Integrated Plasma and Tissue Proteomics Reveals Attractin Release by Intraluminal Thrombus of Abdominal Aortic Aneurysms and Improves Aneurysm Growth Prediction in Humans

Regent Lee^{1,2}, Ismail Cassimee², Honglei Huang^{1,2}, Pierfrancesco Lapolla¹, Anirudh Chandrashekar¹, Philip Charles², Benedikt Kessler², Roman Fischer², Ashok Handa¹

⁺On behalf of the Oxford Abdominal Aortic Aneurysm Study

¹Nuffield Department of Surgical Sciences, University of Oxford, UK

²Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, UK

Corresponding Author

Regent Lee regent.lee@nds.ox.ac.uk

Keywords: abdominal aortic aneurysm, attractin,

protein biomarkers, growth rate prediction

Abdominal aortic aneurysms (AAAs) are pathological dilatation of the abdominal aorta to larger than 30mm in diameter. Left untreated, it eventually results in AAA rupture and high mortality. Methods for the prediction of AAA growth is considered as a priority for research in the opinions of our peers¹. It can guide different aspects of clinical management in terms of the frequency of monitoring of AAAs and the optimal timing for surgery.

6 The Oxford Abdominal Aortic Aneurysm (OxAAA) Study has previously reported a method of 7 AAA growth prediction by incorporating 9 circulating proteins (derived using a commercially 8 available protein array), flow mediated dilatation of brachial artery (FMD, a physiological 9 marker of systemic endothelial function), and AAA diameter². We had also observed that 10 systemic endothelial function (measured by brachial artery FMD) deteriorates during the 11 natural history of AAA growth and is reversed by AAA repair³.

Most AAAs contain intra-luminal thrombus (ILT)⁴. Since ILT is either removed or excluded from circulation after successful repair of AAAs, we hypothesise that ILT is the source of mediators that contribute to AAA growth. In this report, we utilised mass spectrometry analyses on blood, thrombus tissue, and tissue supernatant collected from patients during the natural history of AAA progression to discover novel predictors of AAA growth in humans.

Details regarding the OxAAA study cohort and recruitment process have been published³. In brief, this prospective study (Ethics Ref: 13/SC/0250) recruited patients in the National Health Service setting. Baseline assessments were performed. In addition to the measurement of AAA antero-posterior diameter by ultrasound imaging, fasting blood sample was collected and Platelet-poor plasma was prepared using two-staged centrifugation as previously described⁵ and stored at -80[®]C for subsequent analysis. 24 Prospective AAA annual growth rates were calculated based on the diameter measurements

in the subsequent AAA monitoring ultrasound scans.

26 Plasma samples were collected at baseline and at 1 year from each patient (n=59). Based on 27 the prospectively recorded aneurysm growth rates, we selected a subset of patients [fastest 28 (n=10) vs slowest (n=10)]. These were pooled for the initial discovery analysis. Plasma samples were also collected before and at 10-12 weeks after surgery from each patient 29 (n=29). Paired aneurysm wall, ILT, omental biopsies were collected intra-operatively during 30 31 open surgical repair (n=3). In addition to analyses of the tissue, supernatant was obtained from ex vivo culture of these paired tissue samples. We utilised a similar approach for 32 plasma biomarker discovery as recently described⁶. Samples were subjected to Liquid 33 Chromatography Tandem Mass Spectrometry (LC-MS/MS) proteomic analysis to discover 34 protein level differences⁶. LC-MS/MS data were analysed using the Progenesis QI software 35 (NonLinear Dynamics), and included only proteins with at least two matched peptide 36 37 sequences.

The median AAA size at baseline was 48 mm. The median growth rate of AAA was 3.8%/year (IQR 1.9% to 6.8%). Comparison between patients with the fastest vs the slowest AAA growth showed 116 proteins (listed by the UniProt Protein IDs in Figure Panel 1) to be differentially expressed in their plasma (Figure panel 2-A). Among these proteins, 35 also changed significantly before and after AAA repair (Figure panel 2-B), suggesting their origin from the AAA complex. Comparison of the proteomics profile of aneurysm tissue, ILT, and omental artery show 128 proteins to be uniquely present in ILT (Figure panel 2-C).

Analyses of the tissue culture supernatant further revealed 3 proteins that were: (i) uniquely
present in ILT; (ii) released by ILT; (iii) reduced in systemic circulation after AAA surgery; (iv)

different between fast and slow growth AAAs (Figure panel 2-D). These are: attractin (UniProt ID 075882), complement C8 (UniProt ID P07360), heat shock protein AA5P (UniProt ID Q58FG0). To technically validate the LC-MS/MS data, attractin level in individual patient was measured by ELISA (R&D Quantikine DATRNO). Consistent with the LC-MS/MS data, plasma attractin level is significantly higher in patients with fast AAA growth (Figure panel 3, median 28.5 vs 21.9 ng/ml, P<0.001). Plasma attractin level correlates significantly with future AAA growth rate (Figure panel 4, Spearman r=0.35, P<0.005).

We tested the utility of a generalised linear model to predict aneurysm growth in these patients. We regressed the measured values of attractin in combination with the measurements of AAA diameter against a categorical response with levels of 'Slow/no' growth (0%) or growth (>0% growth) for outcomes at 12 months. Using attractin and AAA diameter as input variables, the area under receiver operating characteristics (AUROC) for predicting no growth of AAA at 12 months is 85% (Figure panel 5, asymptotic P<0.001) as compared to 76% with AAA diameter alone.

This report is a significant breakthrough from our previous work². By focusing on the role of thrombus as a source of systemic mediator release, we discover novel proteins that are released from thrombus and drive AAA growth in humans, tested in a prospectively recruited cohort. This is the first report in which novel proteins that correlate to future AAA growth have been discovered through a mass spectrometry workflow. The validity of the mass spectrometry discovery workflow is demonstrated by the precise replication of the LC-MS/MS data by ELISA measurements on individual patient samples.

68 Since the first description of attractin in 1998⁷, there has been little in the reported 69 literature regarding its biological role in disease. Evidence points toward its release by

70	activated T-cell. It is involved in the initial immune cell clustering during inflammatory
71	response and it regulates chemotactic activity of chemokines ⁷ . There is mounting evidence
72	of T-cells being active in AAA ILT and that it plays a role in AAA pathophysiology ⁸ . This report
73	is the first to implicate attractin in human AAA progression and warrants further
74	mechanistic investigations.

75 It is important for external cohorts to replicate the efficacy of our biomarker panel. We

76 hope this work serves as a primer to generate interest in the vascular surgical community

and stimulates future efforts to validate the prediction algorithm.

78 References

79

1. Lee R, Jones A, Cassimjee I and Handa A. International opinion on priorities in research for small abdominal aortic aneurysms and the potential path for research to impact clinical management. *Int J Cardiol*. 2017;245:253-255.

Lee R, Charles PD, Lapolla P, Cassimjee I, Huang H, Kessler B, Fischer R and Handa A.
 Integrated Physiological and Biochemical Assessments for the Prediction of Growth of Abdominal
 Aortic Aneurysms in Humans. *Ann Surg.* 2018.

Lee R, Bellamkonda K, Jones A, Killough N, Woodgate F, Williams M, Cassimjee I and Handa
 A. Flow Mediated Dilatation and Progression of Abdominal Aortic Aneurysms. *Eur J Vasc Endovasc Surg.* 2017;53:820-829.

Whaley ZL, Cassimjee I, Novak Z, Rowland D, Lapolla P, Chandrashekar A, Pearce BJ, Beck
 AW, Handa A and Lee R. The Spatial Morphology of Intraluminal Thrombus Influences Type II
 Endoleak After Endovascular Repair of Abdominal Aortic Aneurysms. *Ann Vasc Surg.* 2019.

5. Lee R, Antonopoulos AS, Alexopoulou Z, Margaritis M, Kharbanda RK, Choudhury RP,
Antoniades C and Channon KM. Artifactual elevation of plasma sCD40L by residual platelets in
patients with coronary artery disease. *Int J Cardiol*. 2013;168:1648-50.

95 6. Lee R, Fischer R, Charles PD, Adlam D, Valli A, Di Gleria K, Kharbanda RK, Choudhury RP,
96 Antoniades C, Kessler BM and Channon KM. A novel workflow combining plaque imaging, plaque
97 and plasma proteomics identifies biomarkers of human coronary atherosclerotic plaque disruption.
98 *Clin Proteomics.* 2017;14:22.

99 7. Duke-Cohan JS, Tang W and Schlossman SF. Attractin: a cub-family protease involved in T
100 cell-monocyte/macrophage interactions. *Adv Exp Med Biol*. 2000;477:173-85.

101 8. Ismail Cassimjee RLaJP. Inflammatory Mediators in Abdominal Aortic Aneurysms. 2017.

102

103 Acknowledgement

104	The Oxford Abdominal Aortic Aneurysm Study was supported by the following: University of Oxford,
105	Medical Sciences Division Medical Research Fund (MRF/HT2016/2191); University of Oxford,
106	Nuffield Department of Surgical Sciences; John Fell Oxford University Press Research Fund
107	(142/075); National Institute of Health Research (NIHR) Oxford Biomedical Research Centre; British
108	Heart Foundation Centre of Research Excellence, Oxford (RE/13/1/30181); RL was supported by a
109	Academy of Medical Science Starter Grant, UK (SGL013/1015). PL was supported by an EU Erasmus+
110	traineeship studentship. BMK and PDC were supported by a John Fell Oxford University Press
111	Research Fund (133/075) and a Welcome Trust Grant (097813/11/Z).

112 ⁺Contributors to the OxAAA Study include: Amy Jones, Felicity Woodgate, Nicholas Killough, Kirthi

Bellamkonda, Elisha Ngetish, Joel Ward, Members of the Oxford Regional Vascular Services, and the

114 Jackie Walton Vascular Studies Unit.

bioRxiv preprint doi: https://doi.org/10.1101/2020.02.28.970483; this version posted February 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure

1.	UniProt	ID of proteir	ns that signif	icantly diffe	r between pa	itients with f	fast vs slow	AAA growth	
000533	P00746	P04271	PODOX6	P15311	P30086	P55884	Q14315	Q7Z3D4	Q9H361
000555	P00915	P05091	P0DP01	P18085	P31948	P57721	Q15084	Q7Z4W1	Q9NQH7
015144	P01034	P06576	P10643	P20774	P32119	P61769	Q15847	Q8N436	Q9NVI1
O43488	P01764	P06727	P10809	P20851	P33981	P61916	Q16363	Q8W275	Q9UNM6
O60641	P01860	P07099	P11142	P21810	P35908	P62306	Q4VNC0	Q965N8	Q9Y5C1
075882	P01871	P07195	P11168	P21980	P42166	P78371	Q58FG0	Q96TC7	Q9Y5Z4
075891	P02655	P07360	P11217	P23470	P46821	Q04637	Q5MJ70	Q99497	A0A0C4DH68
076013	P02656	P07858	P11309	P24592	P48643	Q12906	Q5VST9	Q99879	A0A0C4DH31
O95568	P02741	P07988	P13500	P27348	P49458	Q13093	Q6IMN6	Q99943	
095782	P02771	P08133	P13645	P27797	P50990	Q13162	Q6UX71	Q9BSJ8	
O95810	P02775	P08567	P13796	P27816	P51884	Q14019	Q6ZN28	Q9BZA8	
P00390	P02776	P08729	P14151	P27824	P54727	Q14204	Q702N8	Q9BZK3	

Figure: Integrated Plasma and Tissue Proteomics Reveals Attractin Release by Intraluminal Thrombus of Abdominal Aortic Aneurysms and Improves Aneurysm Growth Prediction in Humans. AAA growth rates were prospectively recorded in 59 patients. Based on the growth rate in the subsequent 12 months, we selected a subset of patients (fastest vs slowest, n=10 each) for the initial discovery analysis. Plasma samples were also collected from patients before and after AAA repair (n=29). Paired aneurysm wall, ILT, omental biopsies were collected intra-operatively during open surgical repair (n=3). In addition to analyses of the tissue, supernatant was obtained from ex vivo culture of these paired tissue samples. Samples were subjected to Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) proteomic analysis to discover protein level differences. Plasma samples were pooled in their respective groups for analysis. Other samples were analysed individually. LC-MS/MS data were analysed using the Progenesis QI software (NonLinear Dynamics) and included only proteins with at least two matched peptide sequences. Comparison between patients with the fastest vs the slowest aneurysm growth showed 116 proteins (listed by the UniProt Protein IDs in Panel 1) to be differentially expressed in their plasma (2-A). Among these proteins, 35 also changed significantly before and after AAA repair (2-B), suggesting their origin from the AAA complex. Comparison of the proteomics profile of aneurysm tissue, ILT, and omental artery showed 128 proteins to be uniquely present in ILT (2-C). Analyses of the tissue culture supernatant further revealed 3 proteins that were: (i) uniquely present in ILT; (ii) released by ILT; (iii) systemic levels reduced after AAA surgery; (iv) different between fast and slow growth AAAs (2-D). These are: attractin (UniProt ID 075882), complement C8 (UniProt ID P07360), heat shock protein AA5P (HSPAA5P, UniProt ID Q58FG0). Attractin level in individual patient was further measured by ELISA (R&D Quantikine DATRNO). Plasma attractin level is significantly higher in patients with fast AAA growth (panel 3, median 28.5 vs 21.9 ng/ml, P<0.001). Plasma attractin level correlates significantly with future AAA growth rate (Figure panel 4, Spearman r=0.35, P<0.005). We regressed the measured values of attractin in combination with AAA diameter against a categorical response with levels of 'Slow/no' growth (0%) or growth (>0% growth) for outcomes at 12 months. Using attractin and AAA diameter as input variables, the AUROC for predicting no growth of AAA at 12 months is 85% (panel 5, asymptotic P<0.001).