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Abstract 24 

The neurobehavioral mechanisms of human motor-control and learning evolved in free 25 

behaving, real-life settings, yet to date is studied in simplified lab-based settings. We demonstrate 26 

the feasibility of real-world neuroscience, using wearables for naturalistic full-body motion-27 

tracking and mobile brain-imaging, to study motor-learning in billiards. We highlight the 28 

similarities between motor-learning in-the-wild and classic toy-tasks in well-known features, such 29 

as multiple learning rates, and the relationship between task-related variability and motor learning. 30 

Studying in-the-wild learning enable looking at global observables of motor learning, as well as 31 

relating learning to mechanisms deduced from reductionist models. The analysis of the velocity 32 

profiles of all joints enabled in depth understanding of the structure of learning across the body. 33 

First, while most of the movement was done by the right arm, the entire body learned the task, as 34 

evident by the decrease in both inter- and intra- trial variabilities of various joints across the body 35 

over learning. Second, while over learning all subjects decreased their movement variability and 36 

the variability in the outcome (ball direction), subjects who were initially more variable were also 37 

more variable after learning, supporting the notion that movement variability is an individual trait. 38 

Lastly, when exploring the link between variability and learning over joints we found that only the 39 

variability in the right elbow supination shows significant correlation to learning. This demonstrates 40 

the relation between learning and variability: while learning leads to overall reduction in movement 41 

variability, only initial variability in specific task relevant dimensions can facilitate faster learning. 42 

 43 

Author Summary 44 

 This study addresses a foundational problem in the neuroscience: studying the mechanisms 45 

of motor control and learning in free behaving, real-life tasks, where our brains and bodies operate 46 

in on a daily basis and which contains the richness of stimuli and responses for what our nervous 47 

system evolved. We used the competitive sports of pool billiard to frame an unconstrained real-48 

world skill learning experiment which is amenable to predictive modelling and understanding. Our 49 

data-driven approach unfolds the structure and complexity of movement, variability, and motor-50 

learning, highlighting that real-world motor-learning affects the whole body, changing motor-51 

control from head to toe. Crucially, we are enabling novel hypothesis driven experimental 52 

approaches to study behavior where it matters most - in real life settings.  53 
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Introduction 54 

Motor learning is a key feature of our development and daily lives, from a baby learning 55 

to roll, to an adult learning a new sport, or a patient undergoing rehabilitation after a stroke. The 56 

process of learning a real-world motor skill is usually long and complex, and difficult to quantify. 57 

As a result, real-world motor learning is rarely studied, and most of the motor learning literature 58 

focuses on relatively simple tasks, performed in a lab setup or an MRI scanner, such as force-field 59 

adaptations (e.g. Diedrichsen et al., 2005; Howard et al., 2015; Shadmehr and Mussa-Ivaldi, 1994; 60 

Smith et al., 2006), visuomotor perturbations (e.g. Haar et al., 2015; Krakauer et al., 2000; Mazzoni 61 

and Krakauer, 2006; Taylor et al., 2014), and sequence-learning of finger tapping or pinching tasks 62 

(e.g. Clerget et al., 2012; Ma et al., 2011; Reis et al., 2009; Yokoi et al., 2018).  63 

These reductionistic tasks enable to isolate specific features of the motor learning and 64 

tackle them individually. While this plays an important role in our understanding of sensorimotor 65 

control and learning, it addresses a very restricted range of behaviors that do not capture the full 66 

complexity of real-world motor control and may overlook fundamental principles of motor control 67 

and learning in real-life (Faisal et al., 2010; Ingram and Wolpert, 2011; Wolpert et al., 2011). It is 68 

only in natural behavioral settings that neuroscientific mechanisms are subject to evolutionary 69 

selection pressures and it is the operation in these contexts for which the nervous system has been 70 

designed (Hecht et al., 2014). Over the past decade there were few important efforts in this 71 

direction. One line of research devised more complex tasks for skill learning (e.g. Abe and Sternad, 72 

2013; Cohen and Sternad, 2009; Shmuelof et al., 2012), but those were still computer based toy-73 

tasks which try to emulate real-world tasks. The other line used actual real-world tasks such as 74 

juggling (e.g. van Beers et al., 2013; Hecht et al., 2014; Ono et al., 2015; Sampaio-Baptista et al., 75 

2014, 2015; Scholz et al., 2009), but these studies analyzed only anatomical and functional MRI 76 

changes following learning and did not address behavior or neural activity during the learning 77 

process.  78 

Here we are taking a novel data-driven approach to study behavior where it matters most – 79 

in natural real-life settings. The paradigm in which we study real-world motor learning is the game 80 

of pool table billiards. Billiards is a real-world task ideally suited to neurobehavioral study as 81 

motion tracking in terms of movement in space, the natural constraints of game playing, and 82 

divisibility into trials captures the style of reductionistic lab-based motor learning tasks. Billiards 83 

is also a natural task which is complex and involves many different sub-tasks (precision, alignment, 84 

ballistic movements, high-level sequential planning) which requires complex skills. To tackle the 85 

complexity of the high dimensional task space of this real-world task, we applied naturalistic 86 

approaches and developed a neurobehavioral database of real-world motor learning behavior. This 87 

includes the full body movement during the entire learning period, as well as the measurements of 88 

task performance (balls movement on the table). This enabled us to quantify the trends of changes 89 
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in each of them separately during the entire learning process, and to look for correlations between 90 

the changes in the body movement and the performance in the task.  91 

We structured the results as follows: We ground our results in previous work on 92 

reductionistic lab tasks, to show that our unconstrained task and its task goal (directional error of 93 

the target ball relative to the pocket it is meant to go in) displays the well-known features of human 94 

motor learning. We then characterize full-body movement structure during the task, and how 95 

learning changes the kinematics of all joints over trials. Next, we compare across subjects to map 96 

their performance, learning rates, and motor variability, and how initial variability and learning 97 

rates are linked.     98 

Results 99 

30 right-handed volunteers, with little to no previous experience playing billiards, 100 

performed 300 repeated trials (6 sets of 50 trials each with short breaks in-between) where the cue 101 

ball and target ball were placed in the same locations, and subjects were asked to shoot the target 102 

ball towards the far-left corner pocket (Figure 1A). During the entire learning process, we recorded 103 

the subjects' full body movements with a ‘suit’ of inertial measurement units (IMUs; Figure 1B), 104 

and the balls on the pool table were tracked with a high-speed camera to assess the outcome of each 105 

trial (Figure 1C). 106 

Movement and Learning in a real-world pool task  107 

The ball tracking data showed a double exponential learning curve for the decay in the 108 

directional error of the target ball (relative to the direction from its origin to the center of the target 109 

pocket) over trials (Figure 1D). The direction of the initial trials error was consistent across subjects 110 

as they tended to hit the center of the target ball and shot it forward towards the center of the table. 111 

For measuring success rates and intertrial variability we divided the trials into blocks of 25 trials 112 

(each experimental set of 50 trials was divided to two blocks to increase the resolution in time). 113 

The learning curve over blocks (Figure 1E) emphasized the reduction in the inter-subject variability 114 

during learning (decreasing error bars). The success rate over blocks (percentage of successful trials 115 

in each block; Figure 1F) showed similar learning to the directional error. The learning was also 116 

evident in the intertrial variability in the shooting direction which decayed over learning (Figure 117 

1G). Since learning also occurred within a block (especially during the first block) and the 118 

variability might be driven by the learning gradient, we corrected for it by calculating intertrial 119 

variability over the residuals from a regression line fitted to the ball direction in each block (while 120 

the learning curve is exponential, within the small blocks of 25 trials it is almost linear). This 121 

corrected intertrial variability showed the same pattern (Figure 1H). Overall, the task performance 122 

data suggested that subjects reached their peak performance on the fifth experimental set (blocks 123 

9-10, trials 200-250) and are doing the same (or even slightly worse) on the last experimental set 124 
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(blocks 11-12, trials 250-300). Thus, we refer to the last two experimental sets (blocks 9-12, trials 125 

201-300) as the ‘learning plateau’. 126 

 127 

The full body movements were analyzed over the velocity profiles of all joints, and not the 128 

joint angles profiles, as those are less sensitive to potential drifts in the IMUs and have proven to 129 

be more robust and reproducible across subjects in natural behavior (Thomik, 2016). In the current 130 

data we can also see this robustness across trials (Figure 2A). The covariance matrix over the 131 

velocity profiles of the different joints, averaged across the initial block trials of all subjects, showed 132 

that most of the variance in the movement is in the right arm, and specifically in the right shoulder 133 

(Figure 2B). This is a signature for the naivety of the subjects, as pool billiards guide books 134 

emphasize that the shooting movement should be from the elbow down while the shoulder should 135 

be kept still. The covariance of the velocity profiles averaged across the initial block of the learning 136 

plateau (trials 201-225) showed similar structure with an overall decrease relative to the initial trials 137 

but an increase in the variance of right elbow rotation (Figure 2C).  138 

A 

B 

C 

Figure 1. Experimental setup and task performance. (A) 30 right-handed healthy subjects performed 300 repeated trials of billiards 

shoots of the target (red) ball towards the far-left corner. (B) Full body movement was recorded with a ‘suit’ of 17 wireless IMUs 

(Xsens MVN Awinda). (C) The pool balls were tracked with a high-speed camera. Dashed lines show the trajectories of the cue (white) 

and target (red) balls over 50 trials of an example subject. (D) The trial-by-trial directional error of the target-ball (relative to the 

direction from its origin to the centre of the target pocket), averaged across all subjects, with a double-exponential fit (red curve). 

Grey lines mark the range of successful trials. (E) The mean absolute directional error of the target-ball. (F) The success rates. (G) 

directional variability. and (H) directional variability corrected for learning (see text). (E-H) presented over blocks of 25 trials, 

averaged across all subjects, error bars represent SEM. 

D 

E 

G 

F 

H 

𝜏𝑓 = 6      

𝜏𝑠 = 129 
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 139 

Time (seconds) 

Velocity (degrees/frame) 

Figure 2. Velocity profiles and covariance. (A) Velocity profiles in 3 degrees of freedom (DoF) for each joint (blue: flexion/extension, 

red: abduction/adduction; green: internal/external rotation) averaged across subjects and trials over the first block of trials (1-25) 

in the inner circle (grey background) and the first block after learning plateau (201-225) in the outer circle (white background). The 

joints of the right arm, which do most of movement in the task, are highlighted in orange box. (B,C) The variance covariance matrix 

of the velocity profiles of all joints averaged across subjects and trials (B) over the initial block (1-25) and (C) first block after learning 

plateau (201-225). The order of the DoF for each joint is: flexion/extension, abduction/adduction, internal/external rotation. 

B C 

A 

Trials   1-25  

Trials 201-225 
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On the group level, the velocity profiles of all joints (including the joints of the right arm 140 

that carry most of the movement variance) showed only minor changes following learning. For 141 

example, the flexion/extension of the right elbow showed a decrease in velocity from the initial 142 

trials to the trials of the learning plateau (Figure 2A).  143 

The generalized variance (GV; the determinant of the covariance matrix (Wilks, 1932)) 144 

over the velocity profiles of all joints increased fast over the first ~30 trials and later decreased 145 

slowly (Figure 3A), suggesting active control of the exploration-exploitation trade-off. The 146 

covariance over the initial block, the block over the peak GV, and first block after learning plateau 147 

(Figure 3B), shows that the changes in the GV were driven by an increase in the variance of all 148 

DoFs of the right shoulder, and the negative covariance between the abduction/adduction and 149 

internal/external rotation of the right shoulder to the flexion/extension of the right shoulder and 150 

wrist. The internal/external rotation of the right elbow showed a continuous increase in its variance, 151 

which did not follow the trend of the GV. Principal component analysis (PCA) across joints for the 152 

velocity profiles per trial for each subject, showed that while in all trials ~90% of the variance can 153 

be explained by the first PC, there is a slow but consistent rise in the number of PCs that explain 154 

more than 1% of the variance in the joint velocity profiles (Figure 3C). The manipulative 155 

complexity, suggested by Belić and Faisal (2015) as way to quantify complexity for a given number 156 

of PCs on a fixed scale (C = 1 implies that all PCs contribute equally, and C = 0 if one PC explains 157 

all data variability), showed cleaner trajectory with the same trend (Figure 3D). This suggests that 158 

over trials subjects use more degrees of freedom in their movement.  159 

 160 

Figure 3. Variance and Complexity. (A) The trial-by-trial generalized variance (GV), with a double-exponential fit (red curve). (B) The 

variance covariance matrix of the right arm joints velocity profiles averaged across subjects and trials over the initial block (trials 1-

25), the second block (trials 26-50), in which the GV peaks, and first block after learning plateau (block 9, trials 201-225). The order 

of the DoF for each joint and the colorbar are the same as in Figure 2. (C) The number of principal components (PCs) that explain 

more than 1% of the variance in the velocity profiles of all joints in a single trial, with an exponential fit (red curve). (D) The 

manipulative complexity (Belić and Faisal, 2015), with an exponential fit (red curve). (A,C,D) Averaged across all subjects over all 

trials. 

A C 

B D 
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As a measure of task 161 

performance in body space, 162 

we defined a measure of 163 

Velocity Profile Error (VPE) 164 

for each joint in each trial 165 

(see methods). For all joints, 166 

VPE showed a clear pattern 167 

of decay over trials in an 168 

exponential learning curve 169 

(Figure 4A). A proximal-to-170 

distal gradient in the time 171 

constant of these learning 172 

curves was observed across 173 

the right arm, from the 174 

shoulder to the elbow and 175 

the wrist rotation which 176 

showed very slow learning 177 

(the other wrist angles had 178 

very low VPE from the start, 179 

thus did not learn much). 180 

Intertrial variability in joint 181 

movement was measured 182 

over the VPEs in each block. 183 

Learning was also evident in 184 

the decay over learning of 185 

the VPE intertrial variability 186 

over most joints across the 187 

body (Figure 4B).  188 

Inter-subject differences 189 

in variability and learning  190 

We found 191 

substantial differences 192 

between subjects in their 193 

initial errors, final errors, 194 

intertrial variability, and 195 

learning, which are 196 

overlooked in the group average results. One subject, who had low initial errors, showed no 197 

Figure 4. Learning over Joints. (A) Velocity Profile Error (VPE) reduction across all 

joints. The trial-by-trial VPE for all 3 DoF of all joints, averaged across all subjects, with 

an exponential fit. The time constants of the fits are reported under the title. The 

color code of the DoF is the same as in figure 2 (blue: flexion/extension; red: 

abduction/adduction; green: internal/external rotation).  (B) Velocity Profile Error 

(VPE) intertrial variability over blocks of 25 trials, averaged across all subjects.  

B 

Trials 

Intertrial 

Variability 

A 

Trials 

VPE 
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learning, i.e. did not reduce her error over trials from the first block (trials 1-25) to the learning 198 

plateau (trials 201-300). For all other subjects the final errors were smaller than the initial errors 199 

(Figure 5A). There was a significant correlation between the initial and the final errors, meaning 200 

subjects with higher initial errors tended to have higher final errors as well.  201 

 202 

While over learning most subjects decreased their intertrial variability in the outcome (ball 203 

direction; Figure 1H & 5B) there was some tendency (though non-significant) for subjects who 204 

were initially more variable to be also more variable after learning (Figure 5B). The intertrial 205 

variability of the joint velocity profiles, which also decreased over learning (Figure 4B), showed a 206 

clearer and stronger correlation between the initial and the final intertrial variability (Figure 5E & 207 

S1 Fig). While this phenomenon was observed in various joints across the body, and dominant in 208 

the abduction across the spine joints, it was most dominant in the right shoulder abduction and 209 

A B C D 

Figure 5. Variability and learning across subjects. (A) Correlation between subjects’ mean absolute directional error over the first 
block (trials 1-25) and the learning plateau (trials 201-300). (B) Correlation between subjects’ directional variability over first block 
(corrected for learning trend, see text) and over the learning plateau (C) Correlation between subjects’ mean absolute directional 
error over the learning plateau and their learning (D) Correlation between subjects’ directional variability over the first block 
(corrected for learning trend, see text) and their learning (E) Correlation between subjects’ VPE variability (in logarithmic scale) over 
the first block and the learning plateau for the right arm joints. (F) Correlation between subjects’ VPE variability (in logarithmic scale) 
over the first block and their learning for the right arm joints. (A-F) Correlation values are Spearman rank correlation, regression 
lines are linear fits with 95% confidence intervals. 

E 

F 
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rotation, the two joint angles that do most of the movement and carry most of its variance (Figure 210 

2).  211 

Learning was defined as the difference between the initial error (over the first block: trials 212 

1-25) and the final error (over the learning plateau: trials 201-300) normalized by the initial error.     213 

There was no significant correlation between the learning and the final error (as subjects who started 214 

worse could have learn more but still not perform better after learning), but there was a trend that 215 

more learning leads to smaller final errors (Figure 5C). We tested if higher levels of initial task-216 

relevant motor variability (variability in the directional error of the target ball) in this complex real-217 

world task could predict faster learning across individual, as found in simple lab experiments (Wu 218 

et al., 2014). We indeed found that individuals with higher intertrial variability in the directional 219 

error of the target ball over the first block showed more learning (Spearman rank correlation r=0.64, 220 

p<0.001; Figure 5D). Importantly, this is the corrected intertrial variability (as in Figure 1I) which 221 

is calculated over the residuals from a regression line fitted to the ball direction to correct for the 222 

learning that is happening within the block. As a control we also tested for correlation with the 223 

initial variability in the target ball velocity, task-irrelevant motor variability, and found no 224 

correlation (Spearman rank correlation r=0.06, p=0.77). Next, we tested the link between learning 225 

and initial variability over the joint velocity profiles of the right arm (Figure 5F). We found that the 226 

only joint angle where the intertrial variability showed significant correlation to learning was the 227 

right elbow rotation (Spearman rank correlation r=0.47, p=0.0086), which is the arm supination. 228 

We further tested the link over the full body kinematics (S2 Fig) and found no other joint that 229 

showed this correlation. Thus, while learning leads to overall reduction in movement variability, 230 

only initial variability in specific, task-relevant, dimensions can facilitate/predict learning. 231 

Discussion 232 

In this paper we introduce a new paradigm for studying naturalistic motor learning during 233 

whole-body movement in a complex real-world motor skill task. Our results present new insights 234 

into motor learning in the real-world. While the learning curves in this in-the-wild paradigm are 235 

within the same range of those reported in reductionistic motor adaptation tasks (e.g. McDougle et 236 

al., 2015; Smith et al., 2006) we find that this learning is taking place not only in the task relevant 237 

joints but across the entire body. Also, we found that task relevant initial variability in the ball 238 

direction (movement outcome) can predict learning, like in toy tasks (Wu et al., 2014), and so can 239 

the initial variability in the right arm supination which is the task relevant joint angle variability.  240 

While pushing towards real-world neuroscience, we started here with a relatively 241 

constrained version of the real-world task, asking subjects to perform repeated trials of the same 242 

pool shot. This was to enable analysis using well developed methods of laboratory studies in toy-243 

tasks. Nonetheless, it is a major step in the direction of a naturalistic study. First, we allow full-244 
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body unconstrained movement. Second, we do not use any artificial go cue and allow self-paced 245 

movement and as many preparatory movements as the subject needs for each shoot. Third, subjects 246 

receive natural somatosensory feedback. And last, we do not perturb the feedback to induce 247 

learning. 248 

Fundamentals of real-world motor learning 249 

Across all subjects, we found that motor learning is a holistic process - the body is affected 250 

as a whole from learning the task. This was evident in the decrease in the VPE and the intertrial 251 

variability over learning (Figure 4). This result should not come as a surprise considering decades 252 

of research in sport science showing this relationship. For example, baseball pitcher's torso, pelvis, 253 

and leg movements are directly associated with ball velocity (Kageyama et al., 2014; Oliver and 254 

Keeley, 2010; Stodden et al., 2006). Recently it was also demonstrated with full-body motion 255 

capture in a ball throwing task (Maselli et al., 2017).  And yet, unlike baseball pitches, basketball 256 

throws, or any unconstrained overarm throw, where the whole body is moving, in a pool shot the 257 

shooting arm is doing most of the movement and there is very little body movement. Thus, the 258 

whole-body learning is not trivial and suggestive that even in arm movement toy-tasks there is a 259 

whole-body learning aspect which is overlooked.    260 

We also found a proximal-to-distal gradient in the learning rates over the right arm joints 261 

(Figure 4A). This is especially interesting in light of the well-known phenomenon of proximal-to-262 

distal sequence in limb movements in sports science (Herring and Chapman, 1992) and in 263 

rehabilitation (Twitchell, 1951). While there are records of proximal-to-distal sequence at multiple 264 

time scales (Serrien and Baeyens, 2017), our results are the first to suggest that this gradient also 265 

occur over repetitions as part of the learning process.  266 

Variability & learning 267 

Intertrial variability is a fundamental characteristic of human movements and its underling 268 

neural activity (for review see Faisal et al., 2008). It was recently reported that individuals exhibit 269 

distinct magnitudes of movement variability, which are consistent across movements and effectors, 270 

suggesting an individual traits in movement variability (Haar et al., 2017). Our results show that 271 

subjects who were initially more variable tended to be also more variable after learning in many 272 

joints across the body (Figure 5E & S1 Fig) and specifically in those of right shoulder that carry 273 

most of the variance in the movement. This supports the notion that there is an individual trait in 274 

movement variability. 275 

Intertrial  kinematic variability is also thought to be critical for motor learning (e.g. Braun 276 

et al., 2009; Dhawale et al., 2017; Herzfeld and Shadmehr, 2014; Teo et al., 2011; Wilson et al., 277 

2008). It was suggested that individuals with higher levels of task-relevant movement variability 278 

exhibit faster motor learning in both skill learning and motor adaptation error-based paradigms (Wu 279 

et al., 2014). The failures to reproduce this result in visuomotor adaptation studies (He et al., 2016; 280 
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Singh et al., 2016), led to the idea that experiments with task-relevant feedback (which is common 281 

in visuomotor studies) emphasize execution noise over planning noise, whereas measurements 282 

made without feedback (as in Wu et al., 2014) may primarily reflect planning noise (Dhawale et 283 

al., 2017). This is in-line with a recent modeling work in a visuomotor adaptation study (with task-284 

relevant feedback) in which subjects with higher planning noise showed faster learning, but the 285 

overall movement variability was dominated by execution noise that was negatively correlated with 286 

learning (van der Vliet et al., 2018). In our task there were no manipulations or perturbations, thus, 287 

task-relevant feedback was fully available to the participants. On the other hand, in real-world there 288 

is no baseline variability, and the variability was measured during early learning and therefore is 289 

probably dominated by planning noise, as subjects explore, regardless of the visual feedback. 290 

Indeed, subjects with higher variability in the target ball direction over the first block showed higher 291 

learning rates (Figure 5D). Our results straighten the link between variability and learning and are 292 

the first to show that it applies to real-world tasks. Moreover, the only joint angle that showed 293 

significant correlation between initial variability and learning was the right elbow rotation (Figure 294 

5F & S2 Fig). Following the idea that task-relevant variability predicts learning, it would suggest 295 

that the right elbow rotation is the task-relevant joint angle to adjust during initial learning of a 296 

simple pool shoot. Indeed, guide books for pool and billiards emphasize that while shooting one 297 

should keep one’s body still and move only the back (right) arm from the elbow down. While the 298 

elbow flexion movement gives the power to the shoot, the arm supination (also known as ‘screwing’ 299 

in billiards and measured by the elbow rotation in our IMUs setup) maintains the direction of the 300 

cue.  301 

Conclusions 302 

In this study we demonstrate the feasibility and importance of studying human 303 

neuroscience in-the-wild, and specifically in naturalistic real-world skill tasks. While finding 304 

similarities in learning structure between our real-world paradigm and lab-based motor learning 305 

studies, we highlight crucial differences, namely, real-world motor learning is a holistic full-body 306 

process. Looking at the motor behavior over learning across the entire body enabled us to explore 307 

the relationship between variability and learning and define task relevant variability that can 308 

facilitate learning.  309 
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Methods 310 

Ethics statement. All experimental procedures were approved by Imperial College 311 

Research Ethics Committee and performed in accordance with the declaration of Helsinki. All 312 

subjects gave informed consent prior participating to the study. 313 

Experimental Setup and Design. 30 right-handed healthy human volunteers with normal or 314 

corrected-to-normal visual acuity (12 women and 18 men, aged 24±3) participated in the study. 315 

The volunteers, who had little to no previous experience with playing billiards, performed 300 316 

repeated trials where the cue ball (white) and the target ball (red) were placed in the same locations 317 

and the subject was asked to shoot the target ball towards the pocket of the far-left corner (Figure 318 

1A). The trials were split into 6 sets of 50 trials with a short break in-between. For the data analysis 319 

we further split each set into two blocks of 25 trials each, resulting in 12 blocks. During the entire 320 

learning process, we recorded the subjects' full body movements with a motion tracking ‘suit’ of 321 

17 wireless inertial measurement units (IMUs; Figure 1B). Brain activity was recorded with 322 

wireless EEG, neural findings reported elsewhere (Haar and Faisal, 2020). The balls on the pool 323 

table were tracked with a high-speed camera (Dalsa Genie Nano) to assess the subjects’ success in 324 

the game and to analyze the changes throughout learning, not only in the body movement and brain 325 

activity but also in its outcome – the ball movement (Figure 1C).   326 

Full-Body Motion Tracking. Kinematic data were recorded at 60 Hz using a wearable 327 

motion tracking ‘suit’ of 17 wireless IMUs (Xsens MVN Awinda, Xsens Technologies BV, 328 

Enschede, The Netherlands). Data acquisition was done via a graphical interface (MVN Analyze, 329 

Xsens technologies BV, Ensched, The Netherlands). The Xsens joint angles and position data were 330 

exported as XML files and analyzed using a custom software written in MATLAB (R2017a, The 331 

MathWorks, Inc., MA, USA). The Xsens full body kinematics were extracted in joint angles in 3 332 

degrees of freedom for each joint that followed the International Society of Biomechanics (ISB) 333 

recommendations for Euler angle extractions of Z (flexion/extension), X (abduction/adduction) Y 334 

(internal/external rotation). 335 

Movement Velocity Profile Analysis. From the joint angles we extracted the velocity 336 

profiles of all joints in all trials. We defined the peak of the trial as the peak of the average absolute 337 

velocity across the DoFs of the right shoulder and the right elbow. We aligned all trials around the 338 

peak of the trial and cropped a window of 1 sec around the peak for the analysis of joint angles and 339 

velocity profiles. 340 

Statistical Analysis. Trial by trial learning curves were fitted with a single or a double 341 

exponential learning curve using matlab fit function.  342 
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As a measure of task performance in body space, correlation distances (one minus Pearson 343 

correlation coefficient) were calculated between the velocity profile of each joint in each trial to 344 

the velocity profiles of that joint in all successful trials. The mean over these correlation distances 345 

produced a single measure of Velocity Profile Error (VPE) for each joint in each trial.  346 

𝑉𝑃𝐸𝑖 =
∑ 𝑐𝑜𝑟𝑟𝐷𝑖𝑠𝑡(𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑖, 𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑠)
𝑁𝑠𝑐𝑠
𝑠

𝑁𝑠𝑐𝑠
 347 

Thus, VPE in trial 𝑖 was the sum of the correlation distances between the velocity profile 348 

in trial 𝑖 (𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑖) and the velocity profiles in successful trials 𝑠 (𝑣𝑒𝑙𝑃𝑟𝑜𝑓𝑠), divided by the 349 

number of successful trials (𝑁𝑠𝑐𝑠). 350 

For measuring success rates and intertrial variability we divided the trials into blocks of 25 351 

trials by dividing each experimental set of 50 trials to two blocks. This was done to increase the 352 

resolution in time from calculating those on the full sets. To improve robustness and account for 353 

outliers, we fitted the errors in each block with a t-distribution and used the location and scale 354 

parameters (µ and σ) as the blocks’ center and variability measures. Similarly, all correlations 355 

between error, variability, and learning are Spearman's rank correlation coefficients. Regression 356 

lines are based on linear regression fits (in logarithmic scale for VPE variability) and are presented 357 

with 95% confidence intervals. 358 

 359 
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Supporting Information 458 

 459 

S1 Fig. Correlation between subjects’ VPE variability over the first block and over the learning plateau. Presented for all joints in 3 

degrees of freedom (DoF) for each joint (blue: flexion/extension, red: abduction/adduction; green: internal/external rotation). 

Subjects’ VPE variability is in logarithmic scale. Correlation values are Spearman rank correlation, regression lines are linear. 

Initial Variability 

Final Variability 
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 460 

Initial Variability 

Learning 

S2 Fig. Correlation between subjects’ VPE variability over first block and their learning. Presented for all joints in 3 degrees of 

freedom (DoF) for each joint (blue: flexion/extension, red: abduction/adduction; green: internal/external rotation). Subjects’ 

VPE variability is in logarithmic scale. Correlation values are Spearman rank correlation, regression lines are linear. 
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