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Appendix A: probability of rescue13

We calculate the probability of rescue from beneficial mutations in a two-deme model in which14

habitats deteriorate over time. A mutation has selective coefficient z > 0 in a deteriorated region15

and coefficient s > 0 in a non-deteriorated region. We distinguish three different temporal phases:16

(phase 0) at t < t0, both demes are not deteriorated; (phase 1) at t0 we deteriorate deme 1; (phase17

2) at time t = t0 + θ we deteriorated deme 2.18

To evaluate equations (5)–(8) (at end of phase 0 and during phase 1) we use the probabilities of19

establishment of mutations experiencing different selection pressure in each patch of a two-deme20

model [Tomasini and Peischl, 2018]. A mutation can arise in deme 1 or in deme 2, and it establishes21

with probabilities p(1) and p(2) respectively:22

p(1) = z(1 + σ −∆)− sµ12 , (S1)

23

p(2) = zµ21 − s(1− σ + ∆) , (S2)

where24

σ =
z + s

λ
, µij =

2mij

λ
, ∆ =

µ12 − µ21

2
(S3)
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and λ =
√

(m12 +m21)2 + (z + s)2 − 2(m12 −m21)(z + s). The derivation is based on slightly25

super-critical branching processes and is valid for large populations with weak selection (1/N <26

z � 1). The method is valid for slightly super-critical branching processes (see Tomasini and27

Peischl [2018] for a full discussion of the validity of the model). Note that these equations do not28

account for the temporal in-homogeneity in selection coefficients at time t = θ, and hence should29

be a good approximation if θ � 0 and if s� 0.30

Probability of rescue for de novo mutations31

In order to calculate formula (7) we need to solve equations (9) and (10). During phase 1 (t < t0+θ),32

N2(t) = κ. Solving (9) yields33

N1(t) = e−(m12+r)t
[
κ1 −

m21κ2
m12 + r

]
+

m21κ2
m12 + r

(S4)

Equilibrium population in deme 1 increases with m34

In the following we assume that θ is large. For large t < θ, the exponential term of equation (S4)35

goes to zero. For the symmetric case (m12 = m21 = m/2) then, population in deme 1 reaches an36

equilibrium described by37

N1(t) ≈ mκ2
m+ 2r

(S5)

Then, this is also the population of deme 1 at time t = θ. This shows that the population in deme38

1 increases when m increases (see main text, discussion of figure 2). Note that this approximation39

is only valid for θ � 0.40

During phase 2, when both demes are deteriorated, N1(t) and N2(t) follow equation (10) with41

initial conditions N1(θ) given by (S5) and N2(θ) = κ2.42

Equation (S5) does not only represent the population in deme 1 at time t = θ, but also during43

most of phase 1, as the left-hand term of equation (S5) decreases exponentially.44

We can show that the same is true for the case with asymmetric migration or asymmetric carrying45

capacities. With asymmetric migration (m12 = ζm and m21 = (1− ζ)m, see main text, equations46

(14) and (15)), for large t < θ, equation (S5) yields47

N1(t) ≈ (1− ζ)mκ2
ζm+ r

. (S6)

This increases with ζ, and hence we deduce that the larger migration is from deme 2 to deme 1 (ζ48

increases) the larger N1(t) is over time, and the larger the probability of rescue.49

For m12 = m21 = m/2 and asymmetric carrying capacities (from the main text, κ2 = (1 − β)κ),50

the equilibrium population in deme 1 is51

N1(t) ≈ m(1− β)κ

m+ 2r
, (S7)
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which increases when β decreases (hence when κ1 becomes smaller than κ2).52

The solutions N1(t) and N2(t) can be obtained straightforwardly for t > t0 + θ but are very long53

and it does not bear any use to write them explicitly here. Plugging everything into (7) and (8), we54

obtain a straightforward analytical formula for the probability of rescue from de novo mutations55

during phase 1. All calculations can be easily carried out with software such as Mathematica.56

Gene swamping does not allow for rescue in phase 1 for high m57

In the main text we discuss how for high migration rates mij , establishment during phase 1 cannot58

occur because of a phenomenon called gene swamping. Gene swamping arises generally in two-deme59

models with divergent selection. Establishment probabilities during phase 1 (equations (S1)–(S3))60

are 0 if m > sz
(s−z) (in the case of symmetric migration, but the same can be calculated for61

asymmetric migration, see Tomasini and Peischl [2018]). This condition is equivalent to the gene62

swamping limit in deterministic models derived in Bulmer [1972] and Lenormand [2002]. Thus,63

rescue mutations cannot occur during phase 1 if the migration rate exceeds this limit.64

Appendix B: when does gene flow facilitate rescue?65

We want to know for which set of parameters intermediate migration increases the chance for66

evolutionary rescue, as compared to no migration. This is equivalent to the set of parameters for67

which68

∂Pres

∂m

∣∣∣∣
m=0

> 0 . (S9)

To do this, we use an approach similar to the one used in Tomasini and Peischl [2018] to find an69

approximated form of the probabilities of establishment (also see Appendix A). We first re-scale70

all parameters with respect to z (s = zξ, mij = zχij) and then linearize (2) with respect to z.71

Then, we take the derivative of the linearized form of Pres and find its root. Switching back to the72

original variables, we find that condition (S9) is satisfied when73

s

z
<
m21

m12

κ2
κ1
· erθr(f0 + uθ)

erθ(f0r + u)− u
. (S10)

If we set f0 = 0 (hence no standing genetic variation), we find that the condition reads74

s

z
<
m21

m12

κ2
κ1
· e

rθrθ

erθ − 1
. (S11)

Because the function xex/(ex − 1) ≈ x if x is large enough (approximately for x & 4), we obtain75

equation (16). Note that conditions (11), (12) and (13) in the main text refer to the symmetric76

model (m21/m12 = κ2/κ1 = 1, and with s = 1 in condition (11)), while here we derive the general77

result. In the main text we further define F = m21κ2/m12κ1.78
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Appendix C: the role of density regulation and local growth79

rates80

Figure 7 shows examples for the probability of evolutionary rescue when the density of the non-81

deteriorated deme is regulated following a Beverton-Holt model of logistic growth [Beverton and82

Holt, 1957]:83

N2(t+ 1) = N2(t)
ρ

(1 + (ρ− 1)Ntot(t)/κ)
. (S12)

We find that the probability of rescue in this case can deviate strongly from the regime of84

instantaneous growth, where the population in the non-deteriorated deme always remains at car-85

rying capacity. The latter should be a good approximation to the former if the growth rate ρ is86

large enough relatively to the migration rate.87

Here, we explore this intuition quantitatively. We calculate the loss of individuals from deme88

2 during one generation, neglecting individuals coming in from deme 1. This works in particular89

for t large, since deme 1 is almost depleted after a few generations and we can ignore the influx of90

immigrants from deme 1 into deme 2. Hence, we solve91

N2(t+ 1) = N2(t)
(

1− m

2

) ρ

1 + (ρ− 1)N2(t)/κ
, (S13)

with initial condition N2(t = 0) = κ. We find92

N2(t) =
κ(2− 2ρ+mρ)

2− 2ρ+ 2tmρ
(

1
2ρ−mρ

)t . (S14)

Now, gene flow should be detrimental to evolutionary rescue if the interplay of m (causing loss of93

individuals from deme 2) and ρ (causing gain of individuals in deme 2) causes deme 2 to eventually94

go extinct. We find that N2(t)→ 0, when t→∞, if95

ρ
(

1− m

2

)
≤ 1 . (S15)

In particular, condition (S15) is very accurate for large m, as rescue for that range of migration96

is ensured exclusively by mutations arising during phase 2 (see figure 2). Figure 7 shows that this97

rule of thumb remains accurate over the whole range of m when other kinds of density regulation98

are at play.99
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Appendix D: figures100
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Figure S1: Symmetric model: contribution of mutations arising during phase 2 to evolutionary

rescue for different r, z = 0.02, s = 1, θ = 200. All curves increase with m.
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m = 0.02, θ = 500
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Figure S2: Comparison: (A and B) we plot approximation (2) in the main text VS. the approx-

imation for two demes without standing genetic variation proposed by Uecker et al. [2014], with

respect to the migration rate m, with r = 0.1 and (A) θ = 250, (B) θ = 500; (C and D) we plot

the same comparison with respect to the stress r, with θ = 500 and (C) m = 0.02 (corresponding

to the ideal migration rate) and (D) m = 0.1. The two approximations are most similar for low

r. Other parameters are z = 0.02, s = 1.0. Uecker et al. [2014] used a time-dependent process

but did not model demes explicitly. Furthermore their solution is only for lethal mutations in the

new environment (s = 1). We model both demes explicitly but do not take into account time-

inhomogeneities, and our result is valid for s < 1. Our approach allows the derivation of general

closed-form equations for the probability of rescue (while in Uecker et al. [2014] equations for every

scenario need to be calculated separately). The two models yields very similar results for m up to

intermediate values.
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Figure S3: Standing genetic variation: contribution to evolutionary rescue by standing genetic

variation in the symmetric model, simulations with analytical expectations (see equation (5). Pa-

rameters are z = 0.02, θ = 500, r = 0.3. Black points show s = 0.1, gray points s = 0.9. (A)

After density up-regulation, mutants are not replaced according to mutant frequencies preceding

the regulation. (B) Mutants are replaced according to mutant frequencies. We can notice the effect

of relaxed competition for mildly deleterious mutations (see main text).
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Figure S4: Symmetric model: evolutionary rescue as a function of m for different selective

coefficients s (cost in the unperturbed deme). Comparison between theoretical calculations and

simulations, for z = 0.02, θ = 500 and r = 0.3, s = 0.1 (orange), s = 0.5 (purple), s = 1.0 (green).

We observe that our model is unable to correctly account for mildly deleterious mutations (see

orange line).
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Figure S5: Comparison between model and simulations for different combinations of

parameters: first row s = 0.1 and θ = 100, second row s = 0.5 and θ = 200, third row s = 1.0

and θ = 400; left column r = 0.1, center left column r = 0.25, center right column r = 0.5, right

column r = 0.9. In all figures, z = 0.02. The vertical black line in each figure is the limit for gene

swamping, sz/(s − z). In general, our approximation requires a very large θ to be precise. The

values selected for θ in the first and second row are very low and we can observe that condition

(12) in the main text is not clearly shown in simulations, in this case. Furthermore, the first row

shows comparison between simulation and theory for very low s: we know that our model isn’t

able to correctly account for the time-inhomogeneity for such low values of s (see also figure S4).

Finally, choosing a very high value for r (right column) yields very low probability of rescue, and

simulations cannot clearly discern if gene flow facilitates rescue or not.
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Figure S6: Asymmetric models for lethal mutations: comparison between theoretical calcu-

lations and simulations, for z = 0.02, θ = 500, r = 0.3, s = 1.0. (A) Asymmetric migration rates.

In orange, ζ = 0.1, in purple ζ = 0.5, in green ζ = 0.9. (B) Asymmetric carrying capacities. In

orange, β = 0.1, in purple β = 0.5, in green β = 0.9.
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Figure S7: Asymmetric models with standing genetic variation: comparison between the-

oretical calculations and simulations, for z = 0.02, θ = 500, r = 0.3, s = 0.5. (A) Asymmetric

migration rates. In orange, ζ = 0.1, in purple ζ = 0.5, in green ζ = 0.9. (B) Asymmetric carrying

capacities. In orange, β = 0.1, in purple β = 0.5, in green β = 0.9. We can see that at m → 0

expectations are different than simulations (see Appendix A).
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Figure S8: Comparison between model and simulations for different combinations of

parameters: upper row is for asymmetric migration, lower row for asymmetric carrying capacities;

left top panel has ζ = 0.25, center top ζ = 0.5 and right top ζ = 0.75; left bottom has β = 0.25,

center bottom β = 0.5 and right bottom β = 0.75. In all figures, z = 0.01, s = 0.5, r = 0.1,

θ = 800. The vertical black line in each figure is the limit for gene swamping, sz/(s − z). This

condition is calculated for a case with symmetric migration, thus it fails when ζ 6= 0.5. Even in

these scenarios, our model is able to predict reasonably well when migration facilitates evolutionary

rescue. We also note that in simulations, while for the symmetric case (center top and bottom

panels) PRescue is the same for m→ 0 and m→ 1, this is not the case for both cases where there

is an asymmetry in the system.
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