these scenarios, the number of genes with at least 10 mutation carriers retained depended on sample 

209 size (Table S3). This procedure was repeated 10 times for each sample, to account for sampling 

210 variation. The type I error rate at the nominal level  was evaluated by assessing the quantity 𝛼 𝑓𝑝 =

211  where G is the total number of genes tested. We decided to provide an adjusted 
#{𝑝 ‒ 𝑣𝑎𝑙𝑢𝑒𝑖⩽𝛼,𝑖 = 1,...,𝐺}

𝐺

212 prediction interval (PI), accounting for the large number of methods investigated, with the type I error 

213 rate as suggested in previous studies [19]. The bounds of this interval are 𝑓𝑝 ± 𝑍0.975 #(𝑚𝑒𝑡ℎ𝑜𝑑𝑠)

214  where  replaces the usual 97.5 percentile of the normal distribution 𝑓𝑝(1 ‒ 𝑓𝑝)/G 𝑍0.975 #(𝑚𝑒𝑡ℎ𝑜𝑑𝑠)

215  after adjustment for the number of methods investigated. An approach was considered to 𝑍0.975

216 provide a good correction if its type I error rate was found within this interval.
217

218 Power studies. Power was estimated under the alternative hypothesis of an association between a 

219 gene and the phenotype (H1). We selected a subset of 10 genes for the power analysis. All these genes 

220 had a cumulative frequency of rare variants (i.e with  of ~10% (i.e. ~20% of carriers) and 𝑀𝐴𝐹⩽5%)

221 at least 10 mutation carriers. In addition, we considered ~50% of the rare variants of each gene to be 

222 causal, with the same direction of effect, and used the presence of at least one of these variants to 

223 define the binary genetic score described in the Statistical method section. This implies that there was 

224 no cumulative effect of carrying several causal variants, and that the relative risk is defined at the 

225 gene level. Table S4 provides details of the 10 genes selected and their causal variants for the 

226 European and Worldwide samples. For each gene tested, a phenotype was simulated, using a binomial 

227 distribution and penetrance as parameters. For each stratification scenario, penetrance was calculated 

228 from the proportion of cases and controls, the frequency of carriers, and the relative risk (RR=1,2,3,4). 

229 An example is presented in Table S5 for the first gene tested. Tests of association between the genes 

230 and the simulated phenotypes were performed 500 times per gene, and power was estimated by 

231 evaluating the same quantity as for the type I error rate averaged over the 10 genes and the 500 

232 replicates.
233

234 Statistical methods

235

236 Association test. Let us now consider an association study including n individuals. The binary 

237 phenotype is denoted Y = (y1, …, yn), where yi is the status of individual i coded 0 (healthy) or 1 

238 (affected). We call X = (xij) i=1...n, j=1...p the n x p genotype matrix for n individuals and p markers. Each 
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239 term xij corresponds to the genotype of sample i at marker j and is coded 0, 1 or 2 according to the 

240 number of minor alleles. We also introduce the normalized genotype matrix = ( )i=1...n, j=1...p , where 𝐗 𝑥𝑖𝑗

241 each term is  with  the column mean and  the observed allele frequency of each 𝑥𝑖𝑗 =
𝑥𝑖𝑗 ‒ 𝜇𝑗

𝑓𝑗(1 ‒ 𝑓𝑗)
𝜇𝑗 𝑓𝑗

242 marker. 

243

244 Several routine statistical tests are available for assessing the association between rare variants and a 

245 phenotype. Considering our focus on a small number of cases with phenotypes driven by the presence 

246 of at least one causal variant, the most appropriate approach is that based on the CAST method [3]. 

247 This approach collapses variants into a single genetic score that takes a value of 0 if there are no rare 

248 variants in the region or 1 if there is at least one variant. Considering a given genetic region g, in our 

249 case a gene, the score for this region is denoted Zg = (zg1, ..., zgn), where zgi = I (at least one rare 

250 variant in the region g for individual i), I() being the indicator function.

251

252 The corresponding association test can be expressed in a logistic regression framework. 

253

254 𝑙𝑜𝑔𝑖𝑡(𝑃(𝒀 = 1)) = 𝛼 + 𝛽𝑔𝒁𝒈

255

256 Where  and  are the model parameters for the intercept and the genetic score. Under the null 𝛼 𝛽𝑔

257 hypothesis of no association  the likelihood ratio test (LRT) statistics follow a  {𝛽𝑔 = 0} 𝜒 2
1𝑑𝑓

258 distribution.

259

260 Genetic similarity. Certain methods, including PC and LMM, account for population stratification 

261 by using a large number of single-nucleotide polymorphisms (SNPs) to derive genetic similarity 

262 matrices (also called relatedness matrices). Considering a set H of pH SNPs, a normalized similarity 

263 matrix  can be derived, where  is the normalized genotype matrix reduced to the 𝑺𝑯 = 𝑿𝑯𝑿𝑯' 𝑿𝑯

264 markers of set H. Each term sik, i=1...n, k=1...n represents the genetic similarity between samples i and k 

265 based on the SNPs of set H. 

266

267 With whole-exome sequencing (WES) data, a broad range of SNPs are now available, and it is usual 

268 to separate them into categories based on their minor allele frequencies (MAFs) [18, 19, 24]. We will 

269 consider four categories of variants, based on the MAFs calculated for the total sample: rare variants 

270 (RVs; ), low-frequency variants (LFVs; ), common variants (CVs; 0% < 𝑀𝐴𝐹 < 1% 1%⩽𝑀𝐴𝐹 < 5%

271 ) and all variants (ALLVs; the union of RVs, LFVs and CVs). We excluded private variants 𝑀𝐴𝐹⩾5%
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272 from these sets of variants, because their sparse distribution tends to have a strong influence on the 

273 calculation of similarity matrices. We also pruned all these sets to remove variants with a pairwise r2 

274 < 0.2, to reduce the effect of linkage disequilibrium. We investigated the effect of using these different 

275 sets of SNPs  to derive PC-based or LMM corrections.𝐻 ∈ {𝑅𝑉𝑠,𝐿𝐹𝑉𝑠,𝐶𝑉𝑠,𝐴𝐿𝐿𝑉𝑠}

276

277 Principal component (PC) approach. PC analysis creates new variables from SNP data, the 

278 principal components, corresponding to axes of genetic variation. These variables can be included, 

279 as covariates, in a statistical model, such as the one described above to adjust for population 

280 stratification. Principal components  are based on a given set of SNPs H and 𝑷𝑪𝑯 = (𝑃𝐶𝐻
1,...,𝑃𝐶 𝐻

𝑛 ‒ 1)
281 are derived from the singular vector decomposition of the normalized similarity matrix SH. After 

282 adjustment for the first m principal components, the corresponding logistic model becomes: 

283

284 𝑙𝑜𝑔𝑖𝑡(𝑃(𝒀 = 1)) = 𝛼 + 𝛽𝑔𝒁𝒈 + 𝛾1𝑷𝑪𝑯
𝟏 + ... + 𝛾𝑚𝑷𝑪𝑯

𝒎

285

286 where  are new model parameters for the PCs. 𝛾1,...,𝛾𝑚

287

288 Under the null hypothesis of no association  ,the LRT statistics follow a  distribution. {𝛽𝑔 = 0} 𝜒 2
1𝑑𝑓

289 We investigated correction based on the first 3, 5, 10 or 50 PCs, calculated on the four possible sets 

290 of variants, RVs, CVs, LFVs and ALLVs. In the following, we use a notation such that PC3CV, for 

291 example, indicates that the first three PCs based on common variants were used.

292

293 Linear mixed models (LMM). Linear mixed models were initially developed to alleviate the effect 

294 of familial relatedness in association analyses, and have also been used to correct for population 

295 stratification in GWAS. This regressive approach considers both fixed and random effects and uses 

296 a genetic similarity matrix to improve estimation of the parameters of interest. Using the previous 

297 CAST regression framework, the LMM model becomes: 

298

299 𝒀 = 𝛼 + 𝛽𝑔𝒁𝒈 + 𝒖 + 𝝐

300

301 where  is a vector of random effects based on the similarity matrix SH and an 𝒖 ∼ 𝑀𝑉𝑁(0,𝜏𝑺𝑯)
302 additional variance parameter . Under the null hypothesis of no association , the LRT 𝜏 {𝛽𝑔 = 0}

303 statistics follow a  distribution. We focus here on LMM based on the relatedness matrices 𝜒 2
1𝑑𝑓

304 constructed with the four sets of variants previously described, and with for instance the notation 
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305 LMMCV indicating that common variants were used.

306

307 Adapted local permutations (LocPerm). Permutation strategies have been designed to derive p-

308 values when the 'true' null distribution of the test statistic T0 is unknown [36]. This is the case for 

309 population stratification, which creates a bias that cannot be numerically derived. The rationale 

310 behind permutation procedures is to simulate several test statistics (T1, ..., TB) under the null 

311 hypothesis, to derive an approximated distribution as close as possible to the unknown true null 

312 distribution, and to use these statistics to estimate a p-value. With the classical permutation approach, 

313 the simulation of test statistics under H0 is achieved by randomly resampling phenotypes (i.e 

314 exchanging them between individuals). Adapted local permutations are based on the observation that, 

315 in the presence of population structure, not all phenotypes are exchangeable [29]. A given sample has 

316 a higher chance of sharing its phenotype with another sample of the same ancestry. The principle is, 

317 therefore, to establish, for each sample, a neighborhood, i.e a set of samples between which it is 

318 reasonable to exchange phenotypes. These neighborhoods are established according to a genetic 

319 distance derived from the first 10 PCs: 
320

321 𝑑2
𝑖𝑗 =

10
∑

𝑘 = 1
𝜆𝑘|𝑃𝐶𝐶𝑉

𝑘𝑖 ‒ 𝑃𝐶𝐶𝑉
𝑘𝑗 |2

322

323 where PCCV is the matrix of principal components calculated on the set of common variants and  𝜆𝑘

324 is the eigenvalue corresponding to the k-th principal component . This distance is used to create 𝑷𝑪𝑪𝑽
𝒌

325 a neighborhood of 30 individuals around each sample [29]. Permutations can then be performed for 

326 each sample, within its neighborhood.

327

328 A straightforward empirical way to derive a p-value for the permutation test is to assess the quantity 

329  where # is the cardinal function and B is the number of permutations. This method 𝑝𝑣 = #{𝑇𝑖⩾𝑇0} 𝐵

330 is dependent on the number of permutations computed, and a large number of permutations is required 

331 for the accurate estimation of small p-values. Mullaert et al. proposed an alternative semi-parametric 

332 approach, in which a limited number of resampled statistics are used to estimate the mean (m) and 

333 standard deviation (σ) of the test statistic under H0. The previously described CAST-like LRT 

334 statistics are used, through their square roots with a sign attributed according to the direction of the 

335 effect, , to estimate the N(m, σ²) distribution parameters and then calculate 𝑇𝑖 = 𝑠𝑖𝑔𝑛(𝑒𝑓𝑓𝑒𝑐𝑡) |𝐿𝑅𝑇|

336 the p-value. We evaluated both the semi-parametric approach using 500 local permutations and the 

337 full empiric approach using 5000 local permutations. These two approaches yielded very similar 
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338 results. We therefore present here only the results for the semi-empiric approach. 

339

340 Implementation of the simulations and methods. We used R software (https://www.R-project.org/) 

341 to code the comparison pipeline and implement the logistic and permutation models. Principal 

342 components and similarity matrices were obtained with Plink2 software (https://www.cog-

343 genomics.org/plink/2.0/), and GEMMA was used for the LMM method [10, 37].

344

345 Results
346

347 Large study size

348

349 The results of the simulation study under the null hypothesis for the European sample of 1,523 

350 individuals are presented in Table 3 (for α=0.001) and Table S6 (for α=0.01). In the absence of 

351 stratification, the four methods had correct type I error rates, within the 95% PI bounds (Table 3A, 

352 Table S6A). This was the case for PC3 and LMM, regardless of the type of variant considered. In the 

353 presence of moderate stratification (Table 3B, Table S6B), the unadjusted CAST approach displayed 

354 the expected inflation of type I error rate (0.00163 at α=0.001). The PC3 method corrected properly 

355 regardless of the type of variant at α=0.001, but a slight inflation of type I error was observed for RVs 

356 and LFVs at α=0.01. The use of LMM led to an inflation of type I error rates at α=0.001, unless all 

357 variants were considered, which gave rates within the 95% PI at α=0.01. LocPerm had a correct type 

358 I error rate at both α levels. In the presence of strong stratification (Table 3C, Table S6C), the 

359 unadjusted CAST method gave a strong inflation of type I error rate, to 0.00359 at α=0.001. The PC 

360 and LMM approaches also led to inflated type I errors (between 0.00133 and 0.00175 at α=0.001), 

361 the lowest level of inflation being observed when CVs or all variants were considered.  For the PC 

362 approach, increasing the number of PCs did not improve the correction, consistent with previous 

363 findings reported by Persyn et al. (2018). The use of 50 PCs resulted in an inflation of type I error 

364 whatever the level of stratification, probably due to an overadjustment of the regression model (Table 

365 S7). Thus, in the presence of strong population structure, classical methods were unable to handle the 

366 stratification properly. The adapted local permutations approach was the only method able to correct 

367 for stratification in this scenario, with a slightly conservative result of 0.00863 at α=0.01 (Table S6C). 

368

369 Table 3: Type I error rates of the different approaches for the large size European sample. The 

370 nominal level alpha considered is  and the corresponding 95%PI adjusted for the 10 𝛼 = 0.001
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371 methods is [0,00079-0,00121]. Type I error rates under the lower bound of the 95%PI are displayed 

372 in italic and above the upper bound of the 95%PI in bold. 

373

A - No Stratification

CAST PC3 LMM LocPerm

RVs 0.00108 0.00118

LFVs 0.0011 0.00119

CVs 0.00104 0.00118

ALLVs

0.00106

0.00108 0.00116

0.00082

B – Moderate Stratification

CAST PC3 LMM LocPerm

RVs 0.00117 0.00141

LFVs 0.00101 0.00125

CVs 0.001 0.00124

ALLVs

0.00163

0.00102 0.00117

0.00095

C – High Stratification

CAST PC3 LMM LocPerm

RVs 0.00157 0.00175

LFVs 0.00137 0.00176

CVs 0.00136 0.00161

ALLVs

0.00359

0.00133 0.00145

0.00087

374

375 The results of the simulation study under H0 for the Worldwide sample of 1,967 individuals are 

376 presented in Table 4 (for α=0.001) and Table S8 (for α=0.01). In the absence of stratification, none 

377 of the main approaches had a significantly inflated type I error rate (Table 4A and Table S8A). At 𝛼

378 =0.01, LMM corrections were slightly conservative. The presence of moderate or strong stratification 

379 led to extremely inflated type I errors at α=0.001 for the unadjusted CAST approach, with values of 

380 0.00681 and 0.137, respectively. For PC3 and LMM, a satisfactory correction was obtained at 

381 α=0.001 with CVs, whereas, at α=0.01, PC gave a slight inflation of type I error and LMM results 

382 were slightly conservative. The three other types of variants could not properly account for 

383 stratification for PC3 and LMM. Increasing the number of PCs did not improve the results obtained 

384 with PC3 (Table S9) for the Worldwide sample. LocPerm maintained a correct type I error rate in 

385 both scenarios, with values of 0.00096 and 0.00113 at α=0.001 for moderate and strong stratification, 
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386 respectively. Overall, the analyses under the null hypothesis within the European and Worldwide 

387 samples showed that accounting for stratification was generally more difficult with a continental 

388 structure than with a worldwide structure. PC3 and LMM based on CVs were capable of maintaining 

389 a correct type I error rate in most of the situations considered, with the exception of high levels of 

390 stratification in Europe, and LocPerm correctly accounted for stratification in all the situations 

391 considered.

392

393  Table 4: Type I error rates of the different approaches for the large size Worldwide sample. 

394 The nominal level alpha considered is  and the corresponding 95%PI adjusted for the 10 𝛼 = 0.001

395 methods is [0,00079-0,00121]. Type I error rates under the lower bound of the 95%PI are displayed 

396 in italic and above the upper bound of the 95%PI in bold.  

A - No Stratification

CAST PC3 LMM LocPerm

RVs 0.00099 0.00093

LFVs 0.00099 0.00094

CVs 0.00099 0.00093

ALLVs

0.00085

0.00099 0.00093

0.00087

B – Moderate Stratification

CAST PC3 LMM LocPerm

RVs 0.00259 0.00456

LFVs 0.00109 0.00123

CVs 0.00105 0.00117

ALLVs

0.00681

0.00128 0.00162

0.00096

C – High Stratification

CAST PC3 LMM LocPerm

RVs 0.00662 0.01834

LFVs 0.0012 0.00163

CVs 0.00119 0.00115

ALLVs

0.13698

0.00127 0.00266

0.00113

397

398 With respect to the results of the simulation under H0, we focused the power studies on the methods 

399 providing satisfactory correction (i.e. PC3CV, LMMCV and LocPerm), in addition to the unadjusted 

400 CAST. Only powers derived from a correct type I error rate under H0 are presented in the main text. 
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401 Adjusted powers accounting for inflated type I error rates are provided in the Supplementary figures 

402 for information. The results of the power study for the European sample are presented in Figure 3 and 

403 Figure S1. In situations with no stratification or moderate stratification, all approaches had similar 

404 powers, of about 50% at α=0.001 for a relative risk of 3, for example (Figure 3). In the presence of 

405 strong stratification, only LocPerm was able to correct for confounding and to maintain power levels 

406 (Figure 3C). The adjusted powers (Figure S1) indicate that all three correction methods provide very 

407 similar powers when type I error is controlled. The results of the power study for the Worldwide 

408 sample are presented in Figure 4 and Figure S2. As for the European sample, all methods had similar 

409 powers in the absence of stratification or the presence of moderate stratification. In the presence of 

410 strong stratification, LocPerm was slightly less powerful than the other methods (Figure 4C) with for 

411 a RR of 3 at α=0.001, a power of 64% as opposed to the powers of 69 and 72% obtained for PC3CV, 

412 and LMMCV, respectively. It is also interesting to compare the power of each method, separately, 

413 between the different stratification scenarios (Figures S3 for the European sample and S4 for the 

414 Worldwide sample). Power was very similar for any given technique in the different stratification 

415 scenarios, indicating that the correction methods maintained the level of power observed in the 

416 absence of stratification. 

417

418 Small study size

419

420 The results of the simulation study under the null hypothesis for a small sample size, based on 50 

421 cases, are presented in Table 5 (for α=0.001) and Table S10 (for α=0.01). Only PC3CV, LMMCV and 

422 LocPerm, which provided a satisfactory correction for stratification in the large sample study, were 

423 investigated for small sample sizes. In scenarios without stratification (i.e. controls and cases of the 

424 same origin), an inflation of type I errors was observed: 1) with PC3 (about 0.0015 at α=0.001) when 

425 the number of controls was low (100), and, to a lesser extent, with CAST (about 0.0012 at α=0.001), 

426 and 2) with LMM (about 0.002 at α=0.001) when the number of controls was high (1000 or 2000). 

427 In the presence of stratification (i.e. a large number of controls with an origin different from that of 

428 the cases), a strong inflation of type I error rates was observed for CAST.  This was also the case for 

429 LMMCV, albeit to a lesser extent, particularly for stratification within Europe or when the cases came 

430 from the Worldwide sample and the controls from Europe only. Both PC3CV and LocPerm provided 

431 correct type I error rates in all the scenarios considered with small numbers of cases and a large 

432 number of controls. 

433

434 Table 5: Type I error rates of the different approaches for the small size sample scenarios. The 
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435 nominal level alpha considered is . Type I error rates under the lower bound of the 95%PI 𝛼 = 0.001

436 are displayed in italic and above the upper bound of the 95%PI in bold.  

437 STable 3 provides the adjusted 95%PI for the different number of genes tested in each scenario.

438

Scenario CAST PC3CV LMMCV LocPerm

50SE-100SE 0.0012 0.0015 0.0012 0.0009

50SE-1000E 0.0016 0.0012 0.0028 0.0008

50SE-1000W 0.0046 0.0011 0.0015 0.0010

50SE-2000W 0.0046 0.0010 0.0016 0.0011

50E-100E 0.0014 0.0015 0.0012 0.0010

50E-1000E 0.0010 0.0010 0.0021 0.0009

50E-1000W 0.0051 0.001 0.0014 0.0010

50E-2000W 0.0050 0.0009 0.0015 0.0011

50W-100W 0.0013 0.0015 0.0012 0.0010

50W-1000E 0.0077 0.0007 0.0053 0.0010

50W-1000W 0.0009 0.0010 0.0021 0.0009

50W-2000W 0.0009 0.0009 0.002 0.0010

439

440 A power study was performed for PC3CV and LocPerm with small numbers of cases (Figure 5). Both 

441 approaches gave a correct type I error rate and similar results, but power was slightly higher for 

442 LocPerm than for PC3 when the 50 cases came from Europe as a whole or from the Worldwide 

443 sample. For cases were from Southern Europe, considering 1000 controls from the whole of Europe 

444 gave a power twice that obtained when considering 100 controls of the same origin as the cases 

445 (Figure 5A). For example, for a RR of 4 and at α=0.001, the power increased from 15% to 34% under 

446 these conditions with LocPerm. A smaller increase was observed if 1000 controls from the Worldwide 

447 sample were used, increasing to a similar level with the use of 2000 Worldwide controls. When the 

448 cases were from anywhere in Europe, a similar increase in power was observed with 1000 European 

449 and with 1000 Worldwide controls, whereas the use of 2000 Worldwide resulted in no greater a power 

450 than the use of 1000 Worldwide controls. Finally, when the cases were selected from the Worldwide 

451 sample, the use of 1000 Worldwide controls gave a power almost double that achieved with 100 

452 Worldwide controls, whereas the use of 1000 controls from Europe did not substantially increase the 

453 power. These results indicate that using a large panel of worldwide controls to increase sample size 

454 is a good strategy for increasing the power of a study while correcting for stratification with 
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455 approaches such as PC3CV or LocPerm.

456

457 Computational considerations

458

459 We also assessed the computing time required for the different approaches. While the unadjusted 

460 CAST method does not imply the computation of any particular matrix, the same covariance matrix 

461 is necessary for  PC3CV, LMM and LocPerm and additional specific permutation matrices are required 

462 for LocPerm only. We ran each method separately, CAST, PC3CV and LocPerm with R, and LMMCV 

463 with GEMMA, on the 1,523 individuals and the 17,619 genes of the European sample, under a 

464 hypothesis of no association. We broke down the runtime of each method into a pretreatment phase 

465 (covariance and permutation matrices) and a gene-testing phase (see Table S11). The pretreatment 

466 runtime was dependent only on the number of individuals (and the set of SNPs used for the 

467 calculations) and this part of the analysis was performed only once. The runtime of the gene-testing 

468 phase depended on the number of individuals and the number of genes tested, and could be repeated 

469 for different analyses (e.g. for different MAF thresholds). PC3CV and LMMCV had similar 

470 pretreatment times, markedly shorter than that for LocPerm, which also requires the calculation of 

471 permutation matrices. However, the need to calculate these matrices only once decreases the relative 

472 disadvantage of the LocPerm method. In terms of gene-testing time, LMMCV was the fastest approach 

473 when used with GEMMA, but this may not be the case for other programs that have not been 

474 optimized. A comparison of the methods implemented with R showed that the adjustment on PCs and 

475 LocPerm took 1.4x and 2.5x longer, respectively, than the unadjusted test. These comparisons were 

476 run on a 64-bit Intel Xeon Linux machine with a CPU of 3.70 GHz and 64 GB of RAM.

477

478 Discussion
479

480 We performed a large simulation study based on real exomes data to investigate the ability of several 

481 approaches (i.e. PCs, LMM and LocPerm) to account for population stratification in rare-variant 

482 association studies of a binary trait.  In our simulation study, the efficiency of PCs and LMM to 

483 correct for population stratification was dependent on the type of variant used to derive the similarity 

484 matrices, the best performance being obtained with CVs. It was generally not possible to correct the 

485 stratification bias with RVs, even with the exclusion of private variants for the calculation of the 

486 matrices. Private variants have very sparse distributions, which may lead to difficulties in calculation, 

487 and their inclusion resulted in an even lower efficiency of correction for population structure (data 

488 not shown). Other studies evaluating different types of variants reached the same conclusions [24, 
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489 25] although one reported better performances for PC based on RVs [14]. However, this study was 

490 based on simulated NGS data, which may have led to an unrealistic rare variant distribution. Our 

491 results also indicate that CVs or ALLVs were the best sets of variants for the LMM approach applied 

492 to CAST, confirming the results of Luo et al. based on the SKAT test [19]. Variant selection remains 

493 an area in which there are perspectives for improving the corrections provided by strategies such as 

494 PC or LMM [12, 26], although the use of CVs appeared to be a good choice in most situations.

495

496

497 With the optimal set of variants, PC generally corrected for population stratification more efficiently 

498 than LMM. This is consistent with benefits of the PC approach over LMM observed in the presence 

499 of spatially confined confounders [38], which is often the case with rare variants. For large sample 

500 sizes, both PC and LMM controlled for stratification better at larger geographic scales than at finer 

501 scales. In small samples (50 cases and 100 controls), PC approaches gave inflated type I errors even 

502 in the absence of population stratification, as previously reported [18, 29, 39]. This inflation 

503 disappeared when the sample included additional controls, whatever their ethnic origin, even with a 

504 highly unbalanced case-control ratio. By contrast, the type I error of LMM was inflated in samples 

505 with highly unbalanced case-control ratios, whatever the level of population stratification, as 

506 previously noted in the context of GWAS [40]. Finally, the adapted local permutations procedure 

507 recently proposed by Mullaert et al. [29] gave very promising results, as it fully corrected for 

508 population stratification, regardless of the scale over which the stratification occurred, sample size 

509 and case-control ratio. When valid under H0, the three correction methods had similar powers. For a 

510 given setting, power was similar in the different stratification situations, indicating that the correction 

511 method could maintain the power it would have in the absence of stratification. These results are in 

512 partial agreement with several studies reporting a small loss of power for PC-adjusted logistic 

513 regression in the presence of stratification relative to an absence of stratification [13, 20].

514

515 We also investigated the specific situation in which only a very small number of cases are available, 

516 which is particularly relevant in the context of rare disorders. In this setting, we show that PC and 

517 LocPerm provide correct type I errors when the number of controls is large, regardless of the ethnic 

518 origin of the controls. In addition, the strategy of adding controls, even of worldwide origin, provided 

519 a substantial gain of power for PC and LocPerm when few cases were available. This is an important 

520 finding, highlighting the potential interest of using publicly available controls, such as those of the 

521 1000G project, to increase the power of a study with a small sample size. We also investigated an 

522 additional scenario in which all cases were strictly from our in-house HGID cohort and the controls 
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523 were obtained from both the HGID and 1000 Genomes cohorts (data not shown). This scenario gave 

524 identical results to those presented here, indicating that, even in the presence of heterogeneity in the 

525 types of exome data considered for cases and controls (e.g. in terms of kit or technology used), the 

526 conclusions drawn here still apply. Overall, these results validate a strategy of using additional 

527 external controls to increase the power of a study, provided that an efficient stratification correction 

528 approach is used. 

529

530 We focused on the investigation of diseases caused by a few deleterious variants, for which the 

531 CAST-like approach is particularly appropriate.  Additional studies are required to investigate more 

532 complex genetic models, such as the presence of both risk and protective variants of a given gene, for 

533 which other association tests, such as variant-component approaches, may be more appropriate.  

534 Different results can be expected, as the effect of population stratification differs between testing 

535 strategies [17, 20]. In addition, the novel LocPerm strategy has not been evaluated in combination 

536 with other association tests. In the situations we considered, our study highlighted several useful 

537 conclusions for rare variant association studies in the presence of stratification: 1) the key issue is to 

538 properly control type I errors as powers are comparable, 2) population stratification can be corrected 

539 by PC3CV in most instances, unless there is a high degree of intracontinental stratification and a small 

540 sample size, 3) LocPerm proposes a satisfying correction in all instances, and 4) strategies based on 

541 the inclusion of a large number of additional controls (e.g. from publicly available databases)  provide 

542 a substantial gain of power provided that stratification is controlled for correctly.
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696 Supporting information
697

698 Table S1. Distribution of the samples in the European and Worldwide sub-populations

699

700 Table S2. Distribution of the variants in the European and the Worldwide samples according 

701 to their MAFs as described in the Material and Methods section.

702

703 Table S3. Number of genes tested and 95%PI in each scenario of the small size sample study. 

704 Prediction intervals are adjusted on the 4 methods tested.

705

706 Table S4. Details of the genes selected for the power analysis in the European and the 

707 Worldwide samples. Freq() indicates the cumulative frequency of the causal variants.

708

709 Table S5. Example of penetrances used for the power estimation of the gene ADAMTS4 in the 

710 European sample. F0 and F1 represent the penetrances for non-carriers and carriers considering a 

711 relative risk RR of 3, a total proportion of 15% of cases and proportions of carriers of 9% in Northern-

712 Europe (NE) and Middle-Europe (ME) and 8% in Southern-Europe (SE). Within a given sample these 

713 penetrances are calculate by F0 = ncases/(nnon-carriers+RR.ncarriers) and F1=RR.F0

714

715 Table S6. Type I error rates of the different approaches for the large size European sample. 

716 The nominal level alpha considered is  and the corresponding 95%PI adjusted for the 10 𝛼 = 0.01

717 methods is [0.00933-0.01067]. Type I error rates under the lower bound of the 95%PI are displayed 

718 in italic and above the upper bound of the 95%PI in bold.

719

720 Table S7. Type I error rates of the PC approach with 3, 5, 10 or 50 PCs for the large size 

721 European sample. The nominal level alpha considered is  and the corresponding 95%PI 𝛼 = 0.001

722 adjusted for the 16 methods is [0.00078-0.00122]. Type I error rates under the lower bound of the 

723 95%PI are displayed in italic and above the upper bound of the 95%PI in bold.

724

725 Table S8. Type I error rates of the different approaches for the large size Worldwide sample. 

726 The nominal level alpha considered is  and the corresponding 95%PI adjusted for the 10 𝛼 = 0.01

727 methods is [0.00933-0.01067]. Type I error rates under the lower bound of the 95%PI are displayed 

728 in italic and above the upper bound of the 95%PI in bold.
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729

730 Table S9. Type I error rates of the PC approach with 3, 5, 10 or 50 PCs for the large size 

731 Worldwide sample. The nominal level alpha considered is  and the corresponding 95%PI 𝛼 = 0.001

732 adjusted for the 16 methods is [0.00078-0.00122]. Type I error rates under the lower bound of the 

733 95%PI are displayed in italic and above the upper bound of the 95%PI in bold.

734

735 Table S10. Type I error rates of the different approaches for the small size sample scenarios. 

736 The nominal level alpha considered is . Type I error rates under the lower bound of the 𝛼 = 0.01

737 95%PI are displayed in italic and above the upper bound of the 95%PI in bold. 

738 Table S3 provides the adjusted 95%PI for the different number of genes tested in each scenario.

739  

740 Table S11. Runtime of each method calculated on 1,523 individuals and 17,619 genes of the 

741 large size European sample under the null hypothesis. Note that if the analyses are conducted 

742 several times, with for instance different MAF thresholds or modes of inheritance, the pre-treatment 

743 part does not have to be performed again.

744

745 Figure S1. Histogram of adjusted powers of the correction methods for the large size European 

746 sample (n=1,523) at the level (A) Without stratification. (B) With moderate 𝜶 = 𝟎.𝟎𝟎𝟏. 

747 stratification. (C) With high stratification. Relative risks considered vary from 2 to 4 on the x-axis. 

748

749 Figure S2. Histogram of adjusted powers for the correction methods for the large size 

750 Worldwide sample at the level . (A) Without stratification. (B) With moderate 𝜶 = 𝟎.𝟎𝟎𝟏

751 stratification. (C) With high stratification. Relative risks considered vary from 2 to 4 on the x-axis. 

752

753 Figure S3. Histogram of powers for methods with a correct type I error rate for the large size 

754 European sample (n=1,523) at the level . (A) Principal components. (B) Linear Mixed 𝜶 = 𝟎.𝟎𝟎𝟏

755 Models. (C) LocPerm. Relative risks vary from 2 to 4 on the x-axis. 

756

757 Figure S4. Histogram of powers for methods with a correct type I error rate for the large size 

758 Worldwide sample at the level . (A) Principal components. (B) Linear Mixed Models. 𝜶 = 𝟎.𝟎𝟎𝟏

759 (C) LocPerm. Relative risks vary from 2 to 4 on the x-axis. 

760

761 Figure S5. Histogram of adjusted powers of the correction methods the small size sample at the 

762 level . (A) Scenarios with 50 cases from Southern-Europe. (B)Scenarios with 50 cases 𝜶 = 𝟎.𝟎𝟎𝟏
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763 from the whole Europe. (C) Scenarios with 50 cases from the Worldwide sample. The relative risk is 

764 fixed at 4. 
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765 Figure legends
766

767 Figure 1. Graphical representation of the European sample. (A) PCA plots of the 4,887 samples 

768 comprising the 3,104 samples from our in-house cohort HGID and 1000 genomes (1KG) individuals 

769 including African (AFR), Ad Mixed American (AMR), East-Asian (EAS), European (EUR) and 

770 South-Asian (SAS). Common variants were used to produce these plots. The European reference 

771 individual is singled out. (B) 1,523 individuals with European ancestry selected. The dashed vertical 

772 lines correspond to empirical separations between Northern (n=127 including 1KG FIN and HGID 

773 samples), Middle (n=651 including 1KG CEU and GBR and HGID samples), and South European 

774 ancestry (n=745 including 1KG TSI and IBS and HGID samples).

775

776 Figure 2. Graphical representation of the Worldwide sample. (A) PCA plots of the 4,887 samples 

777 comprising the 3,104 samples from our in-house cohort HGID and 1000 genomes (1KG) individuals 

778 including African (AFR), Ad Mixed American (AMR), East-Asian (EAS), European (EUR) and 

779 South-Asian (SAS). Common variants were used to produce these plots. Reference individuals are 

780 singled out. (B) The selected 1,967 individuals with European (n=700), Middle-Eastern (n=543), 

781 North-African (n=359) and South-Asian (n=365) ancestries are colored. The remaining individuals 

782 are left in grey. 

783

784 Figure 3. Histogram of powers for methods with a correct type I error rate for the large size 

785 European sample (n=1,523) at the level . (A) Without stratification. (B) With moderate 𝜶 = 𝟎.𝟎𝟎𝟏

786 stratification. (C) With high stratification. Relative risks considered vary from 2 to 4 on the x-axis. 

787

788

789 Figure 4. Histogram of powers for methods with a correct type I error rate for the large size 

790 Worldwide sample (n=1,967) at the level . (A) Without stratification. (B) With moderate 𝜶 = 𝟎.𝟎𝟎𝟏

791 stratification. (C) With high stratification. Relative risks considered vary from 2 to 4 on the x-axis. 

792

793

794 Figure 5. Power for methods with a correct type I error rate under H0 for the small size sample 

795 at the level . (A) Scenarios with 50 cases from Southern-Europe. (B)Scenarios with 50 𝜶 = 𝟎.𝟎𝟎𝟏

796 cases from the whole Europe. (C) Scenarios with 50 cases from the Worldwide sample. The relative 

797 risk is fixed at 4. 
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