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Results

Functional Connectivity Between Hippocampal Subfields. We aimed to begin

testing the possibility that the convergence of both the trisynaptic pathway

(TSP) and monosynaptic pathway (MSP) on area CA1 (Figure S4B) may re-

sult in competition between episodic memory and statistical learning (Schapiro

et al., 2017). We analyzed the fMRI data from Experiment 3 using a task-

based functional connectivity approach known as psychophysiological interac-

tion (PPI). We reasoned that statistical learning would be reflected in MSP

connectivity (e.g., lesioning MSP but not TSP in a model of the hippocampus

eliminates statistical learning; (Schapiro et al., 2017)), and thus that EC-CA1

connectivity during encoding would be negatively related to subsequent episodic

memory.

We compared hippocampal subfield interactions during time periods when

A and B categories were presented (“Structured”) to periods when X categories

were presented (“Random”). The Structured periods provided an opportunity

for both episodic encoding and the extraction of regularities, whereas the Ran-

dom periods permitted only episodic encoding. Thus, by contrasting Structured

vs. Random periods we attempted to isolate the impact of statistical learning

on functional connectivity. We did not separate A and B categories in this anal-

ysis because the model on which we based this approach (Schapiro et al., 2017)

showed MSP engagement by both members of a pair.

We first compared overall CA1 connectivity with EC (reflecting MSP en-

gagement) vs. CA2/3/DG (reflecting TSP engagement) during the Structured

periods, but did not find a reliable difference (t(35) = -0.88, p = 0.39). Likewise,

CA1 connectivity did not differ between CA2/3/DG vs. EC during the Ran-

dom periods (t(35) = -0.22, p = 0.83). There were also no overall differences

within pathway across conditions: CA1 connectivity with EC (MSP) was not

reliably greater for the Structured condition (t(35) = -0.36, p = 0.72), and CA1

connectivity with CA2/3/DG (TSP) was not reliably greater for the Random
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condition (t(35) = 0.82, p = 0.42).

Although it was possible that the Structured condition would have consis-

tently engaged the MSP across participants in the analyses above, our specific

hypothesis was that MSP connectivity would be negatively related to episodic

encoding. We took advantage of variability in the impact of statistical learning

on episodic memory across participants to examine this relationship. For this

analysis we quantified episodic memory using A′ instead of hit rate, as in the

main results, as our goal was a more global measure of memory fidelity rather

than to examine condition differences and trial-level interference.

We separately correlated EC ↔ CA1 (MSP) and CA2/3/DG ↔ CA1 (TSP)

connectivity from the PPI analysis during the Structured periods with A′ for

Structured A and B items, and likewise the MSP and TSP connectivity during

the Random periods with A′ for Random X items (Figure S4C). Consistent

with our hypothesis, MSP connectivity during Structured periods was negatively

related to episodic memory performance (r = -0.41, bootstrap p = 0.0086, two-

tailed), whereas TSP connectivity had no relationship (r = 0.062, bootstrap

p = 0.67, two-tailed); these two correlations significantly differed (bootstrap

p = 0.037, two-tailed). Neither MSP (r = -0.039, bootstrap p = 0.82, two-

tailed) nor TSP (r = 0.15, bootstrap p = 0.41, two-tailed) connectivity during

Random periods was related to episodic memory performance. Thus, greater

MSP engagement in response to regularities reflects a bias away from episodic

memory.

Methods

PPI Analysis. We conducted a PPI analysis to explore how statistical learning

affected functional connectivity between hippocampal subfields and in turn how

this impacted episodic memory. We limited this analysis to the second and third

runs of the encoding phase for greater confidence that the regularities had been

learned. We concatenated the aligned, normalized residual timecourses from the

pre-processing GLM across these two runs. We averaged the activity of voxels

in each ROI to compute a mean timecourse for CA1, CA2/3/DG, and EC. Ad-
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ditionally, we extracted the onsets of Structured (A & B) and Random (X) pic-

tures, and convolved these two condition regressors with a double-gamma hemo-

dynamic response function (fmrisim function in BrainIAK, http://brainiak.org).

We then ran a GLM in R (https://cran.r-project.org/), predicting the CA1 time-

course from a linear combination of regressors for the timecourses of CA2/3/DG

and EC, task events in the two conditions (Structured and Random), and the

interaction between ROIs and conditions. The interaction regressors were de-

fined as the products of the ROI and condition timecourses (EC*Structured,

EC*Random, CA2/3/DG*Structured, CA2/3/DG*Random). Each regressor,

as well as the CA1 timecourse, was z-scored and entered simultaneously into

the model. A separate model was run for each participant, resulting in one

coefficient per regressor per participant. For an interaction regressor of interest,

the coefficients were correlated across participants with A′ in the memory test

for the corresponding condition.

Searchlight Analysis. We conducted a searchlight analysis to explore the speci-

ficity of our Prediction of B results in the brain. Using the searchlight function

in BrainIAK, we repeated the category decoding analysis in 27-voxel cubes cen-

tered on all functional voxels. Each aligned, normalized residual volume from

the pre-processing GLM was registered to standard space. These volumes were

masked for each searchlight cube and the retained voxels were subjected to the

same decoding pipeline described in the main text for the ROIs. The result was

a searchlight map per participant, in which the value at each voxel reflected the

average classification accuracy for the cube centered at that voxel. The relia-

bility of these maps was assessed at the group level using non-parametric ran-

domization tests (randomise function in FSL) (Winkler et al., 2014), corrected

for multiple comparisons using threshold-free cluster enhancement (Smith and

Nichols, 2009). As a control analysis, we ran the same searchlight procedure for

Perception of B.
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Figure 1: Category Decoding in fMRI Experiment. Z-scored classification in occipital cortex

(OCC), parahippocampal cortex (PHC), and hippocampus (HIPP) plotted for each of the

four combinations of training or testing on A or B categories. Z-scores were computed by

generating a permuted null distribution of classification accuracy values for each participant

and calculating the z-score of each participant’s empirical classification accuracy relative to

their own null distribution. For every A/B combination and ROI, each dot is one participant

and the black line is the mean across participants. Perception of A: OCC: t(35) = 4.65,

p <0.001; PHC: t(35) = 4.18, p <0.001; HIPP: t(35) = 0.043, p = 0.97. Prediction of B:

OCC: t(35) = 0.79, p = 0.43; PHC: t(35) = 0.29, p = 0.77; HIPP: t(35) = 2.79, p = 0.0084.

Lingering of A: OCC: t(35) = -0.29, p = 0.77; PHC: t(35) = 1.43, p = 0.16; HIPP: t(35) =

1.00, p = 0.33. Perception of B: OCC: t(35) = 5.89, p <0.001; PHC: t(35) = 3.38, p = 0.0018;

HIPP: t(35) = 2.36, p = 0.024. *p <0.05; **p <0.01
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A Perception of B (Train on B, Test on B)

B Prediction of B (Train on B, Test on A)

Figure 2: Searchlight results. A) Statistical map for the “Perception of B” searchlight (cor-

rected p <0.005). B) Statistical map for the “Prediction of B” searchlight (corrected p <0.005).

Corrections for multiple comparisons performed with TFCE. Statistical maps are plotted on

the T1 MNI standard brain (2mm), at slices X = -30 (sagittal), Y = -82 (coronal), Z = -12

(axial).
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Figure 3: Relation between hippocampal “Prediction of B” classification accuracy and differ-

ence in hit rate between A and X, excluding participants with classification accuracy at or

below chance (<0.5), marked by gray shading. The negative correlation holds when exclud-

ing these participants, showing that they were not driving the overall effect. Error shading

indicates bootstrapped 95% confidence intervals.
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Figure 4: Hippocampal Connectivity in fMRI Experiment. A) Manually segmented hip-

pocampal subfield and MTL cortical ROIs (anterior and posterior slices from representative

participant shown): CA1, combined CA2/3/DG, subiculum, entorhinal cortex (EC), perirhi-

nal cortex (PRC), and parahippocampal cortex (PHC). B) Two pathways in the hippocampal

circuit: trisynaptic pathway (TSP, blue) and monosynaptic pathway (MSP, teal). C) Re-

lationship of CA1 functional connectivity in TSP (left; CA2/3/DG) and MSP (right; EC)

with episodic memory performance (A′) across participants, separated into time periods with

(Structured) and without (Random) regularities for statistical learning. Error shading indi-

cates bootstrapped 95% confidence intervals.
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