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Abstract  

 

Single   cell   transcriptomics   has   transformed   the   characterization   of   brain   cell   identity   by   providing  

quantitative   molecular   signatures   for   large,   unbiased   samples   of   brain   cell   populations.   With   the  

proliferation   of   taxonomies   based   on   individual   datasets,   a   major   challenge   is   to   integrate   and   validate  

results   toward   defining   biologically   meaningful   cell   types.   We   used   a   battery   of   single-cell   transcriptome  

and   epigenome   measurements   generated   by   the   BRAIN   Initiative   Cell   Census   Network   (BICCN)   to  

comprehensively   assess   the   molecular   signatures   of   cell   types   in   the   mouse   primary   motor   cortex  

(MOp).   We   further   developed   computational   and   statistical   methods   to   integrate   these   multimodal   data  

and   quantitatively   validate   the   reproducibility   of   the   cell   types.   The   reference   atlas,   based   on   more   than  

600,000   high   quality   single-cell   or   -nucleus   samples   assayed   by   six   molecular   modalities,   is   a  

comprehensive   molecular   account   of   the   diverse   neuronal   and   non-neuronal   cell   types   in   MOp.  

Collectively,   our   study   indicates   that   the   mouse   primary   motor   cortex   contains   over   55   neuronal   cell  

types   that   are   highly   replicable   across   analysis   methods,   sequencing   technologies,   and   modalities.   We  
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find   many   concordant   multimodal   markers   for   each   cell   type,   as   well   as   thousands   of   genes   and   gene  

regulatory   elements   with   discrepant   transcriptomic   and   epigenomic   signatures.   These   data   highlight   the  

complex   molecular   regulation   of   brain   cell   types   and   will   directly   enable   design   of   reagents   to   target  

specific   MOp   cell   types   for   functional   analysis.  

 

Introduction  

 

Neural   circuits   are   characterized   by   extraordinary   diversity   of   their   cellular   components 1,2 .   Single-cell  

molecular   assays,   especially   transcriptomic   measurements   by   RNA-Seq,   have   accelerated   the  

discovery   and   characterization   of   cell   types   across   brain   regions   and   in   diverse   species.   Recent  

advances   include   single-cell   transcriptome   datasets   with   >10 5    individual   cells,   identifying   hundreds   of  

neuronal   and   non-neuronal   cell   types   across   the   mouse   nervous   system 3–5 .   As   the   number   of   profiled  

cells   grows   into   the   millions,   a   key   question   is   whether   these   data   will   converge   toward   a  

comprehensive   and   coherent   taxonomy   of   cell   types   with   broad   utility   for   organizing   knowledge   of   brain  

cells   and   their   function.   Data   from   different   modalities,   including   transcriptomic   and   epigenomic   data,  

must   be   cross-referenced   and   integrated   to   establish   robust   and   consistent   cell   type   classifications.  

Although   a   comprehensive   atlas   should   incorporate   anatomical   and   physiological   information,   the   high  

throughput   of   single   cell   sequencing   assays   makes   integration   of   molecular   data   a   particularly   urgent  

challenge.   A   rigorous   and   reproducible   consensus   molecular   atlas   of   brain   cell   types   would   drive  

progress   across   modalities,   including   obtaining   functional   information.  

 

Single   cell   sequencing   technologies   can   measure   multiple   molecular   signatures   of   cell   identity.   The  

core   molecular   identity   of   a   cell   is   largely   established   during   development   and   maintained   by   a  

combination   of   gene   regulatory   proteins,   such   as   transcription   factors,   and   epigenetic   marks,   such   as  

open   chromatin   and   DNA   methylation 6,7 .   The   expression   of   specific   cell   fate-determining   proteins  

promotes   stable,   covalent   modifications   of   chromatin   and   DNA,   while   epigenetic   marks   in   turn   shape  

and   maintain   cell   type-specific   gene   expression.   Transcription   and   epigenetic   modifications,   acting   on  

timescales   from   minutes   to   decades,   mutually   reinforce   each   other   and   establish   attractors   in   cellular  

state   space   corresponding   to   cell   types 8–10 .   Neurons   express   a   range   of   cell   type   marker   genes   and  

gene   modules   that   shape   their   mode   of   synaptic   communication 11 ,   but   cell   state   and   gene   expression  

can   also   vary   due   to   circadian   rhythms 12    and   neural   activity 13 .   Neuronal   DNA   methylation   is  

reconfigured   during   an   extended   postnatal   period 14,15 ,   leading   to   highly   cell   type-specific   patterns   of   CG  

and   non-CG   methylation   in   mature   neurons 16,17 .   In   addition,   the   physical   configuration   of   DNA,  

especially   the   locations   of   open   chromatin   regions,   correlates   with   cell   type-specific   gene   regulation  

and   provides   rich   cell   identity   information 18 .   Several   technologies   now   enable   measurement   of   these  
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molecular   signatures   in   thousands   to   hundreds   of   thousands   of   individual   cells   or   nuclei,   generating  

large-scale   datasets   that   are   both   wide   (many   features)   and   deep   (many   cells).   Here,   we   integrate   such  

cell   type   signatures   to   achieve   a   reference   taxonomy   for   one   brain   region,   the   adult   mouse   primary  

motor   cortex,   using   a   combination   of   single   cell   and   single   nucleus   transcriptomes,   DNA   methylomes  

and   open   chromatin   datasets.   This   atlas   represents   a   first   step   toward   the   goal   of   the   BICCN   to  

generate   a   comprehensive   cell-type   atlas   comprising   all   regions   of   the   mouse   brain 19 .  

 

Results  

 

A   multimodal   approach   to   molecular   atlasing   of   mouse   primary   motor   cortex   (MOp)  

We   aimed   to   comprehensively   identify   and   characterize   the   molecular   identity   of   all   cell   types   in   the  

adult   mouse   primary   motor   cortex   (Fig   1a,b).   To   achieve   this,   we   formed   a   collaborative   network   within  

the   framework   of   the   BICCN   to   coordinate   collection   of   single-cell   and   single-nucleus   samples   followed  

by   sequencing.   We   brought   together   9   separate   datasets,   including   7   single-cell   or   single-nucleus  

transcriptome   datasets   (single-cell   and   single-nucleus   RNA-seq   using   10x   v2,   v3   and   SMART-Seq;  

n=732,779   cells),   one   single-nucleus   DNA   methylation   dataset   (snmC-Seq2,   n=9,941)   and   one  

single-nucleus   open   chromatin   dataset   (snATAC-Seq,   n=135,665)   (Supplementary   Table   1).   These  

datasets   span   a   range   of   technologies   with   complementary   strengths,   including   different   number   of  

cells   assayed,   depth   of   sequence   coverage   per   cell,   and   biological   features   assessed   (Fig.   1c,d).   The  

datasets   we   produced   reflect   the   inherent   tradeoff   in   single   cell   sequencing   assays   between   number   of  

sequenced   molecules   per   cell,   which   corresponds   to   sequencing   depth,   and   the   total   number   of   cells  

that   can   be   assayed   for   a   fixed   total   cost.   At   one   end   of   this   spectrum,   our   datasets   include   a   large   set  

of   single-nucleus   transcriptomes   from   over   175,000   cells   (using   the   10x   Chromium   3’   version   3  

platform).   By   contrast,   our   full-length   transcript   sequencing   using   SMART-Seq   v4   captured   a   greater  

number   of   genes   per   cell,   but   covered   fewer   cells   (~6,500   per   dataset).   Single-nucleus   DNA  

methylation   data   provided   deep   coverage   of   the   epigenome   per   cell   for   a   modest   number   of   cells 16,20  

(~10,000),   whereas   snATAC-Seq   data   scaled   to   over   100,000   cells   but   sampled   fewer   DNA   fragments  

for   individual   cells 18 .   

Subsampling   analysis   of   RNA-Seq   datasets   (Fig.   1e)   shows   that   in   general,   scRNA-Seq   (both  

SMART   and   10x)   detects   more   genes   per   cell   than   snRNA-Seq,   and   the   10x   v3   platform   performs  

substantially   better   than   10x   v2.   An   interesting   exception   is   that   the   number   of   genes   detected   per   cell  

in   the   snRNA-Seq   10x   v3   B   dataset,   using   an   improved   nucleus   isolation   protocol 21 ,   is   significantly  

higher   than   those   of   all   other   snRNA-Seq   datasets,   and   is   comparable   to   that   of   the   scRNA-Seq   10x   v3  

dataset.   
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To   illustrate   the   correspondence   among   different   technologies,   sampling   strategies,   and   data  

modalities,   we   highlight   the   Tachykinin-1   gene   locus   ( Tac1,    Fig.   1f;    browser ).   This   gene   is   a   specific  

marker   of   a   subset   of   medial   ganglionic   eminence   (MGE)-derived   inhibitory   GABAergic   interneurons.  

Our   data   confirm   the   expression   of    Tac1    mRNA   in   a   cluster   of   parvalbumin-expressing   neurons,   with  

RNA   transcripts   captured   in   both   single-cell   and   single-nucleus   preparations.   We   further   observed  

accessible   chromatin   and   low   DNA   methylation   at   CG   sites   within   the   body   of   the    Tac1    gene,   and   at   an  

intergenic   location   ~20   kb   upstream   of   the   transcription   start   site.   Our   study   takes   advantage   of   such  

multimodal,   multi-scale,   cell   type-specific   molecular   signatures   to   build   a   comprehensive   transcriptomic  

and   epigenomic   atlas   of   the   mouse   MOp.  

We   have   created   several   web   resources   to   enable   interactive   data   access,   interactive  

exploration,   visualization,   and   analysis   (Extended   Data   Fig.   1).   Raw   sequence   data   are   available   at   the  

Neuroscience   Multi-omics   Archive   ( nemoarchive.org ).   A   suite   of   web-based   tools   for   visualization   and  

analysis   of   the   integrated   transcriptomic   and   epigenomic   data   are   available   at   NeMO   Analytics  

( nemoanalytics.org )   and   the   brainome   portal   ( brainome.ucsd.edu/BICCN_MOp ) .   These   portals   allow  

users   to   visualize   integrated   multi-omic   data   across   experiments   and   species   side-by-side   via   genome  

and   cell   browsers,   perform   cluster   comparison,   identify   marker   genes.   

 

A   consensus   transcriptomic   atlas   based   on   multiple   single   cell   and   nucleus   RNA-Seq   datasets  

To   establish   a   transcriptomic   reference   atlas   of   mouse   MOp   and   to   directly   compare   with   existing   cell  

taxonomies,   we   jointly   analyzed   7   single-cell   (sc)   and   single-nucleus   (sn)   RNA-Seq   datasets.   The  

datasets   were   mutually   consistent,   with   strongly   correlated   expression   of   cell   type   marker   genes  

(Extended   Data   Fig.   2a,c ,d )   despite   differences   in   the   sensitivity   to   genes   with   low   expression  

(Extended   Data   Fig.   2b).   Computational   data   integration   using    scrattch.hicat    (Methods),   which   adjusts  

for   systematic   differences   between   datasets   due   to   technical   differences   or   uncontrolled   batch   effects,  

enabled   clustering   and   identification   of   116   cell   types   (Fig.   2a,   Extended   Data   Fig.   2c,   Supplementary  

Tables   2-4).   Importantly,   cells   and   nuclei   assayed   by   each   of   the   technologies   and   in   each   batch  

grouped   primarily   by   cell   type   and   not   by   dataset   (Fig.   2b).   Residual   dataset-related   differences,  

including   systematic   differences   between   nuclear   and   cellular   RNA-Seq   assays,   could   be   observed   in  

some   clusters   as   a   gradient   of   transcriptomes   from   different   datasets.   We   performed   hierarchical  

clustering   of   the   cell   types   based   on   average   gene   expression   for   each   cell   type   to   uncover   the   the  

relationships   among   types   within   each   major   cell   class:   GABAergic   inhibitory   neurons   (n=59   types),  

glutamatergic   excitatory   neurons   (n=31)   and   non-neurons   (n=26)   (Fig.   2c).   Six   of   the   transcriptomic  

datasets   used   cell   sorting   strategies   to   enrich   neurons   relative   to   non-neuronal   cells,   while   the   largest  

dataset   (snRNA   10x   v3   B)   represents   an   unbiased   sampling   of   both   neuronal   and   non-neuronal   cells.  
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Despite   these   differences,   the   relative   frequency   of   cell   types   was   highly   consistent   across   datasets  

after   normalizing   for   the   total   sample   of   each   major   class   (Fig.   2d).   86   out   of   116   cell   types   were  

present   across   all   of   the   RNA-Seq   datasets,   while   the   rest   are   either   non-neuronal   types   that   were  

under-sampled   in   many   datasets,   or   extremely   rare   types   (<   0.01%   of   all   cells).  

The   transcriptomic   MOp   cell   taxonomy   is   a   data-driven   resource,   with   objective   and   quantitative  

signatures   of   each   cell   type   that   can   be   used   to   compare   with   existing   and   forthcoming   datasets  

(Supplementary   Table   5).   To   facilitate   the   use   of   these   cell   types   by   investigators,   we   adopted   a  

nomenclature   that   incorporates   multiple   anatomic   and   molecular   identifiers.   For   example,   we   identified  

four   clusters   of   excitatory   neurons   (expressing    Slc17a7    encoding   vesicular   glutamate   transporter  

Vglut1)   that   express   markers   of   deep   layers   ( Fezf2,   Foxp2 )   as   well   as    Fam84b ,   a   unique   marker   of  

extra-telencephalic   projecting   neurons 22    (pyramidal   tract,   PT)   (Fig.   2e).   These   neurons   were   therefore  

labeled   “L5   PT   1-4”.   For   GABAergic   neurons,   our   nomenclature   divides   cells   into   5   major   subclasses  

based   on   marker   genes   ( Lamp5 ,    Sncg ,    Vip ,    Sst ,    Pvalb ),   with   finer   clusters   identified   by   secondary  

markers   (e.g.    Sst ,    Myh8 ).   To   track   each   of   these   clusters   and   uniquely   associate   them   with   the  

underlying   molecular   data,   we   provide   accession   IDs   compatible   with   a   proposed   cell   type  

nomenclature   and   a   full   list   of   the   top   marker   genes   for   every   pair   of   cell   types   (Supplementary   Table  

3,6) 23 .  

To   facilitate   annotation   of   MOp   cell   types   and   comparison   with   other   cortical   regions,   we  

assigned   each   single   cell   or   nucleus   to   the   best   matching   cell   type   in   a   large   dataset   (n=23,822  

SMART-Seq   cells)   of   mouse   anterolateral   motor   cortex   (ALM)   and   primary   visual   cortex   (VISp)   neurons  

(Extended   Data   Fig.   3a) 5 .   We   found   one-to-one   matches   between   most   of   the   116   MOp   cell   types   and  

the   102   previously   defined   cortical   cell   types   in   ALM.   In   particular,   we   found   4   types   of   Layer   5  

pyramidal   tract   (L5   PT)   neurons,   which   correspond   with   3   previously   described 24    deep   layer   excitatory  

neuron   types   with   distinct   subcortical   projection   patterns   to   thalamus   and   medulla   (Extended   Data   Fig.  

3b,c).   These   types,   which   were   associated   with   distinct   roles   in   movement   planning   and   initiation,   were  

distinguished   by   robust   patterns   of   differential   gene   expression   in   each   of   the   transcriptomic   datasets  

(Extended   Data   Fig.   4).   

The   motor   cortex   is   traditionally   considered   to   lack   a   discernible   layer   4   based   on   the   absence  

of   a   clear   cytoarchitectonic   signature 25 .   However,   recent   anatomical   studies   have   identified   a   population  

of   pyramidal   cells   located   between   layers   3   and   5,   with   hallmarks   of   L4   neurons   including   thalamic   input  

and   outputs   to   L4   and   L2/3 26 .   We   identified   two   clusters,   containing   over   99,000   cells,   which   express   a  

combination   of   markers   usually   associated   with   L4 27 ,   including    Cux2 ,    Rspo1    and    Rorb    (both   clusters),  

and   those   associated   with   L5,    e.g. ,    Fezf2    (one   cluster)   (Fig.   2e,   Extended   Data   Fig.   5).   We   therefore  

labeled   these   clusters   L4/5.  
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By   collecting   both   scRNA-Seq   and   snRNA-Seq   data,   using   multiple   platforms   and   with   high  

sampling   depth,   we   could   directly   compare   the   nuclear   and   cytoplasmic   transcriptomes   of   MOp   cells.   A  

comparison   of   sc-   and   snRNA-Seq   on   a   smaller   scale   in   mouse   visual   cortex   (VISp)   showed   that   both  

modalities   can   provide   comparable   clustering   resolution 28 ,   consistent   with   our   analyses   of   individual  

datasets   (Extended   Data   Fig.   2a,b).   L4/5   cells   in   MOp   have   a   larger   proportion   of   nuclear   transcripts  

than   L5   IT   and   L5   PT   cells,   consistent   with   previous   observations   in   VISp 28    (Extended   Data   Fig.   2f).   We  

further   examined   whether   individual   genes   are   enriched   in   the   nuclear   or   cytoplasmic   RNA   fraction  

across   MOp   cell   types,   finding   that   scRNA   and   snRNA   protocols   reveal   differences   in   mRNA  

localization   (Fig.   2f,   Extended   Data   Fig.   2e-g).   For   example,   the   long   non-coding   RNA    Malat1    was  

enriched   in   snRNA-Seq,   consistent   with   its   known   nuclear   localization 29 .   By   contrast,   mRNA   of   the  

protein-coding   gene    Ywhaz    was   strongly   depleted   from   the   nucleus.   This   result   complements   a   recent  

observation   of   specific   localization   of    Ywhaz    mRNA   in   the   somata,   but   not   the   dendrites,   of  

hippocampal   neurons 30 .   

 

Statistical   reproducibility   of   transcriptomic   clusters   across   datasets  

Single-cell   sequencing   has   enabled   a   proliferation   of   transcriptomic,   epigenomic   and   multimodal  

studies   of   brain   cell   types.   To   make   progress,   these   separate   datasets   should   be   compared   and  

integrated   using   objective   and   meaningful   biological   and   statistical   criteria.   Our   mouse   MOp   datasets  

represent   the   most   comprehensive   collection   of   single-cell   datasets   from   a   single   region   to   date,  

providing   an   unprecedented   opportunity   to   investigate   the   statistical   reproducibility   and   robustness   of  

cell   taxonomies   across   a   broad   range   of   technical   parameters   and   data   modalities.   We   applied  

MetaNeighbor   to   assess   the   cross-dataset   replicability   of   clusters   defined   separately   using   each   of   the  

seven   transcriptomic   datasets   (Supplementary   Table   4) 31 .   This   analysis   tests   whether   cell   types   defined  

using   one   dataset   can   be   predicted   by   using   the   closest   matching   (nearest   neighbor)   cells   in   other  

datasets,   together   with   the   independent   cluster   results   for   the   cells   in   the   other   datasets.   We   found   70  

clusters   with   a   high   statistical   replicability   score   (AUROC   >   0.7   across   at   least   two   out   of   seven  

datasets,   Fig.   2g),   including   37   GABAergic   neurons,   22   glutamatergic,   and   11   non-neuronal   cell   types.  

Most   of   the   clusters   had   reciprocal   best   matches   across   all   datasets   investigated   or   were   missing   in  

only   one   dataset   (Extended   Data   Fig.   7a).  

MetaNeighbor   analysis   further   allowed   us   to   examine   the   consistency   of   different   computational  

clustering   procedures.   We   ran   three   widely   used   single-cell   analysis   packages    32–34    to   generate   a  

fine-grained   clustering   of   each   dataset.   These   cluster   analyses   were   not   optimized   or   manually   curated;  

instead,   we   used   “off-the-shelf”   computational   procedures   to   test   the   robustness   of   the   results   from   a  

relatively   straightforward   and   automated   analysis.   These   clusters   are   thus   expected   to   be   less  

biologically   meaningful   and   robust   compared   with   more   customized   procedures,   such   as   our   reference  
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clustering   that   incorporates   analysis   of   differential   expression   to   validate   the   biological   reality   of   cell  

types.   Using   the   three   off-the-shelf   cluster   analyses,   we   created   a   sequence   of   increasingly  

coarse-grained   clusterings   by   iteratively   merging   pairs   of   clusters   chosen   to   maximize   the   consistency  

across   computational   methods   (ARI-merging;   see   Methods).   Finally,   at   each   level   of   resolution   we   used  

MetaNeighbor   to   calculate   the   number   of   clusters   which   were   highly   replicable   (AUROC>0.7)   across  

datasets.   The   result   of   this   analysis   showed   that   fine   partitions   of   the   data   with   >30-50   clusters   have  

limited   replicability   (Fig.   2h).  

To   facilitate   comparison   of   additional   datasets   with   ours,   we   provide   helper   files,   software,   and   a  

walkthrough   to   recapitulate   the   central   results   reporting   replicability   using   MetaNeighbor  

(Supplementary   Note).   In   addition,   we   demonstrate   how   the   same   process   of   estimating   replicability  

within   the   BICCN   data   can   be   used   for   cross-comparison   and   evaluation   of   novel   data.  

 

Epigenetic   cell   types   of   mouse   MOp  

RNA-Seq   data   report   the   cell’s   transcriptional   state,   but   do   not   directly   assess   the   epigenetic  

modifications   of   DNA   and   chromatin   configuration   that   establish   and   maintain   cell   identity.   Regions   of  

open   chromatin   and   patterns   of   DNA   methylation,   including   CG   and   non-CG   methylation,   are   cell  

type-specific   signatures   of   neuronal   identity   and   can   be   assayed   in   single   nuclei 16,18 .   We   applied  

single-nucleus   methylC-Seq   (snmC-Seq2 20,35 )   and   open   chromatin   (snATAC-Seq 36 )   assays   to   nuclei  

isolated   from   the   same   MOp   samples.   Independent   analyses   of   each   epigenomic   dataset   identified  

n=42   cell   types   from   9,794   cells   using   snmC-Seq2,   and   n=33   types   from   81,196   cells   using  

snATAC-Seq   (Fig.   3;   Supplementary   Table   4).   Marker   genes   for   major   cell   classes   had   corresponding  

patterns   of   cell   type-specific   depletion   of   non-CG   methylation   (low   mCH,   Fig.   3b)   and   open   chromatin   in  

the   gene   body   (Fig.   3d).   

The   cell   type   classifications   based   on   epigenomic   datasets   were   similar   to   each   other   and   to   the  

transcriptomic   classification,   despite   the   significant   differences   in   the   biological   features   assayed,  

number   of   cells,   genomic   coverage,   and   other   parameters.   In   particular,   DNA   methylation   data   provides  

the   highest   level   of   genomic   coverage   per   cell   (2.7   million   mapped   reads   on   average),   similar   to   the  

SMART-seq   single   cell   transcriptome   datasets   (2.1M   reads/cell   on   average).   This   deep   coverage  

affords   precise   characterization   of   cell   types   using   a   modest   number   of   cells.   To   maximize   the   coverage  

of   DNA   methylation   in   neurons,   we   applied   fluorescence   activated   nuclei   sorting   (FANS)   to   enrich  

NeuN-expressing   cells   (95%   of   collected   cells).   By   contrast,   snATAC-Seq   generates   8,800   reads   per  

cell   but   can   be   applied   at   a   larger   scale.   For   this   dataset,   no   FANS   was   applied   and   both   neurons   and  

non-neuronal   cells   were   collected   (Fig.   1d,   Supplementary   Table   1).  

 

Integration   of   transcriptome   and   epigenome   datasets   defines   multimodal   reference   cell   types  
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Although   multimodal   assays   in   single   cells   have   been   developed 37–39 ,   the   most   robust   technologies  

applicable   to   thousands   to   hundreds-of-thousands   of   cells   currently   rely   on   destructive   measurements  

that   preclude   multimodal   characterization.   Our   large-scale   census   of   mouse   MOp   comprises   separate  

measurements   from   multiple   modalities   and   technologies.   We   therefore   used   computational   methods  

for   data   integration 37,40–42    to   map   the   datasets   into   a   common   space   and   to   produce   a   unified,  

multimodal   cell   census   (Fig.   4,   Extended   Data   Fig.   6).   Our   overall   premise   for   data   integration   was   that  

cells   of   the   same   type   measured   in   each   modality   can   be   identified   based   on   correlated   gene-centric  

features.   For   example,   gene   expression   is   negatively   correlated   with   gene   body   non-CG   methylation 16  

and   positively   related   to   the   gene   body   ATAC-Seq   read   density 38 .   Although   each   dataset   differs   in  

systematic   ways   from   the   others,   these   cross-modal   correlations   allowed   us   to   link   cells   in   each   dataset  

with   their   most   similar   counterparts   in   the   other   datasets.   The   eight   matched   datasets   included   here,  

with   unprecedented   depth   and   breadth   in   terms   of   modalities   and   technologies,   represent   a   unique  

opportunity   to   test   the   limits   of   multimodal   computational   data   integration.  

The   starting   point   for   integration   was   a   set   of   cell-by-gene   matrices   summarizing   the   gene  

expression,   gene-body   chromatin   accessibility,   or   gene   body   non-CG   methylation   (mCH)   for   each   cell  

(Supplementary   Table   5).   We   chose   to   use   gene   body   features   to   allow   us   to   directly   link   cells   across  

all   three   modalities.   This   strategy   does   not   utilize   the   cell   type-specific   epigenetic   information   outside   of  

gene   bodies,   including   promoters   and   distal   regulatory   elements,   potentially   sacrificing   resolution.  

However,   linking   distal   elements   with   their   associated   gene(s)   is   challenging,   and   regulatory   regions   are  

smaller   and   thus   more   affected   by   sparse   coverage   in   single   cell   datasets   than   gene   bodies.   Although  

not   used   for   dataset   integration,   distal   regions   were   subsequently   included   in   the   analysis   of   cell   type  

specific   regulation   (see   below).   

We   applied   two   computational   approaches   based   on   non-negative   matrix   factorization   (LIGER)  

and   nearest-neighbor   imputation   (SingleCellFusion) 37,42    (see   Methods;   Fig.   4a,b).   Both   methods  

identified   56   neuronal   cell   types,   which   showed   a   high   degree   of   concordance   between   the   methods  

and   with   the   transcriptome-based   consensus   clusters   (Fig.   4c;   Extended   Data   Fig.   6c-f).   Gene  

body-based   integration   successfully   fused   all   data   modalities   while   preserving   fine   cell   type   distinctions  

(Fig.   4d-f).   Indeed,   integrated   analysis   identified   more   cell   types   than   the   single-modality   analysis   of  

each   epigenomic   dataset,   while   largely   concurring   with   the   independent   clusters   (Extended   Data   Fig.  

6a,b).   The   data   integration   was   repeated   iteratively   on   5   major   cell   classes   to   provide   more  

interpretable   multimodal   embeddings   (Extended   Data   Fig.   6c).  

After   assigning   cells   to   types   based   on   integrated   analysis   of   gene   body   signatures,   we   created  

genome-wide   epigenomic   and   transcriptomic   maps   for   each   cell   type.   By   combining   the   sequencing  

reads   from   all   cells   of   a   given   type   for   each   modality,   we   generated   high-coverage   pseudo-bulk   data  

tracks   that   can   be   directly   compared   and   analyzed   (Fig.   4g).   We   generated   pseudo-bulk   tracks   at   both  
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a   relatively   coarse   (29   cell   types,   SingleCellFusion   level   L1)   and   a   fine   resolution   (56   cell   types,  

SingleCellFusion   L2)   (Extended   Data   Fig.   6d).   These   data   can   be   viewed   interactively   at  

https://brainome.ucsd.edu/BICCN_MOp/ .   Two-dimensional   embedding   of   the   centroids   of   each  

multimodal   cluster   together   with   clusters   defined   by   separate   analysis   of   each   dataset   shows   the   close  

correspondence   between   the   molecular   taxonomies   (Fig.   4h).   

The   pseudo-bulk   profiles   revealed   striking   examples   of   cross-modal   cell   type   specific  

signatures.   For   example,   the    Tshz2    locus   is   a   specific   marker   of   layer   5   near-projecting   (NP)   excitatory  

neurons   (Fig.   4g),   which   had   low   DNA   methylation   (mCG   and   mCH),   open   chromatin,   and   high   levels   of  

cell   type-specific   gene   expression.   This   gene   was   identified   as   a   target   of   the   transcription   factor    Fezf2  

that   labels   neurons   during   late-embryonic   and   early   postnatal   development 43 .   The   close  

correspondence   between   transcriptomic   and   epigenomic   signatures   at    Tshz2,    and   35   markers   of   other  

cell   types,   was   evident   across   each   of   the   datasets   (Fig.   4i,j).   Importantly,   these   pseudo-bulk   tracks  

include   data,   such   as   CG   methylation   and   intergenic   snATAC-Seq   signals,   that   were   not   used   for   the  

multimodal   computational   integration.   The   evident   alignment   of   these   signatures   with   the   other  

modalities   validates   the   fidelity   of   our   multimodal   clusters.  

In   addition   to   concordant   cross-modal   signals,   we   also   found   individual   loci   where   different   data  

modalities   did   not   correspond,   suggesting   partial   decoupling   between   transcriptomic   and   epigenomic  

states.   For   instance,   at   the    Lhx9    locus,   we   found   a   highly   specific   enrichment   of   CG   and   non-CG   DNA  

methylation   in   L6b   excitatory   neurons   (Fig.   4g,   Extended   Data   Fig.   6k).    Lhx9    was   covered   by   a   large  

DNA   methylation   valley   (DMV)   in   each   of   the   other   cell   types.   Despite   this   cell   type-specific   epigenetic  

profile,   we   found   no   expression   of    Lhx9    RNA   in   any   cell   type   and   only   modest   enrichment   of   ATAC-Seq  

reads.   This   pattern   may   represent   a   vestigial   epigenetic   signature   of   embryonic   development 44 ,   as  

previously   described   using   bulk   samples   of   purified   neural   populations 17 .   Indeed,    Lhx9    has   been  

implicated   in   early   developmental   patterning   of   the   caudal   forebrain   and   may   be   transcriptionally  

silenced   in   the   adult,   potentially   via   Polycomb-mediated   repression 45 .   Other   regulators   of   neural  

development,   such   as    Pax6    and    Dlx1/2 ,   have   a   similar   epigenetic   profile   with   cell   type-specific  

hyper-methylation,   often   accompanied   by   cell   type-specific   RNA   expression   in   the   hyper-methylated  

cell   type 17,46 .  

 

Epigenomic   signatures   of   cell   type-specific   gene   regulation   

Epigenomic   data   identify   potential   regulatory   regions,   such   as   distal   enhancers,   marked   by   open  

chromatin   and   low   DNA   methylation   (mCG).   These   modalities   have   complementary   technical  

characteristics,   such   as   the   number   of   cells   assayed   (higher   for   open   chromatin)   and   the   genomic  

coverage   per   cell   (higher   for   DNA   methylation;   Fig.   1c).   We   first   defined   differentially   methylated  

regions   (DMRs)   and   chromatin   accessibility   peaks   independently,   identifying   1.49   million   DMRs  
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covering   242   Mbp   (9%   of   the   genome)   and   317,000   accessible   regions   (ATAC   peaks)   covering   170  

Mbp.   In   each   cell   type,   a   large   fraction   of   accessible   regions   (35-69%)   overlapped   with  

hypo-methylated   DMRs,   i.e.   regions   with   lower   mCG   compared   to   other   cell   types   (Fig.   5a).   By  

contrast,   we   found   many   DMRs   that   did   not   correspond   to   accessibility   peaks   (Fig.   5b).   In   some   cases,  

we   observed   that   these   DMRs   coincided   with   broad   open   chromatin   regions,   such   as   whole   gene  

bodies,   which   had   no   narrow   ATAC   peaks.   Notably,   we   also   identified   a   significant   number   of  

accessible   peaks   which   overlapped   hyper-methylated   DMRs,   i.e.,   regions   with   higher   mCG   compared  

with   other   cell   types   (Fig.   5a,b).   These   regions   could   indicate   regulatory   regions   bound   by  

methylation-preferring   transcription   factors 47 .   

To   assess   the   comprehensiveness   of   our   regulatory   element   predictions,   we   performed  

saturation   analysis   taking   advantage   of   the   large   scale   of   the   integrated   data.   We   focused   on   two   highly  

abundant   subclasses   of   excitatory   neurons,   the   layer   2/3   intratelencephalic   (L2/3   IT,   2   types)   and   the  

layer   6   corticothalamic   (L6   CT,   3   types)   neurons.   Each   epigenomic   dataset   includes   over   1,000   cells   of  

each   of   these   types.   We   found   that   the   the   number   of   detectable   accessibility   peaks   increased   with   the  

number   of   sampled   cells,   without   reaching   saturation   even   after   sampling   5,000   cells   (Fig.   5c).   This  

observation   likely   reflects   the   sparse   coverage   of   open   chromatin   regions   in   individual   cells   by  

snATAC-Seq.   By   contrast,   the   number   of   DMRs   for   each   cell   type   reached   a   plateau   after   sampling  

200-300   cells   (Fig.   5d).  

Cell   type-specific   enhancers   can   help   to   reconstruct   regulatory   networks,   including   key  

transcription   factors   (TFs)   whose   binding   to   DNA   at   active   enhancers   may   be   reflected   in   the   chromatin  

accessibility   and/or   DNA   methylation   signatures.   We   identified   known   binding   motifs   of   TF   classes 48  

that   were   enriched   in   each   cell   type’s   DMRs.   Saturation   analysis   showed   that   the   number   of  

significantly   enriched   motifs   increases   with   cell   number   (Fig.   5e),   although   for   L6   CT   neurons   it   reached  

a   plateau   of   ~5   key   motif   families   after   sampling   ~100   cells.   To   assess   cell   type   TF   networks   more  

comprehensively,   we   leveraged   our   integrated   DNA   methylation   (snmC-Seq)   and   snATAC-Seq   data   to  

predict   the   locations   of   over   250,000   putative   enhancers   with   fine   resolution   using   machine   learning  

(REPTILE;   Supplementary   Table   7) 49 .   We   identified   73,030   putative   enhancers   in   L2/3   neurons,   and  

66,119   in   L6   CT   cells.   Putative   enhancers   were   distal   regions   (at   least   2   kb   from   the   nearest  

transcription   start   site)   and,   taken   together,   they   represent   signatures   of   the   regulatory   genome   that  

were   not   assayed   by   RNA-Seq   (Fig.   5h,i).  

Enhancers   were   enriched   in   motifs   for   several   TF   families 48    (Fig.   5f).   For   example,    Rfx    motis  

were   strongly   enriched   in   L2/3   neurons,   as   previously   observed   using   ATAC-Seq   in   mouse   visual  

cortex 50 .   Using   the   transcriptomic   data,   we   found   that    Rfx3    (but   not   other    Rfx    family   members)   was  

specifically   enriched   in   L2/3   neurons   and   had   substantial   gene   body   hypo-methylation   and   chromatin  

accessibility   (Fig.   5g).   Moreover,   we   found   multiple   intergenic   regulatory   regions   with   specific   signals   of  
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open   chromatin   and   low   mCG   in   L2/3   neurons   located   ~15   kb   upstream   of   the    Rfx3    promoter.   Together  

with   the   enrichment   of   the    Rfx    family   binding   motif   in   L2/3   enhancers,   these   data   suggest   a   key   role   for  

Rfx3    in   these   neurons.   Our   findings   align   with   reports   of    Rfx3    localization   in   the   superficial   portion   of  

L2/3   in   mouse   somatosensory   cortex 51    and   visual   cortex 5 .  

 

Computational   validation   of   cell   type   reproducibility   across   datasets  

Using   our   data   we   sought   to   define   the   number   of   cell   types   in   MOp.   Different   molecular   modalities,  

sampling   strategies   and   sequencing   technologies,   as   well   as   different   computational   analysis  

procedures,   can   lead   to   divergent   estimates   of   the   total   number   of   cell   types.   The   difficulty   in   defining  

cell   types   can   lead   to   subjective   debate   between   “lumpers”   and   “splitters”,   hampering   progress   toward  

a   scientific   consensus 9,52,53 .   Yet,   addressing   this   question   objectively,   based   on   diverse   empirical  

criteria,   is   essential   since   it   directly   determines   the   granularity   of   cell   types   in   the   cell   atlas.   In   our  

analyses   of   MOp   transcriptome   and   epigenome   data,   we   found   that   many   factors   could   affect   the  

number   of   derived   cell   types,   from   as   few   as   ~25   cell   types   to   over   100.   We   therefore   pursued   a   range  

of   analytic   methods   to   cross-validate   and   assess   the   statistical   and   biological   reproducibility   of   cell  

types.   These   analyses   constrain   the   range   of   plausible   numbers   of   cell   types   based   on   current  

single-cell   sequencing   data.   At   the   same   time,   they   demonstrate   that   no   single   estimation   of   the  

number   of   molecularly   defined   cell   types   may   be   objectively   supported   by   currently   available   methods.  

We   first   addressed   the   impact   of   the   number   of   sampled   cells   on   the   resolution   of   the   cell   atlas.  

We   expect   that   datasets   comprising   larger   numbers   of   cells,   combined   with   targeted   sampling   methods  

that   enrich   particularly   rare   cell   types,   will   saturate   the   diversity   of   MOp   neurons.   Taking   advantage   of  

the   more   than   600,000   sampled   cells,   we   systematically   downsampled   each   dataset   and   performed  

community   detection   with   fixed   resolution   parameter   (Fig.   6a).   The   results   showed   a   logarithmic  

increase   of   the   number   of   detected   neuronal   cell   types   (clusters)   with   increased   sampling   for   each   of  

the   datasets,   with   relatively   few   additional   clusters   detected   after   sampling   ~80,000   cells   or   nuclei.  

Notably,   the   dependence   of   the   number   of   clusters   on   the   number   of   sampled   cells   was   similar   for   all  

modalities   and   datasets,   showing   that   the   number   of   sampled   cells   is   a   key   determinant   of   cluster  

resolution.  

Any   dataset   can   be   divided   into   increasingly   fine-grained   clusters,   but   those   clusters   may   not  

reflect   biologically   meaningful   or   reproducible   cell   type   distinctions.   We   therefore   devised  

cross-validation   schemes   to   objectively   measure   the   generalizability   of   cluster-based   descriptions   of   the  

data   (Fig.   6b).   We   first   used   within-dataset   cross-validation,   dividing   the   set   of   genomic   features   into  

two   parts   (for   clustering   and   validation,   respectively).   After   clustering   all   cells,   we   then   split   the   cells   into  

training   and   test   sets.   By   training   a   classifier   to   predict   the   validation   features   using   the   cluster   labels,  

and   applying   this   classifier   to   the   test   set   cells,   we   could   measure   the   mean   squared   error   (MSE)   of   our  
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cluster-based   prediction   of   single   cell   transcriptomic   or   epigenomic   features   in   the   test   set.   We   applied  

this   procedure   to   each   dataset   with   a   range   of   clustering   resolutions,   resulting   in   a   U-shaped  

cross-validation   curve   for   test   set   error   as   a   function   of   the   number   of   clusters   (Fig.   6c).   The   location   of  

the   minimum   MSE   is   an   estimate   of   the   number   of   reliable   clusters.   Finally,   we   repeated   this  

cross-validation   procedure   for   each   dataset   in   combination   with   systematic   downsampling   (Fig.   6d).   

This   analysis   highlights   the   different   depth   of   information   per   cell   from   each   modality.   Notably,   all  

of   the   datasets   (except   snRNA   SMART-seq)   supported   ~100   or   more   cell   types   when   a   sufficient  

number   of   cells   were   sampled,   although   the   number   of   cells   required   was   larger   for   snATAC-Seq  

compared   with   RNA-Seq   or   snmC-Seq.   The   latter   is   understandable   given   the   sparseness   of   the  

snATAC-seq   data.   We   further   found   that   sc/snRNA-Seq   datasets   with   the   largest   numbers   of   cells   could  

support   very   high   cluster   resolution   with   up   to   ~600   clusters.   Our   cross-validation   analysis   shows   that  

these   fine-grained   clusters   capture   genuine   transcriptomic   structure   which   is   correlated   and   replicable  

across   cells   and   across   genomic   features.   However,   it   is   likely   that   at   least   some   of   this   structure  

corresponds   to   continuous   variation   within   discrete   cell   types,   rather   than   truly   discrete   cell   type  

categories 54 .   Moreover,   the   cross-validation   analysis   shows   that   there   is   no   sharply   defined   error  

minimum   at   a   particular   value   of   the   number   of   clusters.   Instead,   the   U-shaped   cross-validation   curve  

has   a   broad   basin   covering   a   range   of   plausible   values   (Fig.   6c).  

To   more   stringently   test   the   reproducibility   of   cell   types,   we   performed   cross-dataset  

cross-validation   (Fig.   6b;   Methods).   This   procedure   uses   a   randomly   chosen   half   of   genomic   features   to  

perform   data   integration   and   joint   analysis   of   eight   datasets   using   SingleCellFusion.   Next,   we   use   the  

joint   cluster   labels   to   perform   cross-validation   in   each   dataset,   as   in   the   within-dataset   procedure  

above.   This   analysis   supported   a   maximum   resolution   of   ~100   clusters   when   testing   using   the   scRNA  

SMART-seq   data   (Fig.   6e).  

As   an   alternative   to   joint   analysis   of   multiple   datasets,   which   could   potentially   discern   spurious  

correlations   due   to   computational   data   integration,   we   also   took   a   more   stringent   approach   to  

cross-validation.   Using   the   independent   cluster   analysis   of   each   dataset   as   an   input,   we   performed  

MetaNeighbor   analysis   to   assess   the   replicability   of   clusters 31 .   We   found   that   the   median   replicability  

score   for   all   clusters   was   very   high   (AUROC   >   0.8)   for   integrated   analyses   with   coarse   resolution   (<50  

clusters,   level   1   (L1)   analyses;   Fig.   6f).   The   more   fine-grained   joint   analyses   (L2,   50-120   clusters)   were  

also   largely   supported   by   MetaNeighbor,   but   with   a   lower   median   replicability   score   around   0.7.  

Notably,   we   found   a   high   degree   of   consistency   in   the   results   of   joint   cluster   analysis   when   using  

different   computational   methods   (Fig.   6j).  

Finally,   we   explored   whether   MOp   cell   type   signatures   were   largely   stable   across   different  

sc/snRNA-Seq   platforms.   Using   four   RNA-Seq   datasets   (scRNA   SMART,   snRNA   SMART,   scRNA   10x  

v3   A,   and   snRNA   10x   v3   A),   we   performed   clustering   on   network   of   samples   (CONOS 55 )   to   link   cells  
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across   datasets   and   determine   joint   clusters.   We   compared   the   clustering   results   based   on  

inter-platform   network   connections   only   vs.   results   that   also   included   connections   across   datasets   of  

the   same   platform   (Fig.   6g).   Most   neuron   types,   with   the   exception   of   Pvalb   and   L6   CT,   had   the   same  

level   of   cluster   stability   (as   assessed   by   bootstrap   sampling   of   cells)   using   both   approaches   (Fig.   6h)  

and   a   low   level   of   inter-platform   divergence   in   their   cell   type   transcriptomic   signatures   (Fig.   6i).  

 

Discussion  

Our   mouse   primary   motor   cortex   (MOp)   atlas   represents   the   most   comprehensive,   integrated   collection  

of   single   cell   transcriptome   and   epigenome   datasets   for   a   single   brain   region   to   this   date.   We   generated  

a   high   resolution   consensus   transcriptomic   cell   type   taxonomy   that   integrates   seven   sc/snRNA-Seq  

datasets   collected   from   MOp   with   six   experimental   methods.   Our   MOp   transcriptomic   taxonomy   is  

highly   consistent   with   a   previously   published   transcriptomic   cell   census   from   VISp/ALM   based   on  

SMART-Seq   alone 5 .   We   found   that   gene   expression   profiles   are   largely   consistent   across   different  

methodologies,   while   providing   complementary   information   about   particular   genes   such   as  

nucleus-enriched   transcripts.   We   find   molecular   signatures   of   putative   L4   excitatory   neurons 26 ,   as   well  

as   multiple   types   of   L5   PT   neurons   that   align   with   recently   described   populations   with   distinct  

subcortical   projection   targets 24 .   The   MOp   atlas   demonstrates   the   power   of   a   two-pronged   strategy   that  

uses   broad-sampling   of   diverse   cell   types   (e.g.   10x   with   large   number   of   cells   and   shallow   sequencing)  

together   with   deep-sequencing   (e.g.   SMART-Seq)   to   precisely   characterize   gene   expression   profiles   for  

each   cell   type.   These   insights   should   guide   future   cell   census   efforts,   by   the   BICCN   and   others,   at   the  

scale   of   whole   brains   and   in   other   species.  

Going   beyond   RNA   sequencing,   we   further   demonstrate   multimodal   integration   of   transcriptome  

(sc/snRNA-Seq),   DNA   methylation   (snmC-Seq2),   and   chromatin   accessibility   (snATAC-Seq)   datasets  

using   two   computational   methods   (SingleCellFusion   and   LIGER).   It   is   possible   to   directly   establish   links  

between   molecular   modalities   through   simultaneous   measurement   of   multiple   signatures   in   the   same  

cell 56,57 .   However,   multimodal   single-cell   assays   remain   challenging   and   often   sacrifice   the   depth   or  

resolution   of   data   in   each   modality   compared   with   single   modality   assays.   Moreover,   it   is   important   to  

show   that   data   collected   from   different   individual   animals,   across   different   laboratories   and   using  

different   experimental   platforms   and   assays,   nevertheless   can   be   integrated   within   a   unified   cell   type  

atlas.   By   correlating   mRNA   transcripts,   gene-body   methylation   and   accessibility   peaks,   we   showed   that  

different   types   of     data   can   be   integrated   without   sacrificing   the   resolution   of   >50   fine-grained   neuron  

types.   Our   integrated   data   link   cell   type-specific   transcription   with   hundreds   of   thousands   of   cell  

type-specific   regulatory   elements   including   distal   enhancers.   Combining   transcriptional   and   epigenetic  

signatures   of   cell   identity   will   enable   development   of   new   tools   for   cell   targeting   and   manipulation  

utilizing   newly   discovered   cell   type-specific   promoters   and   enhancers.  
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We   took   advantage   of   the   unprecedented   diversity   of   large-scale   datasets,   collected   in  

coordinated   fashion   from   mouse   MOp,   to   critically   evaluate   the   robustness   and   reliability   of   the   cell   type  

taxonomies   obtained   by   clustering   of   various   molecular   datasets.   Using   MetaNeighbor 31    and   CONOS 55 ,  

we   quantified   the   reproducibility   of   cell   types   across   independent   RNA-Seq   datasets   and   analyses   and  

found   70   clusters   with   high   reproducibility.   These   data   demonstrate   the   tradeoff   between   highly  

reproducible,   coarse-grained   classifications   at   the   level   of   cell   classes,   and   fine-grained   classifications  

of   cell   types   which   may   be   less   statistically   and/or   biologically   reproducible.   Our   cross-validation  

analysis   of   individual   datasets   and   multimodal   integration   objectively   constrains   the   range   of   cluster  

resolutions   supported   by   the   data   without   overfitting.   Rather   than   supporting   a   single,   definitive   number  

of   cell   types   in   mouse   MOp,   our   studies   instead   converge   on   the   conclusion   that   a   range   of   cluster  

resolutions   spanning   from   ~30   to   as   many   as   116   cell   types   is   supported   by   the   data.   Indeed,   discrete  

cell   type   categories   may   be   an   inappropriate   description   at   a     fine-grained   level   of   analysis,   where   the  

cells’   molecular   profiles   vary   along   a   continuum.   Cross-modality   integration   and   analysis   of   cluster  

reproducibility   can   constrain   the   appropriate   range   of   cluster   resolutions,   and   can   also   reveal   the  

features   of   the   cell   type   taxonomy   that   are   supported   across   multiple   biological   features.   Progress   in  

understanding   the   functional   transcriptional   signatures   that   shape   cell   identity   and   granularity   may  

further   clarify   cell   type   classification 53 .   Overall,   the   data   and   analyses   presented   here   support   the  

classification   of   at   least   55   neuron   types   in   the   mouse   MOp,   forming   a   complex   landscape   of   cellular  

diversity.  

By   integrating   nine   large-scale   single   cell   transcriptome   and   epigenome   datasets,   we   have  

comprehensively   classified   and   annotated   the   diversity   of   cell   types   in   the   adult   mouse   primary   motor  

cortex   (MOp).   Our   study   demonstrates   general   procedures   for   objective   cross-dataset   comparison   and  

statistical   reproducibility   analysis ,    as   well   as   standards   and   best   practices   that   can   be   adopted   for  

future   large-scale   studies.   Together   with   complementary   BICCN   datasets   from   spatial   transcriptomics,  

connectivity   and   physiology,   as   well   as   cross-species   comparative   studies,   our   results   help   to   establish  

a   multi-faceted   understanding   of   brain     cell   diversity.   Targeted   studies   of   individual   cell   types,   taking  

advantage   of   the   transcriptional   and   epigenetic   signatures   described   here,   will   define   their   functional  

roles   and   significance   in   the   context   of   neural   circuits   and   behavior.   Integrative   analyses   will   be  

essential   to   make   progress   toward   an   encyclopedic   atlas   of   brain   cell   types   that   distills   the   essential  

organizational   structure   reflected   in   diverse   molecular   signatures.  

 

Acknowledgments  

We   are   grateful   to   Anita   Bandrowski   and   Yong   Yao   for   insightful   comments.   This   work   was   funded   by  

the   NIH   BRAIN   Initiative   (U19MH114830   to   H.Z.;   U19MH121282   to   J.R.E.;   U19MH114821   to   Z.J.H.;  

R24MH114788   to   O.R.W.;   U24MH114827   to   M.H.;   R24MH114815   to   R.H./O.R.W.;   NIH   NIDCD  

14  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.02.29.970558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.29.970558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

DC013817   to   R.H.),   the   Hearing   Restoration   project   Hearing   Health   Foundation   (R.H.),   and   NIH  

NIGMS   (GM114267   to   H.C.B.).  

 

Author   contributions  

 

Contribution   to   RNA   data   generation:   A.R.,   A.T.,   B.T.,   C.R.,   C.R.V.,   D.B.,   D.M.,   E.L.D.,   E.Z.M.,   H.T.,  

H.Z.,   J.G.,   J.S.,   K.C.,   K.L.,   K.S.,   M.K.,   M.T.,   N.D.,   N.M.N.,   O.F.,   T.C.,   T.N.N.,   T.P.  

Contribution   to   mC   data   generation:   A.B.,   A.C.R.,   A.I.A.,   A.P.,   C.L.,   H.L.,   J.D.L.,   J.K.O.,   J.R.E.,   J.R.N.,  

M.M.B.,   S.N.,   Y.E.L.  

Contribution   to   ATAC   data   generation:   A.P.,   B.R.,   J.D.L.,   J.K.O.,   M.M.B.,   S.P.,   X.H.,   X.W.,   Y.E.L.  

Contribution   to   data   archive/infrastructure:   A.M.,   B.R.H.,   C.C.,   C.V.V.,   E.A.M.,   F.X.,   H.C.,   H.C.B.,   J.C.,  

J.G.,   J.K.,   J.O.,   M.G.,   M.H.,   O.R.W.,   R.F.,   R.H.,   R.S.A.,   S.A.A.,   S.N.,   V.F.,   W.I.D.,   Z.Y.  

Contribution   to   data   analysis:   A.R.,   A.S.B.,   B.T.,   D.R.,   E.A.M.,   E.D.V.,   E.P.,   E.Z.M.,   F.X.,   H.L.,   H.R.D.B.,  

H.Z.,   J.D.W.,   J.G.,   J.G.,   J.O.,   K.S.,   K.S.,   K.V.D.B.,   L.P.,   M.C.,   O.F.,   O.P.,   P.V.K.,   Q.H.,   R.F.,   S.D.,   S.F.,  

S.N.,   T.B.,   V.N.,   V.S.,   W.I.D.,   Y.E.L.,   Z.Y.  

Contribution   to   data   interpretation:   A.R.,   B.R.,   B.T.,   C.L.,   E.A.M.,   E.D.V.,   E.Z.M.,   F.X.,   H.L.,   H.Z.,   J.D.W.,  

J.G.,   J.N.,   M.C.,   M.M.B.,   P.V.K.,   Q.H.,   R.F.,   S.F.,   T.B.,   Y.E.L.,   Z.Y.  

Contribution   to   writing   manuscript:   A.S.B.,   E.A.M.,   F.X.,   H.L.,   H.Z.,   J.D.W.,   J.G.,   L.P.,   M.C.,   Q.H.,   S.F.,  

Z.J.H.,   Z.Y.  

 

Competing   interests  

B.R.   is   a    share   holder   of   Arima   Genomics,   Inc.   P.V.K.   serves   on   the   Scientific   Advisory   Board   to   Celsius  

Therapeutics   Inc.    A.R.   is   an   equity   holder   and   founder   of   Celsius   Therapeutics,   an   equity   holder   in   Immunitas,  

and   an   SAB   member   in   Syros   Pharmaceuticals,   Neogene   Therapeutics,   Asimov,   and   Thermo   Fisher   Scientific.  

 

Data   access   and   analysis   resource  

The   BICCN   MOp   data   (RRID:SCR_015820)   can   be   accessed   via   the   NeMO   archive  

(RRID:SCR_002001)   at   accession:    https://assets.nemoarchive.org/dat-ch1nqb7 .   Visualization   and  

analysis   resources:   NeMO   analytics:    https://nemoanalytics.org/ ,   Genome   browser:  

https://brainome.ucsd.edu/annoj/BICCN_MOp/ ,   Epiviz   browser:  

https://epiviz.nemoanalytics.org/biccn_mop.  

 

Figure   legends  

Figure   1:   A   multimodal   molecular   cell   type   atlas   of   mouse   primary   motor   cortex   (MOp).   a,  

Anatomical   location   of   mouse   MOp   in   the   Allen   Mouse   Brain   Common   Coordinate   Framework   (CCFv3).  
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b,    Representative   sagittal   and   coronal   sections   and   dissected   MOp   region.    c,    Number   of   cells   and  

number   of   sequencing   reads   per   cell   in   each   of   9   single-cell   transcriptome   and   epigenome   datasets.    d,  

Number   of   cells   in   each   of   the   major   cell   classes   (glutamatergic   excitatory,   GABAergic   inhibitory  

neurons,   non-neurons)   of   each   dataset   (excluding   snRNA   10x   v2   A).     Differences   in   cell   type   sampling  

strategy   affect   the   relative   number   of   neurons   and   non-neuronal   cells.    e,    Number   of   genes   detected   per  

cell   or   nucleus   for   transcriptomic   data   following   a   down-sampling   analysis   of   sequencing   depths.    f,  

Example   genome   browser   tracks   for   the    Tac1    gene   comparing   three   data   modalities   for   one   cell   type.  

 

Figure   2:   Multi-platform   integrated   transcriptomic   taxonomy   of   MOp   cell   types.   a,b  

Two-dimensional   projection   (UMAP)   of   cells   and   nuclei   based   on   integrated   analysis   of   seven   datasets  

using   Seurat,   followed   by   cluster   analysis.   Individual   cells   and   nuclei   are   colored   by   cell   type   ( a ),   or   by  

data   platform   ( b ).   Non-neuronal   cell   types   are   depleted   in   all   datasets   except   snRNA   10x   v3   B   due   to  

the   sampling   strategy,   which   enriched   neurons.    c,    Dendrogram   showing   hierarchical   relationship  

among   the   consensus   transcriptomic   cell   types.    d ,   Proportion   of   cells   of   each   type   per   dataset,  

normalized   within   major   classes.    e,    Expression   of   marker   genes   for   excitatory   and   inhibitory   cell  

classes,   across   four   platforms.    f,    Differential   enrichment   of   transcripts   in   single   cells   (x-axis)   vs.   single  

nuclei   (y-axis).   Non-coding   RNAs   such   as    Malat1    are   enriched   in   nuclei.    g,    Number   of   clusters  

replicable   across   at   least   two   of   the   seven   sc/snRNA-seq   datasets   as   a   function   of   minimal  

MetaNeighbor   score.    h,    Trade-off   between   number   of   clusters   and   replicability   (fraction   of   clusters   with  

minimal   MetaNeighbor   replicability   score).   

Lamp5/Sncg/Vip/Sst/Pvalb   -   Major   inhibitory   neuron   subclasses;   L2-6   -   layers;   IT   -   Intratelencephalic;  

PT   -   Pyramidal   tract;   CT   -   Corticothalamic;   NP   -   Near-projecting;   Astro   -   Astrocytes;   OPC   -  

Oligodendrocyte   precursor;   Oligo   -   Oligodendrocytes;   Micro   -   Microglial   cells;   SMC   -   Smooth   muscle  

cells;   VLMC   -   Vascular   lepotomeningeal   cells;   Peri   -   Pericyte;   PVM   -   Perivascular   macrophage;   Endo   -  

Endothelial  

 

Figure   3:   Epigenomic   cell   types   in   MOp.   a,    Cell   type   clusters   from   single-nucleus   methyl-C-Seq  

(snmC-Seq2 16,20 )   for   9,876   MOp   nuclei   are   represented   in   a   two-dimensional   projection.   Labels   indicate  

broad   cell   types,   colors   show   finest   cluster   resolution.    b,    Non-CG   DNA   methylation   level   (normalized  

mCH)   for   each   cell   at   gene   bodies   of   markers   of   major   cell   types.   Actively   expressed   genes   have   low  

mCH,   indicated   by   colored   bars   extending   downward.   Highly   methylated   (repressed)   genes   appear  

white   in   this   plot.    c,    Two-dimensional   projection   of   cell   type   clusters   from   single-nucleus   ATAC-Seq  

(snATAC-Seq 18 )   profiles   for   81,196   cells.    d,    Gene   body   chromatin   accessibility   (total   snATAC-Seq   read  

density,   log(CPM+1))   for   marker   genes.   For   c   and   d,   each   bar   represents   one   cell.   Cell   type  

abbreviations   as   in   Fig.   2.   CGE/MGE   -   Caudal/Medial   ganglionic   eminence   derived   inhibitory   cells;  
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Figure   4:   Multimodality   integration   of   >400,000   cells   and   nuclei.     a,b,    Two-dimensional   projection  

(UMAP)   of   >400,000   individual   cells   and   nuclei   from   8   transcriptomic   and   epigenomic   datasets  

(excluding   snRNA   10x   v2   A),   integrated   using   Single   Cell   Fusion   (a)   or   LIGER   (b).   Cells   are   colored   by  

joint   clustering   assignments   from   the   respective   integration   method.    c,    Confusion   matrices   comparing  

integrated   clusters   generated   by   SingleCellFusion   versus   by   LIGER,   and   comparing   SingleCellFusion  

versus   consensus   transcriptomic   taxonomy.    d,e,    Two-dimensional   projection   (UMAP)   of   >400,000  

individual   cells   and   nuclei   from   8   transcriptomic   and   epigenomic   datasets,   integrated   using   Single   Cell  

Fusion   (d)   or   LIGER   (e).   Cells   are   colored   by   the   data   modality.    f,    Number   of   cells   in   each   of   56  

multimodality   cell   types   (SingleCellFusion;   L2),   ranked   by   cluster   size.    g,    Genome   browser   views  

across   cell   types   and   data   modalities.    Tshz2    consistently   marks   L5   NP   cell   types   across   data  

modalities,   whereas   Lhx9   marks   L6b   cell   types   in   DNA   methylation   signals   only.    h,    Embedding   of  

multimodality   cluster   centroids.   Black   dots   are   cluster   centroids   of   integrated   clusters  

(SingleCellFusion);   Colored   dots   are   cluster   centroids   of   individual   datasets.   Cluster   centroids   are  

generated   by   SingleCellFusion.    i,    UMAP   embeddings   colored   by   different   molecular   signals   of    Tshz2 .    j,  

Heatmaps   of   marker   genes   by   cell   types   across   data   modalities.  

 

Figure   5:   Integrated   epigenomic   analysis.   a,b,    Thousands   of   regulatory   regions   were   identified   in  

each   cell   type   using   differentially   methylated   regions   (DMRs)   and   open   chromatin   regions   (ATAC  

peaks)   in   multimodal   integrated   clusters.    c,d    Saturation   analysis   for   two   excitatory   subclasses   shows  

the   number   of   regulatory   regions   detected   as   a   function   of   sampled   cells .   e,    Saturation   analysis   of   the  

number   of   transcription   factor   DNA   binding   sequence   (TFBS)   motifs   enriched   in   each   cell   type’s   DMRs .  

f,    Combining   the   multimodal   information   we   predicted   enhancers   using   REPTILE 49 ,   followed   by   analysis  

of   enriched   TFBS   motifs.    g-i,    Browser   views   of   loci   containing   cell   type-specific   regulatory   elements.  

The    Rfx3    gene   is   differentially   expressed   in   L2/3   neurons,   and   has   an   enhancer   specific   to   L2/3   located  

~15   kb   upstream   of   the   promoter   region   ( g ).   We   also   found   thousands   of   intergenic   regions   with  

accessibility   and   demethylation   specific   to   L6   CT   ( h )   or   L2/3   neurons   ( i ).  

 

Figure   6:   Robustness   and   reproducibility   of   cell   types   within   and   across   datasets .    a,    Number   of  

clusters   estimated   for   each   dataset   after   sampling   a   fraction   of   the   total   cells   (Leiden   clustering,  

resolution   r=6).    b ,   Within-   and   across-dataset   cross-validation   scheme.   Gene   features   are   split  

randomly   into   separate   sets   for   clustering   cells   (1)   and   validating   the   assigned   clusters   (2,3).   After  

clustering,   80%   of   cells   are   used   to   train   a   model   of   the   held-out   features   for   each   cluster   (2).   Finally,  

the   remaining   cells   are   used   to   test   model’s   prediction   on   held-out   features   (3).   For   cross-dataset  

comparison,   data   integration   and   joint   clustering   are   performed   using   the   first   half   of   genomic   features  
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from   each   dataset.    c,    Test   set   means   squared   error   (MSE)   as   a   function   of   the   number   of   clusters  

obtained   by   varying   cluster   resolution   for   one   dataset   (scRNA   SMART).   The   minimum   MSE   and   the  

min.   MSE+1SEM   defines   a   range   of   optimal   cluster   resolutions   outside   of   which   over-   and  

under-clustering   lead   to   poor   test-set   performance.    d,e,    Number   of   clusters   estimated   by   within-   (d)   or  

across-dataset   cross-validation   (e),   as   a   function   of   the   number   of   sampled   cells.   For   cross-dataset  

comparison,   the   number   of   clusters   is   based   on   the   minimum   test   MSE   for   one   dataset   after   joint  

multimodal   clustering.    f ,   Trade-off   between   number   of   clusters   and   replicability   (median   MetaNeighbor  

AUROC)   of   consensus   clustering   methods   applied   at   various   resolutions.    g,h    Transcriptomic   platform  

consistency   is   assessed   by   cross-dataset   cluster   stability   analysis   (CONOS)   using   complete   networks,  

and   using   inter-platform   edges   only.   Glutamatergic   and   Pvalb   subclasses   have   reduced   stability   in  

inter-platform   comparison.    i ,   Cross-platform   expression   divergence   (Jensen-Shannon)   for   major   cell  

subclasses.    j ,   Agreement   between   consensus   clustering   results   using   different   computational  

procedures.  
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Extended   Data   Figure   1:   Interactive   data   access,   visualization,   and   analysis.   a,    NeMO   Analytics  

(nemoanalytics.org)   visualization   and   analysis   environment   for   the   BICCN   mouse   molecular   mini-atlas.  

Screenshot   of   NeMO   Analytics   showing   multi-omic   results   for   glutamate   decarboxylase   2   ( Gad2 ),   a  

marker   gene   in   inhibitory   neurons.   The   web   portal   has   the   following   features:   (1)   Search   box   for   gene  

names;   (2)   Indicator   of   gene   viewed;   (3)   Expandable   species-specific   functional   annotation;   (4)  

Link-outs   to   additional   resources   for   the   selected   gene;   (5,6,7)   interactive   visualizations   of   each   BICCN  

dataset,   displayed   in   a   ‘standalone’   box   showing   gene   expression   and   cell   clustering   on   integrated  

UMAP   coordinates.   Additional   data   exploration   options   for   each   of   the   datasets   are   available   via   the  

drop-down   menu   at   the   upper   right   corner   of   the   NeMO   Analytics   dataset   titles.   (8)   An   embedded   Epiviz  

interactive   workspace   to   visualize   scATAC-seq   and   sncMethyl-seq   datasets   in   a   linear   browser   view   (a),  

here   showing   the   average   ATAC   and   %   CG   methylation   at   the    Gad2    locus   (c,d)   as   well   as   in   each  

major   cluster   of   glutamatergic   and   GABAergic   neurons   (b,e,f).   Epigenomic   data   are   also   available   at  

http://epiviz.nemoanalytics.org/biccn_mop ,   and   instructions   for   setting   up   and   extending   the   Epiviz  

workspaces   are   available   at   http://github.com/epiviz/miniatlas.    b,    Brainome   epigenomics   portal  

(brainome.ucsd.edu/BICCN_MOp).   The   portal   shows   single   base   resolution   epigenomic   and  

transcriptomic   data   (snmC-Seq,   snATAC-Seq,   sc/snRNA-Seq)   using   the   AnnoJ   browser.   Drop-down  

menus   allow   the   user   to   select   groups   of   cells   (e.g.   Excitatory,   Inhibitory,   MGE-Derived,   etc.),   modalities  

(mCG,   mCA,   ATAC,   scRNA,   snRNA,   enhancers),   and   display   options.   A   Cell   Browser   allows   visualizing  

scatter   plots   and   heatmaps   of   groups   of   genes   across   data   modalities.  

Extended   Data   Figure   2:   Cluster   membership   and   gene   expression   consistency   across  

sc/snRNA-Seq   datasets.     a,    Pearson   correlation   of   gene   expression   of   3,792   cell   type-specific   marker  

genes   across   cell   types   between   every   pair   of   datasets.   Each   violin   plot   shows   the   distribution   of  

correlation   values   for   all   genes   between   a   pair   of   datasets.   Most   genes   have   highly   conserved   gene  

expression   patterns   at   cell   type   level   among   all   datasets   (average   correlation   0.856   across   all   pairs   of  

comparisons).   The   most   consistent   datasets   are   scRNA   10x   v2   and   v3   (average   correlation   0.95),   while  

snRNA   10x   v3   B   is   also   highly   similar   to   both   scRNA   10x   v2   and   v3   datasets.   Overall,   we   found   the  

differences   between   single   cell   and   single   nucleus   datasets   to   be   more   significant   than   SMART-seq  

versus   10x   platform   differences.    b,    Gene   detection   frequency   (sensitivity)   at   each   gene   expression  

range   for   each   dataset.   Expression   of   all   genes   in   each   cell   type   was   binned   based   on   the   average  

logCPM   in   scRNA   10x   v2   and   snRNA   10x   v3   B   datasets.   Single   cell   datasets   overall   have   higher  

sensitivity   for   gene   expression   than   single   nucleus   datasets,   with   the   exception   of   snRNA   10x   v3   B  

dataset,   which   was   more   sensitive   than   scRNA   10x   v2   A   dataset.   For   weakly   expressed   genes,   the  

gene   detection   frequency   can   vary   dramatically   between   datasets.   For   these   genes,   scRNA   SMART  

was   the   most   sensitive,   followed   by   10x   v3   datasets,   all   of   which   showed   very   robust   gene   detection.  
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Note   that   sequencing   depth   was   not   considered   for   this   analysis.    c,    Comparisons   between   clustering  

analysis   of   individual   datasets   with   the   consensus   clusters   derived   from   seven   transcriptome   datasets.  

The   size   of   the   dot   indicates   the   number   of   overlapping   cells,   and   the   color   of   the   dot   indicates   the  

Jaccard   index   (number   of   cells   in   intersection/number   of   cells   in   union)   between   the   independent   and  

joint   clusters.    d,    Comparison   of   the   relative   gene   expression   of   marker   genes   across   all   cell   types  

between   corresponding   SMART-seq   and   10x   v2   datasets.   To   compare   gene   expression   directly  

between   SMART-seq   and   10x   datasets,   which   differ   in   experimental   platforms,   gene   expression  

quantification   software   and   gene   annotation   reference,   for   each   gene,   we   normalized   the   average  

log2(CPM+1)   values   at   the   cluster   level   in   the   range   [0,1]   by   subtracting   the   minimum   value   and   then  

dividing   by   the   maximum   value   for   that   gene.   The   smooth   scatter   plot   corresponds   to   the   normalized  

gene   expression   for   all   marker   genes   across   all   types   in   two   datasets,   with   their   overall   Pearson  

correlation   (across   all   marker   genes   and   cell   types)   highlighted.    e,    Differential   enrichment   of   transcripts  

in   single   cells   (x-axis)   vs.   single   nuclei   (y-axis)   across   four   platforms.   Axis   labels   are   the   same   as   in   Fig.  

2f.   Non-coding   RNAs   such   as    Malat1    are   enriched   in   nuclei.    f,    Using   the   ratio   of    Malat1    expression  

between   corresponding   sn/scRNA-seq   datasets,   we   estimated   the   fraction   of   nuclear   content   for   each  

subclass   as   described   previously 28 .   snRNA   10x   v3   B   dataset   is   not   used   for   this   estimate   as   it   also  

captures   cytoplasmic   mRNAs   according   to   e.   If   a   dataset   includes   <20   cells   or   nuclei   in   a   given  

subclass,   then   the   corresponding   pair   is   not   shown.   For   cells   with   large   somata,   such   as   L5   PT   cells,  

snRNA   datasets   only   capture   5-20%   of   the   mRNAs   of   the   corresponding   scRNA   datasets.   For   cells  

with   smaller   somata,   such   as   glia,   the   ratio   is   larger,   suggesting   most   of   the   mRNAs   are   nuclear.     g,  

Distribution   of   the   estimated   nuclear   localization   fraction   for   all   mRNAs   based   on   comparison   of   the  

sn/scRNA   10x   v2   datasets 28 .   To   calibrate   the   differences   among   cell   types,   we   sampled   the   same  

number   of   cells   in   each   cluster   for   both   datasets,   and   aggregated   all   the   cells   for   estimation.   We   plot  

the   empirical   cumulative   density   function   for   the   marker   genes   and   all   other   genes   separately.   The  

fraction   of   nuclear   mRNAs   for   five   selected   genes   are   shown   along   the   X   axis.   As   expected,  

mitochondrial   genes   such   as    mt-Nd3    have   almost   no   nuclear   localization,   while    Vip    is   significantly  

enriched   in   the   nucleus.   A   selected   set   of   3,792   cell   type-specific   marker   genes   (see   Methods   section  

“Marker   gene   selection”)   have   lower   nuclear   fraction   relative   to   the   other   genes   (median   16.6%,  

compared   with   21.9%   for   non-marker   genes).  

Extended   Data   Figure   3:   Correspondence   between   MOp   consensus   RNA-Seq   cell   type  

taxonomy   and   previously   published   VISp/ALM   cell   type   taxonomy 5 .   a,    Cells   from   all   sc/snRNA  

MOp   datasets   were   mapped   to   the   most   correlated   VISp/ALM   cell   types   based   on   VISp/ALM   cell   type  

markers.   The   size   of   dots   indicates   the   number   of   overlapping   cells,   and   the   color   indicates   the   Jaccard  

index   (number   of   cells   in   intersection/number   of   cells   in   union).   MOp   L5   PT   types   are   mapped  
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predominantly   to   L5   PT   ALM   types   in   the   VISp/ALM   study.    b,    Three   L5   PT   ALM   types   can   be   divided  

into   two   groups   with   distinct   projection   patterns.   Cells   in   the   pink   group   project   to   medulla   and   have  

been   functionally   associated   with   movement   initiation,   while   the   cells   in   the   green   group   project   to  

thalamus,   associated   with   movement   planning.   Adapted   from   (Economo,   et   al.   2018) 24 .    c,    Enlarged  

view   of   the   correspondence   between   MOp   and   VISp/ALM   L5   PT   types.   Two   subsets   of  

medulla-projecting   (pink)   and   thalamus-projecting   (green)   L5   PT   cells   are   highlighted.   

Extended   Data   Figure   4:     Marker   genes   for   L5   PT   cell   types.   a,    Heatmap   showing   expression   of   a  

combination   of   marker   genes   of   L5   PT   ALM   types   in   previously   published   dataset 5 ,   and   marker   genes  

for   MOp   L5   PT   types   The   color   bars   on   the   top   indicate   the   cell   type   and   projection   class.    b,    Heatmap  

for   MOp   L5   PT   types   in   multiple   sc/snRNA   datasets   using   the   same   marker   genes   in   the   same   order   as  

in   a.   Cell   types   are   divided   into   the   pink   and   green   groups   based   on   correspondence   in   Extended   Data  

Fig.   3c.  

Extended   Data   Figure   5:     Marker   genes   for   L4/5   IT   and   L5   IT   cell   types.   a,    Heatmap   showing  

expression   of   a   combination   of   marker   genes   of   L5   PT   ALM   types   in   previously   published   dataset 5 ,   and  

marker   genes   for   MOp   L5   PT   types   The   color   bars   on   the   top   indicate   the   cell   type   and   projection   class.  

b,    Heatmap   for   MOp   L5   PT   types   in   multiple   sc/snRNA   datasets   using   the   same   marker   genes   in   the  

same   order   as   in   a.   Cell   types   are   divided   into   the   pink   and   green   groups   based   on   correspondence   in  

Extended   Data   Fig.   3c.  

Extended   Data   Figure   6:   Validation   of   multimodal   integration   of   transcriptomic   and   epigenomic  

data.   a,b,    Integrated,   multimodal   UMAP   embeddings   (a:   SingleCellFusion;   b:   LIGER)   colored   by   the  

clusters   assigned   in   separate   analysis   of   each   dataset.   Each   panel   shows   the   cells   from   a   single  

dataset.    c,    Integrated   analysis   of   major   cell   classes   by   LIGER.   Cells   in   each   of   5   cell   classes   are  

separately   integrated,   illustrating   fine-grained   resolution   of   integrated   data.    d,e    The   number   of   cells   for  

56   integrated   clusters   (d:   SingleCellFusion   L2;   e:   LIGER   L2),   as   well   as   the   corresponding   coarser  

clusters   (L1,   L0).   Cluster   order   and   color   scheme   are   the   same   as   shown   in   Fig.   4a,j.    f ,   Confusion  

matrix   comparing   integrated   clusters   (SingleCellFusion   L2)   with   single-modality   clustering   for   every  

dataset.    g ,   Spearman   correlation   matrix   for   cluster   centroid   gene   expression   (measured   or   imputed)  

across   major   cell   subclasses   for   each   dataset   (SingleCellFusion   L0).    h ,   Correlation   for   subsets   of  

inhibitory   (CGE,   MGE)   and   excitatory   (L4/5   IT,   L2/3   IT)   neuron   types   using   fine-grained   integrated  

clusters   (SingleCellFusion   L2).    i,j,    Agreement   and   alignment   metrics 42    characterize   the   fidelity   of   the  

joint   low-dimensional   embedding   for   LIGER   and   SingleCellFusion.   Agreement   measures   the   fraction   of  

k-nearest   neighbors   for   each   dataset   are   still   nearest   neighbors   in   the   low-dimensional   embedding.   A  

high   value   of   the   agreement   metric   thus   indicates   preservation   of   each   dataset’s   internal   structure   in  
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the   joint   embedding.   Alignment   measures   the   mixing   of   datasets   in   the   joint   low-dimensional   space,  

and   is   a   normalized   measure   of   the   mean   number   of   k-nearest   neighbors   that   come   from   each   of   the  

datasets.    k,    Multimodal   molecular   signals   of   the   developmentally   expressed   gene    Lhx9    across   cell  

types   (n=29;   SingleCellFusion   L1),   showing   specific   accumulation   of   mCG   and   mCH   in   L6b   neurons  

with   no   corresponding   RNA   or   ATAC-Seq   signal.  

Extended   Data   Figure   7:   Metaneighbor   and   cross-validation   analysis   of   cluster   reproducibility.  

a,    Heatmap   showing   replicability   scores   (MetaNeighbor   AUROC)   at   the   subclass   level   of   the  

independent   clusterings   of   seven   RNA-Seq   datasets.   High   AUROC   indicates   that   the   cell   type   labels   in  

one   dataset   can   be   reliably   predicted   based   on   the   nearest   neighbors   of   those   cells   in   another   dataset,  

together   with   the   independent   cluster   analysis   of   that   dataset.    b,c    Within-dataset   cross-validation  

analysis   for   each   dataset,   either   using   the   full   set   of   cells   (b)   or   using   a   random   sample   of   5000   cells  

(c) .    In   each   plot,   the   black   curve   shows   training   error   while   the   colored   U-shaped   curve   shows   the   test  

set   error,   with   a   minimum   at   the   cluster   resolution   that   balances   over-   and   under-fitting.  

Extended   Data   Figure   8:    Diagrams   of   brain   slices   and   dissected   regions   for   epigenomic   data   samples  

(snATAC   and   snmC-Seq)   based   on   the   Allen   Reference   Atlas.   Nissl-stained   images   show   the   posterior  

face   of   tissue   slices   (600   µm   thickness)   used   for   mouse   MOp   dissection.  

 

Supplementary   Note:   

Evaluation   of   cluster   replicability   with   MetaNeighbor.  

 

Supplementary   Table   1:  

List   of   datasets,   number   of   cells,   and   other   parameters   of   each   dataset.   Data   from   this   study   are  

available   via   the   Neuroscience   Multi-omics   Archive   (NEMO,   RRID:SCR_016152)   at  

https://assets.nemoarchive.org/dat-ch1nqb7 .  

Supplementary   Table   2:  

List   of   all   cells   with   cluster   assignments   from   3   computational   methods   (RNA   consensus,  

SingleCellFusion,   LIGER).  

Supplementary   Table   3:  

Cluster   annotations   and   unique   accession   IDs.  

Supplementary   Table   4:  

Cluster   analysis   and   metadata   for   each   dataset   on   its   own.   Eight   individual   files:  

1. S4a   -   scRNA   SMART   

2. S4b   -   scRNA   10x   v3   A  
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3. S4c   -   scRNA   10x   v2   A  

4. S4d   -   snRNA   SMART  

5. S4e   -   snRNA   10x   v3   B  

6. S4f   -   snRNA   10x   v3   A  

7. S4g   -   Open   chromatin   (ATAC-seq)  

8. S4h   -   DNA   methylation   (snmC-seq2)  

Supplementary   Table   5:  

Full   gene-by-cluster   tables   for   each   dataset.   Eight   individual   files:  

9. S5a   -   scRNA   SMART   

10. S5b   -   scRNA   10x   v3   A  

11. S5c   -   scRNA   10x   v2   A  

12. S5d   -   snRNA   SMART  

13. S5e   -   snRNA   10x   v3   B  

14. S5f   -   snRNA   10x   v3   A  

15. S5g   -   Open   chromatin   (ATAC-seq)  

16. S5h   -   DNA   methylation   (snmC-seq2)  

Supplementary   Table   6:  

For   each   of   the   117   consensus   transcriptomic   cell   types,   we   performed   differential   expression   (DE)  

analysis   with   respect   to   each   of   the   other   cell   types.   The   table   reports   the   top   50   conserved   DE   genes  

in   each   direction   for   each   comparison.   Conserved   DE   genes   are   significant   in   at   least   one   dataset,  

while   also   having   more   than   two-fold   change   in   the   same   direction   in   all   but   one   datasets.  

Supplementary   Table   7:  

Enhancers   predicted   for   each   cell   type   based   on   integrated   DNA   methylation   and   ATAC-Seq   data   using  

REPTILE.  

Supplementary   Table   8:  

List   of   SingleCellFusion   clusters   at   three   levels   of   cluster   resolutions   (L0,   L1,   L2).  

 

Methods  

 

Tissue  collection  and  isolation  of  cells  or  nuclei  (RNA-Seq,  all  datasets  except  snRNA  10x  v3  B;                 
Allen)  

Mouse  breeding  and  husbandry: All  procedures  were  carried  out  in  accordance  with  Institutional  Animal               

Care  and  Use  Committee  protocols  at  the  Allen  Institute  for  Brain  Science.  Mice  were  provided  food                 

and  water ad  libitum  and  were  maintained  on  a  regular  12-h  day/night  cycle  at  no  more  than  five  adult                    
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animals  per  cage.  For  this  study,  we  enriched  for  neurons  by  using Snap25-IRES2-Cre  mice 58               

(MGI:J:220523)  crossed  to Ai14 59  (MGI:  J:220523),  which  were  maintained  on  the  C57BL/6J             

background   (RRID:IMSR_JAX:000664).   Animals   were   euthanized   at   53−59   days   of   postnatal   age.  

Single-cell  isolation: We  isolated  single  cells  by  adapting  previously  described  procedures 5,60 .  The  brain              

was  dissected,  submerged  in  ACSF 5 ,  embedded  in  2%  agarose,  and  sliced  into  250-μm  (SMART-Seq)               

or  350-μm  (10x  Genomics)  coronal  sections  on  a  compresstome  (Precisionary  Instruments).  The  Allen              

Mouse  Brain  Common  Coordinate  Framework  version  3  (CCFv3,  RRID:SCR_002978) 61  ontology  was             

used   to   define   MOp   for   dissections.   

For  SMART-Seq,  MOp  was  microdissected  from  the  slices  and  dissociated  into  single  cells  with  1                

mg/ml  pronase  (Sigma  P6911-1G)  and  processed  as  previously  described 5 .  For  10x  Genomics,  tissue              

pieces  were  digested  with  30  U/ml  papain  (Worthington  PAP2)  in  ACSF  for  30  mins  at  30  °C.                  

Enzymatic  digestion  was  quenched  by  exchanging  the  papain  solution  three  times  with  quenching              

buffer  (ACSF  with  1%  FBS  and  0.2%  BSA).  The  tissue  pieces  in  the  quenching  buffer  were  triturated                  

through  a  fire-polished  pipette  with  600-µm  diameter  opening  approximately  20  times.  The  solution  was               

allowed  to  settle  and  supernatant  containing  single  cells  was  transferred  to  a  new  tube.  Fresh                

quenching  buffer  was  added  to  the  settled  tissue  pieces,  and  trituration  and  supernatant  transfer  were                

repeated  using  300-µm  and  150-µm  fire  polished  pipettes.  The  single  cell  suspension  was  passed               

through  a  70-µm  filter  into  a  15-ml  conical  tube  with  500  ul  of  high  BSA  buffer  (ACSF  with  1%  FBS  and                      

1%  BSA)  at  the  bottom  to  help  cushion  the  cells  during  centrifugation  at  100xg  in  a  swinging  bucket                   

centrifuge  for  10  minutes.  The  supernatant  was  discarded,  and  the  cell  pellet  was  resuspended  in                

quenching   buffer.  

All   cells   were   collected   by   fluorescence-activated   cell   sorting   (FACS,   BD   Aria   II,   RRID:   SCR_018091)  

using   a   130-μm   nozzle.   Cells   were   prepared   for   sorting   by   passing   the   suspension   through   a   70-µm  

filter   and   adding   DAPI   (to   the   final   concentration   of   2   ng/ml).   Sorting   strategy   was   as   previously  

described 5 ,   with   most   cells   collected   using   the   tdTomato-positive   label.   For   SMART-Seq,   single   cells  

were   sorted   into   individual   wells   of   8-well   PCR   strips   containing   lysis   buffer   from   the   SMART-Seq   v4  

Ultra   Low   Input   RNA   Kit   for   Sequencing   (Takara   634894)   with   RNase   inhibitor   (0.17   U/μl),   immediately  

frozen   on   dry   ice,   and   stored   at   −80   °C.   For   10x   Genomics,   30,000   cells   were   sorted   within   10   minutes  

into   a   tube   containing   500   µl   of   quenching   buffer.   Each   aliquot   of   30,000   sorted   cells   was   gently   layered  

on   top   of   200   µl   of   high   BSA   buffer   and   immediately   centrifuged   at   230xg   for   10   minutes   in   a   swinging  

bucket   centrifuge.   Supernatant   was   removed   and   35   µl   of   buffer   was   left   behind,   in   which   the   cell   pellet  
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was   resuspended.   The   cell   concentration   was   quantified,   and   immediately   loaded   onto   the   10x  

Genomics   Chromium   controller.  

Tissue   collection   &   nuclei   isolation   (RNA-Seq,   snRNA   10x   v3   B;   Broad)  

Animal  housing: Animals  were  group  housed  with  a  12-hour  light-dark  schedule  and  allowed  to               

acclimate  to  their  housing  environment  for  two  weeks  post  arrival.  All  procedures  involving  animals  at                

MIT  were  conducted  in  accordance  with  the  US  National  Institutes  of  Health  Guide  for  the  Care  and                  

Use  of  Laboratory  Animals  under  protocol  number  1115-111-18  and  approved  by  the  Massachusetts              

Institute  of  Technology  Committee  on  Animal  Care.  All  procedures  involving  animals  at  the  Broad               

Institute  were  conducted  in  accordance  with  the  US  National  Institutes  of  Health  Guide  for  the  Care  and                  

Use   of   Laboratory   Animals   under   protocol   number   0120-09-16.   

 

Brain  preparation  prior  to  10x  nuclei  sequencing: At  60  days  of  age,  C57BL/6J  mice  were  anesthetized                 

by  administration  of  isoflurane  in  a  gas  chamber  flowing  3%  isoflurane  for  1  minute.  Anesthesia  was                 

confirmed  by  checking  for  a  negative  tail  pinch  response.  Animals  were  moved  to  a  dissection  tray  and                  

anesthesia  was  prolonged  via  a  nose  cone  flowing  3%  isoflurane  for  the  duration  of  the  procedure.                 

Transcardial  perfusions  were  performed  with  ice  cold  pH  7.4  HEPES  buffer  containing  110  mM  NaCl,                

10  mM  HEPES,  25  mM  glucose,  75  mM  sucrose,  7.5  mM  MgCl 2 ,  and  2.5  mM  KCl  to  remove  blood  from                     

brain  and  other  organs  sampled.  The  brain  was  removed  immediately  and  frozen  for  3  minutes  in  liquid                  

nitrogen  vapor  and  moved  to  -80 o C  for  long  term  storage.  A  detailed  protocol  is  available  at                 

protocols.io 21 .   

 

Generation  of  MOp  nuclei  profiles: Frozen  mouse  brains  were  securely  mounted  by  the  cerebellum               

onto  cryostat  chucks  with  OCT  embedding  compound  such  that  the  entire  anterior  half  including  the                

primary  motor  cortex  (MOp)  was  left  exposed  and  thermally  unperturbed.  Dissection  of  500  µm               

anterior-posterior  (A-P)  spans  of  the  MOp  was  performed  by  hand  in  the  cryostat  using  an  ophthalmic                 

microscalpel  (Feather  safety  Razor  #P-715)  precooled  to  -20 o C  and  donning  4x  surgical  loupes.  Each               

excised  tissue  dissectate  was  placed  into  a  pre-cooled  0.25  ml  PCR  tube  using  pre-cooled  forceps  and                 

stored  at  -80 o C.  In  order  to  assess  dissection  accuracy,  10  µm  coronal  sections  were  taken  at  each  500                   

µm  A-P  dissection  junction  and  imaged  following  Nissl  staining.  Nuclei  were  extracted  from  these               

frozen  tissue  dissectates  using  gentle,  detergent-based  dissociation,  according  to  a  protocol  (available             

at  protocols.io)  adapted  from  one  generously  provided  by  the  McCarroll  lab,  and  loaded  into  the  10x                 

Chromium  v3  system.  Reverse  transcription  and  library  generation  were  performed  according  to  the              

manufacturer’s   protocol.   
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Epigenomic   samples   (snATAC-Seq,   snmC-Seq2;   Salk   Institute   and   UCSD)  

Tissue  preparation  for  nuclei  production:  Adult  C57BL/6J  male  mice  were  purchased  from  Jackson              

Laboratories.  Brains  were  extracted  from  56-63  day  old  mice  and  immediately  sectioned  into  0.6  mm                

coronal  sections,  starting  at  the  frontal  pole,  in  ice-cold  dissection  media 16 .  The  primary  motor  cortex                

(MOp)  was  dissected  from  slices  2  through  5  along  the  anterior-posterior  axis  according  to  the  Allen                 

Brain  reference  Atlas  (Extended  Data  Figure  5).  Slices  were  kept  in  ice-cold  dissection  media  during                

dissection  and  immediately  frozen  in  dry  ice  for  subsequent  pooling  and  nuclei  production.  For  nuclei                

isolation,  the  MOp  dissected  regions  from  15-23  animals  were  pooled  for  each  biological  replicate,  and                

two  replicates  were  processed  for  each  region.  Nuclei  were  isolated  by  flow  cytometry  as  described  in                 

previous  studies 14,16 .  Briefly,  nuclei  were  produced  by  homogenization  in  sucrose  buffer  as  described 16 ,              

and  the  nuclei  pellet  produced  was  divided  into  two  aliquots.  One  aliquot  underwent  sucrose  gradient                

purification  and  NeuN  labeling  (snmC-Seq),  and  the  second  went  directly  to  tagmentation             

(snATAC-seq).   

 

Bisulfite  conversion  and  library  preparation  for  snmC-Seq2: Detailed  methods  for  bisulfite  conversion             

and  library  preparation  are  previously  described  for  snmC-Seq2 20 ,  and  the  protocol  is  available  on               

protocols.io 35 . The  snmC-Seq2  libraries  were  sequenced  using  an  Illumina  Novaseq  6000  instrument             

(RRID:SCR_016387)   with   S4   flowcells   and   150   bp   paired-end   mode.  

 

snATAC-seq  data  generation: Combinatorial  barcoding  single  nucleus  ATAC-seq  was  performed  as            

described  previously 36,62 .  Isolated  brain  nuclei  were  pelleted  with  a  swinging  bucket  centrifuge  (500  x  g,                

5  min,  4°C;  5920R,  Eppendorf).  Nuclei  pellets  were  resuspended  in  1  ml  nuclei  permeabilization  buffer                

(5  %  BSA,  0.2  %  IGEPAL-CA630,  1mM  DTT  and  cOmpleteTM,  EDTA-free  protease  inhibitor  cocktail               

(Roche)  in  PBS)  and  pelleted  again  (500  x  g,  5  min,  4°C;  5920R,  Eppendorf,  RRID:SCR_018092).                

Nuclei  were  resuspended  in  500  µL  high  salt  tagmentation  buffer  (36.3  mM  Tris-acetate  (pH  =  7.8),                 

72.6  mM  potassium-acetate,  11  mM  Mg-acetate,  17.6%  DMF)  and  counted  using  a  hemocytometer.              

Concentration  was  adjusted  to  4500  nuclei/9  µl,  and  4,500  nuclei  were  dispensed  into  each  well  of  a                  

96-well  plate.  For  tagmentation,  1  μL  barcoded  Tn5  transposomes 62  were  added  using  a  BenchSmart™               

96  (Mettler  Toledo,  RRID:SCR_018093),  mixed  five  times  and  incubated  for  60  min  at  37  °C  with                 

shaking  (500  rpm).  To  inhibit  the  Tn5  reaction,  10  µL  of  40  mM  EDTA  were  added  to  each  well  with  a                      

BenchSmart™  96  (Mettler  Toledo)  and  the  plate  was  incubated  at  37  °C  for  15  min  with  shaking  (500                   

rpm).  Next,  20  µL  2  x  sort  buffer  (2  %  BSA,  2  mM  EDTA  in  PBS)  were  added  using  a  BenchSmart™  96                       

(Mettler  Toledo).  All  wells  were  combined  into  a  FACS  tube  and  stained  with  3  µM  Draq7  (Cell                  
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Signaling).  Using  a  SH800  (Sony),  40  nuclei  were  sorted  per  well  into  eight  96-well  plates  (total  of  768                   

wells)  containing  10.5  µL  EB  (25  pmol  primer  i7,  25  pmol  primer  i5,  200  ng  BSA  (Sigma)).  Preparation                   

of  sort  plates  and  all  downstream  pipetting  steps  were  performed  on  a  Biomek  i7  Automated                

Workstation  (Beckman  Coulter,  RRID:SCR_018094).  After  addition  of  1  µL  0.2%  SDS,  samples  were              

incubated  at  55  °C  for  7  min  with  shaking  (500  rpm).  1  µL  12.5%  Triton-X  was  added  to  each  well  to                      

quench  the  SDS.  Next,  12.5  µL  NEBNext  High-Fidelity  2×  PCR  Master  Mix  (NEB)  were  added  and                 

samples  were  PCR-amplified  (72  °C  5  min,  98  °C  30  s,  (98  °C  10  s,  63  °C  30  s,  72°C  60  s)  ×  12  cycles,                          

held  at  12  °C).  After  PCR,  all  wells  were  combined.  Libraries  were  purified  according  to  the  MinElute                  

PCR  Purification  Kit  manual  (Qiagen)  using  a  vacuum  manifold  (QIAvac  24  plus,  Qiagen)  and  size                

selection  was  performed  with  SPRI  Beads  (Beckmann  Coulter,  0.55x  and  1.5x).  Libraries  were  purified               

one  more  time  with  SPRI  Beads  (Beckmann  Coulter,  1.5x).  Libraries  were  quantified  using  a  Qubit                

fluorimeter  (Life  technologies,  RRID:SCR_018095)  and  the  nucleosomal  pattern  was  verified  using  a             

Tapestation  (High  Sensitivity  D1000,  Agilent).  The  library  was  sequenced  on  a  HiSeq2500  sequencer              

(Illumina,  RRID:SCR_016383)  using  custom  sequencing  primers,  25%  spike-in  library  and  following            

read   lengths:   50   +   43   +   37   +   50   (Read1   +   Index1   +   Index2   +   Read2) 18 .  

 

 

Genomic   library   preparation,   sequencing   and   data   processing  

Single   cell   and   single   nucleus   RNA-Seq   (Allen   Institute)  

For   SMART-Seq   processing,   we   performed   the   procedures   with   positive   and   negative   controls   as  

previously   described 5 .   The   SMART-Seq   v4   (SSv4)   Ultra   Low   Input   RNA   Kit   for   Sequencing   (Takara  

Cat#   634894)   was   used   to   reverse   transcribe   poly(A)   RNA   and   amplify   full-length   cDNA.   Samples   were  

amplified   for   18   cycles   in   8-well   strips,   in   sets   of   12–24   strips   at   a   time.   All   samples   proceeded   through  

Nextera   XT   DNA   Library   Preparation   (Illumina   Cat#   FC-131-1096)   using   Nextera   XT   Index   Kit   V2  

(Illumina   Cat#   FC-131-2001)   and   a   custom   index   set   (Integrated   DNA   Technolgies).   Nextera   XT   DNA  

Library   prep   was   performed   according   to   manufacturer’s   instructions,   with   a   modification   to   reduce   the  

volumes   of   all   reagents   and   cDNA   input   to   0.4x   or   0.5x   of   the   original   protocol.  

For   10x   v2   processing,   we   used   Chromium   Single   Cell   3’   Reagent   Kit   v2   (10x   Genomics   Cat#   120237).  

We   followed   the   manufacturer’s   instructions   for   cell   capture,   barcoding,   reverse   transcription,   cDNA  

amplification,   and   library   construction.   We   targeted   sequencing   depth   of   60,000   reads   per   cell.  
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For   10x   v3   processing,   we   used   the   Chromium   Single   Cell   3’   Reagent   Kit   v3   (10x   Genomics   Cat#  

1000075).   We   followed   the   manufacturer’s   instructions   for   cell   capture,   barcoding,   reverse   transcription,  

cDNA   amplification,   and   library   construction.   We   targeted   sequencing   depth   of   120,000   reads   per   cell.  

RNA-Seq   data   processing   and   QC   (Allen)  

Processing   of   SMART-Seq   v4   libraries   was   performed   as   described   previously 5 .   Briefly,   libraries   were  

sequenced   on   an   Illumina   HiSeq2500   platform   (paired-end   with   read   lengths   of   50   bp)   and   Illumina  

sequencing   reads   were   aligned   to   GRCm38.p3   (mm10)   using   a   RefSeq   annotation   gff   file   retrieved  

from   NCBI   on   18   January   2016   (https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/).   Sequence  

alignment   was   performed   using   STAR   v2.5.3    63 .   PCR   duplicates   were   masked   and   removed   using  

STAR   option   ‘bamRemoveDuplicates’.   Only   uniquely   aligned   reads   were   used   for   gene   quantification.  

Gene   counts   were   computed   using   the   R   GenomicAlignments   package   (RRID:SCR_018096) 64    and  

summarizeOverlaps   function   in   ‘IntersectionNotEmpty’   mode   for   exonic   and   intronic   regions   separately.  

For   the   SSv4   dataset,   we   only   used   exonic   regions   for   gene   quantification.   Cells   that   met   any   one   of  

the   following   criteria   were   removed:   <   100,000   total   reads,   <   1,000   detected   genes   (CPM   >   0),   <   75%  

of   reads   aligned   to   genome,   or   CG   dinucleotide   odds   ratio   >   0.5.   Cells   were   classified   into   broad  

classes   of   excitatory,   inhibitory,   and   non-neuronal   based   on   known   markers,   and   cells   with   ambiguous  

identities   were   removed   as   doublets 5 .   

10x   v2   and   10x   v3   libraries   were   sequenced   on   Illumina   NovaSeq   6000   (RRID:SCR_016387)   and  

sequencing   reads   were   aligned   to   the   mouse   pre-mRNA   reference   transcriptome   (mm10)   using   the   10x  

Genomics   CellRanger   pipeline   (version   3.0.0,   RRID:SCR_017344)   with   default   parameters.   Cells   were  

classified   into   broad   classes   of   excitatory,   inhibitory,   and   non-neuronal   based   on   known   markers.   Low  

quality   cells   that   fit   the   following   criteria   were   filtered   from   clustering   analysis.   Different   filtering   criteria  

for   neurons   and   non-neurons   were   used   as   neurons   are   bigger   than   non-neuronal   cells   and   contain  

much   more   transcripts.   For   scRNA   datasets,   neurons   with   fewer   than   2000   detected   genes   and  

non-neuronal   cells   with   fewer   than   1000   detected   genes;   for   snRNA   datasets,   neurons   with   fewer   than  

1000   detected   genes   and   non-neuronal   cells   with   fewer   than   500   detected   genes.Doublets   were  

identified   using   a   modified   version   of   the   DoubletFinder   algorithm 65    and   removed   when   doublet   score   >  

0.3.   

Chromatin   accessibility   (snATAC-Seq)   data   pre-processing   (UCSD)  

Paired-end   sequencing   reads   are   demultiplexed   and   then   aligned   to   mm10   reference   genome   using  

bwa 66 .   After   alignment,   we   converted   paired-end   reads   into   fragments   and   for   each   fragment,   we   check  

the   following   attributes:   1)   mapping   quality   score   MAPQ;   2)   whether   two   ends   are   appropriately   paired  
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according   to   the   alignment   flag   information;   3)   fragment   length.   We   only   keep   the   properly   paired  

fragments   whose   MAPQ   (--min-mapq)   is   greater   than   30   with   fragment   length   less   than   1000bp  

(--max-flen).   Because   the   reads   have   been   sorted   based   on   the   names,   fragments   belonging   to   the  

same   cell   (or   barcode)   are   naturally   grouped   together   which   allows   for   removing   PCR   duplicates.   After  

alignment   and   filtration,   we   used   Snaptools   ( https://github.com/r3fang/SnapTools ,   RRID:SCR_018097)  

to   generate   a   snap-format   file   that   contains   metadata,   cell-by-bin   count   matrices   of   a   variety   of  

resolutions,   cell-by-peak   count   matrix.   

Filtering   cells   by   TSS   enrichment   and   unique   fragments:    The   method   for   calculating   enrichment   at   TSS  

was   adapted   from   a   previously   described   method    67 .   TSS   positions   were   obtained   from   the   GENCODE  

database   (RRID:SCR_014966).   Briefly,   Tn5   corrected   insertions   were   aggregated   +/-2,000   bp   relative  

(TSS   strand-corrected)   to   each   unique   TSS   genome   wide.   Then   this   profile   was   normalized   to   the  

mean   accessibility   +/-1,900-2,000   bp   from   the   TSS   and   smoothed   every   11bp.   The   max   of   the  

smoothed   profile   was   taken   as   the   TSS   enrichment.   We   then   filtered   all   single   cells   that   had   at   least  

1,000   unique   fragments   and   a   TSS   enrichment   of   10   for   all   sample   sets.  

Doublet   removal:     After   filtering   out   low-quality   nuclei,   we   adopt   a   recently   reported   algorithm   Scrublet  

(RRID:SCR_018098) 68    to   remove   potential   doublets   for   every   sample   set.   Cell-by-peak   count   matrix   are  

used   as   input,   with   default   parameters.  

Clustering:     We   used   the   snapATAC   pipeline 62    to   identify   cell   clusters   with   binarized   cell-by-bin   matrix   in  

5kb   resolution   as   the   input.   Cell   clusters   were   annotated   to   cell   type   by   checking   chromatin   accessibility  

along   the   body   of   marker   genes.   Then   another   round   of   clustering   were   performed   on   MGE-   and  

CGE-derived   inhibitory   GABA-ergic   interneurons,   in   order   to   identify   sub-cell   types.   

DNA   methylation   (snmC-Seq)   data   pre-processing   (Salk)  

Mapping   and   feature   count   pipeline   for   snmC-Seq2:     We   implemented   a   versatile   mapping   pipeline  

( cemba-data.rtfd.io )   for   all   the   single-cell   methylome   based   technologies   developed   by   our   group 16,20,37 .  

The   main   steps   of   this   pipeline   included:   1)   Demultiplexing   FASTQ   files   into   single-cell   files;   2)   Reads  

level   QC;   3)   Mapping;   4)   BAM   file   processing   and   QC;   5)   final   molecular   profile   generation.   The   details  

of   the   five   steps   for   snmC-seq2   were   described   previously 69 .   We   mapped   all   the   reads   onto   the   mouse  

mm10   genome.   After   mapping,   we   calculated   the   methyl-cytosine   counts   and   total   cytosine   counts   in  

two   sets   of   genome   regions   for   each   cell:   the   non-overlapping   100kb   bins   tiling   the   mm10   genome,  

which   was   used   for   methylation-based   clustering   analysis,   and   gene   body   regions   ±   2kb,   which   is   used  

for   cluster   annotation   and   cross   modality   integration.  
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Quality   control   and   cell   filtering:    We   filtered   the   cells   based   on   these   main   quality   metrics:   1)   The   rate   of  

bisulfite   non-conversion   as   estimated   by   the   rate   of   methylation   at   CCC   positions   (mCCC)   <   0.03.  

mCCC   rate   reliably   estimates   the   upper   bound   of   bisulfite   non-conversion   rate 16 ,   2)   overall   mCG   rate   >  

0.5,   3)   overall   mCH   rate   <   0.2,   4)   total   final   reads   (combining   R1   and   R2)   >   500,000,   5)   Total   mapping  

rate   (using   Bismark 70 )   >   0.5.   

Preprocessing   and   clustering:    The   clustering   steps   of   snmC-seq2   data   were   described   previously 37 .   In  

brief,   we   calculated   posterior   mCH   and   mCG   rate   based   on   beta-binomial   distribution   for   the  

non-overlapping   100kb   bins   matrix,   we   then   selected   top   3000   highly   variable   features   to   perform   PCA  

and   find   dominant   PCs   for   mCH   and   mCG   separately.   We   concatenate   PCs   from   both   methylation  

types   together   to   construct   a   KNN   graph,   and   ran   the   Leiden   community   detection   algorithm 71  

repeatedly   to   get   the   consensus   clustering   results.   The   stopping   criteria   of   clustering   considered  

number   of   marker   genes,   accuracy   of   the   reproducible   supervised   model   based   on   the   cluster  

assignments,   and   minimum   cluster   size.   We   performed   the   clustering   in   two   iterations   to   get   major  

types   and   fine-grained   types   for   comparison   with   other   modalities   in   further   integration.  

 

Computational   Analysis  

 

Transcriptome   analysis   (Fig.   2)  

Clustering   individual   datasets.    Clustering   for   each   sc/snRNASeq   dataset   was   performed  

independently   using   the   R   package    scrattch.hicat 5    (RRID:SCR_018099,   available   at  

https://github.com/AllenInstitute/scrattch.hicat ).   In   addition   to   classical   single-cell   clustering   processing  

steps   provided   by   other   tools   such   as   Seurat,   this   package   supports   iterative   clustering   by   making  

successively   finer   splits   while   ensuring   all   pairs   of   clusters,   even   at   the   finest   level,   are   separable   by  

stringent   differential   gene   expression   criteria 5 .   For   the   scRNA   10x   datasets,   we   used   q1.th   =   0.4,  

q.diff.th=0.7,   de.score.th=150,   min.cells=10.   For   the   snRNA   10x   datasets,   we   used   q1.th=0.3,  

q.diff.th=0.7,   de.score.th=100,   min.cells=10.   For   the   scRNA   SMART   datasets,   we   used   q1.th   =   0.5,  

q.diff.th=0.7,   de.score.th=150,   min.cells=4.   For   the   snRNA   SMART   dataset,   we   used   q1.th=0.4,  

q.diff.th=0.7,   de.score.th=100,   min.cells=4.   We   further   performed   consensus   clustering   by   repeating  

iterative   clustering   on   a   subsample   of   80%   of   cells,   resampled   100   times,   followed   by   final   clustering  

based   on   the   co-clustering   probability   matrix.   Using   this   procedure,   we   could   fine   tune   cluster  

boundaries   as   well   as   assess   cluster   uncertainty.   
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Joint   clustering   of   multiple   datasets.    To   provide   a   consensus   cell   type   taxonomy   across   all  

transcriptomic   datasets,   we   developed   a   novel   integrative   clustering   analysis   across   multiple   data  

modalities.   This   procedure   is   available   via   the    harmonize    function   of   the    scrattch.hicat    package.   Unlike  

Seurat/CCA 40 ,   which   aim   to   find   aligned   common   reduced   dimensions   across   multiple   datasets,   this  

method   directly   builds   a   common   adjacency   graph   using   the   cells   from   all   datasets,   then   applies   the  

Louvain   community   detection   algorithm 72 .   We   extended   the   cluster   merging   algorithm   in   the  

scrattch.hicat    package   to   ensure   that   all   clusters   can   be   separated   by   conserved   DE   genes   across  

platforms.   The     i_harmonize    function,   similar   to   the    iter_clust    function   in   the   single   dataset   clustering  

pipeline,   applies   integrative   clustering   across   datasets   iteratively   while   ensuring   all   the   clusters   at   each  

iteration   are   separable   by   conserved   DE   genes.  

To   build   a   common   adjacency   matrix   incorporating   samples   from   all   the   datasets,   we   first   chose   a  

subset   of   datasets   which   we   used   as   “reference   datasets.”   Reference   datasets   provide   the   most  

sensitive   gene   detection   and/or   comprehensive   cell   type   coverage.   For   this   study,   we   used   10x   v2  

single   cell   dataset   from   Allen   (scRNA   10x   v2   A)   and   10x   v3   single   nucleus   dataset   from   Broad   (snRNA  

10x   v3   B)   as   references,   as   both   are   large   datasets   that   provide   comprehensive   cell   type   coverage   and  

relatively   sensitive   gene   detection.   

The   key   steps   of   the   pipeline   are   outlined   below:  

1 Perform   single-dataset   clustering    (Methods   described   above).  

2 Select   anchor   cells     for   each   reference   dataset.    For   each   reference   dataset   (scRNA   10x   v2   A  

or   snRNA   10x   v3   B),   we   randomly   sampled   up   to     anchor   cells   per   cluster   to ax(100, )m 5000
#clusters  

normalize   coverage   for   each   cell   type.   This   is   the   only   step   that   uses   the   dataset-specific  

clustering   information.  

3 Select   highly   variable   genes   (HVG).    Highly   variable   gene   selection   and   dimensional   reduction  

by   principal   components   analysis   (PCA)   were   performed   using   the    scrattch.hicat    package.   We  

removed   PCs   with   a   Pearson    correlation   coefficient   of   more   than   0.7   with   log2(Ngenes).   This  

step   was   implemented   to   mitigate   the   effect   of   cell/nucleus   quality   on   gene   expression  

variability,   and   to   select   only   biologically   relevant   PCs.   For   each   remaining   PC,   Z   scores   were  

calculated   for   gene   loadings.   The   top   100   genes   with   absolute   Z   score   greater   than   2   were  

selected   as   HVGs.   The   HVGs   from   each   reference   dataset   were   combined.   

4 Compute   K   nearest   neighbors   (KNN).    For   each   cell   in   each   query   dataset,   we   computed   its   K  

nearest   neighbors   (k=15)   among   anchor   cells   in   each   reference   dataset   (scRNA   10x   v2   A   or  
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snRNA   10x   v3   B),   based   on   the   highly   variable   genes   selected   above.   The   RANN   package   was  

used   to   compute   KNN   based   on   the   Euclidean   distance   when   the   query   and   reference   dataset  

is   the   same.   To   compute   nearest   neighbors   across   datasets,   we   used   correlation   as   a   similarity  

metric.  

5 Compute   the   Jaccard   similarity .   For   every   pair   of   cells   from   all   datasets,   we   compute   their  

Jaccard   similarity,   defined   as   the   ratio   of   the   number   of   shared   K   nearest   neighbors   (among   all  

anchors   cells   from   all   the   reference   datasets)   divided   by   the   number   of   combined   K   nearest  

neighbors.   

6 Perform   Louvain   clustering.  

7 Merge   clusters.    To   ensure   that   every   pair   of   clusters   are   separable   by   conserved   differentially  

expressed   (DE)   genes   across   all   datasets,   for   each   cluster,   we   first   identified   the   top   3   most  

similar   clusters.   For   each   pair   of   such   closely-related   clusters,   we   computed   the   differentially  

expressed   genes   in   each   dataset.   We   focus   on   the   conserved   DE   genes   that   are   significant   in  

at   least   one   dataset,   while   also   having   more   than   two-fold   change   in   the   same   direction   in   all   but  

one   datasets.   We   then   compute   the   overall   statistical   significance   based   on   such   conserved   DE  

genes   for   each   dataset   independently.   If   any   of   the   datasets   pass   our   DE   gene   criteria  

described   in   the   “clustering”   section,   the   pair   of   clusters   remain   separated;   otherwise   they   are  

merged.   DE   genes   were   recomputed   for   the   merged   clusters,   and   the   process   was   repeated  

until   all   clusters   are   separable   by   the   conserved   DE   genes   criteria.   If   one   cluster   has   fewer   than  

the   minimal   number   of   cells   in   a   dataset   (4   cells   for   SMART-Seq   and   10   cells   for   10x),   then   this  

dataset   is   not   used   for   DE   gene   computation   for   all   pairs   involving   the   given   cluster.   This   step  

allows   detection   of   unique   clusters   absent   in   some   platforms.   

8 Iterative   clustering.    Repeat   step   1-6   for   cells   within   each   cluster   to   gain   finer   resolution  

clusters   until   no   more   clusters   can   be   found.   

9 Final   compilation   and   merging   of   clusters.    Concatenate   all   the   clusters   from   all   the   iterative  

clustering   steps,   and   perform   final   merging   as   described   in   step    6.  

Marker   gene   selection .   For   each   pair   of   clusters,   we   computed   the   conserved   DE   genes,   i.e.   those  

which   are   significantly   DE   in   one   at   least   dataset,   with   ≥2-fold   change   in   expression   in   the   same  

direction   among   70%   of   datasets.   To   allow   computation   of   DE   genes   involving   cell   types   only   present   in  

a   subset   of   datasets,   only   the   datasets   with   enough   cells   (based   on   min.cells   parameter)   for   both   cell  

types   under   comparison   were   used   for   DE   gene   calculation.   We   selected   the   top   50   genes   in   each  

direction.   After   pooling   genes   from   all   pairwise   comparisons,   we   identified   a   total   of   3,792   marker   genes  

(Supplementary   Table   6).   
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Imputation .   To   facilitate   direct   comparison,   we   projected   gene   expression   of   all   datasets   to   the   space  

of   a   given   reference   dataset.   To   do   that,   we   leveraged   the   KNN   matrices   computed   during   the   iterative  

joint   clustering   step   to   adjust   the   expression   values   for   systematic   differences   between   datasets.   During  

each   iteration   of   the   joint   clustering,   for   cells   in   each   dataset,   we   used   the   average   gene   expression   of  

their   k   nearest   neighbors   among   the   anchor   cells   from   the   reference   dataset   as   the   adjusted   expression  

in   the   reference   space.   At   the   top-level   clustering,   we   imputed   the   expression   for   all   genes.   For   each  

subsequent   iteration,   we   only   imputed   the   expression   of   the   high-variance   genes   and   the   conserved   DE  

genes   for   the   clusters   defined   in   that   iteration.   We   used   this   iterative   approach   for   imputation   because  

the   nearest   neighbors   based   on   the   genes   chosen   at   the   top   level   may   not   reflect   the   distinction  

between   the   finer   types,   and   the   imputed   values   for   the   DE   genes   that   define   the   finer   types  

consequently   are   not   accurate   based   on   these   nearest   neighbors.   Therefore,   we   deferred   imputation   of  

the   DE   genes   between   the   finer   types   to   the   iteration   when   these   types   were   defined.   This   method   is  

provided   in   the    impute_knn_global    function   in   scrattch.hicat     packaget 5 .   We   imputed   the   gene  

expression   matrix   for   both   reference   datasets   used   in   the   integrative   clustering.   

Building   a   cell-type   taxonomy   tree.    We   first   compute   the   average   of   the   adjusted   expression   of  

marker   genes   for   each   cluster.   This   average   was   computed   using   each   of   the   two   reference   datasets  

(scRNA   10x   v2   A,   snRNA   10x   v3   B).   Then,   the   two   matrices   were   concatenated.   We   constructed   a  

hierarchy   (tree)   using   the    build_dend_harmonize    function   in    scrattch.hicat     packaget 5 .   

Dimensionality   reduction   by   UMAP .   We   performed   principal   component   analysis   (PCA)   based   on  

imputed   gene   expression   matrices   of   3,792   marker   genes   using   10x   single   nuclei   dataset   from   Broad  

as   the   reference,   and   selected   the   top   50   principal   components   (93%   variance   explained).   We   removed  

PCs   with   Pearson   correlation   coefficient   >0.6   with   the   log2(Ngenes)   to   reduce   bias   related   to   the  

number   of   detected   genes.   Uniform   Manifold   Approximation   and   Projection   (UMAP)   was   used   to  

embed   the   cells   in   two   dimensions   with   parameters   nn.neighbors=25   and   md=0.3 73 .   

MetaNeighbor   analysis   (Fig.   2g,h)  

To   quantify   replicability   of   clusters   across   the   7   transcriptomic   datasets,   we   applied   a   modified   version  

of   unsupervised   MetaNeighbor   (RRID:SCR_016727) 31 .   MetaNeighbor   uses   a   neighbor   voting   algorithm  

and   a   cross-dataset   validation   scheme   to   quantify   cluster   similarity   across   multiple   datasets.   It   requires  

a   set   of   unnormalized   datasets,   a   set   of   cluster   labels   and   a   set   of   highly   variable   genes.   We   used   the  

raw   count   data   for   all   cells   passing   QC   criteria   for   the   7   single   cell   transcriptome   datasets,   as   well   as  

the   labels   obtained   through   independent   clustering   (Supplementary   Table   5).   We   used   MetaNeighbor’s  
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variableGenes    procedure   to   select   310   highly   variable   genes   that   were   detected   as   highly   variable  

across   all   datasets.  

We   defined   replicable   clusters   in   a   two-step   procedure:   first   we   quantified   the   similarity   between  

clusters   across   datasets,   then   we   extracted   groups   of   highly   similar   clusters,   or   “meta-clusters”.   We  

used   the    MetaNeighborUS    function   to   obtain   an   initial   similarity   matrix   between   clusters.   By   default,  

cluster   similarity   is   quantified   as   a   one-vs-all   area   under   the   receiver-operator   curve   (AUROC):   given   a  

training   cluster   (in   one   dataset),   we   ask   how   similar   cells   from   a   test   cluster   (in   another   dataset)   are   to  

training   cells,   compared   to   all   other   cells   in   the   test   dataset.   To   make   cluster   matching   more   stringent,  

we   transformed   the   one-vs-all   AUROC   matrix   into   a   one-vs-best   AUROC   matrix:   instead   of   ranking   test  

cells   among   all   cells   from   the   test   dataset,   we   only   compare   them   to   cells   from   the   best   matching  

cluster.   This   modification   ensures   that   only   the   best   match   can   have   an   AUROC   >   0.5,   facilitating  

identification   of   reciprocal   best   hits.   For   interpretability   and   computational   efficiency,   we   adopted   the  

following   convention:   the   best   matching   cluster’s   AUROC   was   obtained   by   comparing   it   to   the   second  

best   matching   cluster,   the   second   best   cluster’s   AUROC   was   obtained   by   computing   1-AUROC   of   the  

best   matching   cluster,   and   all   other   clusters   obtained   an   AUROC   of   0,   as   we   were   only   interested   in  

finding   best   matches.   To   extract   meta-clusters,   we   interpreted   the   one-vs-best   AUROC   as   a   graph  

where   nodes   are   clusters   and   edges   connect   nodes   if   they   are   reciprocal   best   hits.   We   define  

meta-clusters   as   connected   components   in   this   graph.   We   can   obtain   more   robust   meta-clusters   by  

requiring   that   best   hits   exceed   some   AUROC   threshold.   In   practice,   we   noted   that   one-vs-best   AUROC  

>   0.7   offered   a   good   balance   between   the   number   of   meta-clusters   and   reproducibility   strength.  

For   scalability,   we   modified   MetaNeighbor   in   the   following   ways.   In   the    MetaNeighborUS    function,   we  

removed   the   rank   standardization   of   the   cell-cell   similarity   network   (by   setting   parameter    fast_version    to  

TRUE )   and   the   node   degree   normalization   of   the   neighbor   voting,   enabling   analytical   simplifications   of  

the   neighbor   voting   procedure.   The    variableGenes    procedure   was   applied   to   a   random   subset   of  

50,000   cells   for   datasets   exceeding   that   size.  

Epigenomic   data   (Fig.   3)  

Cluster   analysis   for   snmC-Seq  

We   concatenate   principal   components   from   both   methylation   types   (CG   and   CH)   together,   and   use  

these   to   construct   a   KNN   graph   followed   by   Leiden   community   detection 71 .   We   repeat   the   cluster  

analysis   several   times   to   get   consensus   clustering   results.   The   stopping   criteria   of   clustering  

considered   number   of   marker   genes,   accuracy   of   the   reproducible   supervised   model   based   on   the  

cluster   assignments,   and   minimum   cluster   size.   We   performed   the   clustering   in   two   iterations   to   get  

major   types   and   fine-grained   cell   types   for   comparison   with   other   modalities   in   further   integration.  
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Two-dimensional   embedding   using   t-distributed   stochastic   neighbor   embedding 74    (tSNE;   perplexity   =  

30)   was   calculated   based   on   the   top   principal   components   using   the   implementation   from   the   scanpy  

package 75 .   

 

 

Multimodality   integration   (Fig.   4)  

Computational   data   integration   with   LIGER  

We   used   LIGER   (RRID:SCR_018100)   to   integrate   the   single-cell   transcriptomic   and   epigenomic   data  

as   previously   described   in   the   LIGER   paper 42 ,   with   one   modification.   We   used   the    optimizeALS    function  

in   the   LIGER   package   to   perform   joint   factorization   on   all   datasets   except   methylation   (7   RNA   datasets  

and   one   ATAC   dataset)   to   infer   shared   ( W )   and   dataset-specific   ( V i )   metagene   factors   and   cell   factor  

loadings   ( H i ).   We   then   used   the   resulting    W    to   calculate   cell   factor   loadings   ( H i )   for   the   methylation   data  

using   the    solveNNLS    function   in   the   LIGER   package.   We   found   that   this   strategy   yielded   better  

integration   than   jointly   factorizing   all   8   datasets,   possibly   because   the   inverse   relationship   and   massive  

dataset   size   imbalance   between   methylation   and   all   other   datasets   complicates   the   learning   of   shared  

metagenes.   Our   analysis   used   only   the   cells   annotated   by   each   data-generating   group   as   passing  

quality   control.   We   did   not   perform   any   data   imputation   or   smoothing,   but   simply   normalized   and   scaled  

the   raw   cell-by-gene   count   matrices   from   each   dataset   using   the    normalize    and    scaleNotCenter  

functions   in   the   LIGER   package.   We   next   used   the    quantileAlignSNF    function   with   default   settings   to  

perform   quantile   normalization   of   cell   factor   matrices   ( H i )   from   all   8   datasets.   Finally,   we   performed  

Louvain   clustering   on   the   normalized   cell   factor   matrices   ( H i )   to   obtain   joint   clusters.   We   performed   two  

rounds   of   integration   and   joint   clustering;   in   the   first   round,   we   separately   integrated   all   neurons   across  

datasets   and   all   glia   across   datasets.   We   then   performed   a   second   round   of   integration   and   clustering  

separately   for   each   of   four   neuronal   subclasses:   excitatory   intratelencephalic   (IT)   neurons,   excitatory  

non-IT   neurons,   medial   ganglionic   eminence   (MGE)   interneurons,   and   caudal   ganglionic   eminence  

(CGE)   interneurons.   We   used    k =40   factors   for   the   non-neuron   analysis,    k =30   for   the   first-round   neuron  

analysis,   and    k =20   for   all   of   the   second-round   analyses.  

 

Computational   integration   with   SingleCellFusion  

SingleCellFusion 37    is   designed   to   robustly   integrate   DNA   methylation,   ATAC-Seq   and/or   RNA-Seq   data.  

We   applied   SingleCellFusion   iteratively   to   integrate   all   neurons   from   8   datasets   (Supplementary   Table  

1)   and   jointly   call   cell   clusters.   To   integrate   both   the   broad   and   fine-grained   cell   types,   we   performed   3  

rounds   of   integration.   For   every   cell   cluster   generated   in   the   previous   round,   it   is   further   split   into  

smaller   clusters   by   re-applying   SCF   on   cells   in   that   cluster   only.   In   the   first   round,   we   run   SCF   on   all  
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neurons   from   8   datasets   and   get   10   broad   neuronal   clusters.   Rounds   2   and   3   generate   29   clusters   and  

56   more   fine-grained   clusters,   respectively   (Supplementary   Table   3).   

The   procedure   comprises   4   major   steps:   preprocessing:   within-modality   smoothing,  

cross-modality   imputation,   and   clustering   and   visualization.  

1. Preprocessing.    We   define   a   gene-by-cell   feature   matrix   for   each   dataset.   Droplet-based  

RNA-seq   features   (10x)   are   log 10 (CPM+1)   normalized;   Full-length   RNA-seq   (SMART-seq)  

features   are   log 10 (TPM+1)   normalized.   snATAC-seq   data   is   represented   by   read   counts   within  

gene   body,   normalized   by   log 10 (RPM+1),   where   CPM   stands   for   counts   per   million   reads  

mapped   (counts   normalized),   TPM   stands   for   transcripts   per   million   reads   mapped   (length  

normalized),   and   RPM   stands   for   reads   per   million   reads   mapped   (length   normalized),  

respectively.   DNA   methylation   data   is   represented   by   the   mean   gene   body   mCH   level,  

normalized   by   the   global   (genome-wide)   mean   mCH   level   for   each   cell.   For   each   dataset,   we  

only   used   high-quality   cells   (passed   QC)   and   highly   variable   genes   (n=4,000~6,300)   for   further  

analysis.   To   select   highly   variable   genes,   for   RNA-seq   and   ATAC-seq   datasets,   we   first   remove  

genes   that   are   expressed   in   <   1%   of   cells.   We   then   divide   the   remaining   genes   into   10   bins  

according   to   their   mean   expression   across   cells   (CPM).   For   each   bin,   except   for   the   one   with  

the   most   expressions,   we   select   top   30%   of   genes   with   the   most   expression   dispersion  

(variance/mean)   as   the   highly   variable   genes.   For   the   DNA   methylation   dataset,   we   first   select  

genes   that   have   >   20   cytosine   coverage   in   more   than   95%   of   cells,   then   divide   the   remaining  

genes   into   10   bins   according   to   their   mean   normalized   mCH   level--raw   mCH   level   normalized  

by   the   global   mCH   for   each   cell.   For   each   bin,   we   select   top   30%   of   genes   with   the   most  

variance   as   the   highly   variable   genes.  

2. Within-modality   smoothing.    To   reduce   the   sparsity   and   noise   of   feature   matrices,   we   share  

information   among   cells   with   similar   profiles   using   data   diffusion.   The   procedure   is   adapted   from  
76    and   described   in   detail   in    37 .   Here   we   exactly   followed   (Luo   et   al   2019   bioRxiv) 37    with  

[ndim=50,   k=30,   ka=5]   for   all   datasets,   and   [p=0.7]   for   RNA-seq   datasets,   [p=0.9]   for   the   DNA  

methylation   dataset,   and   [p=0.1]   for   the   ATAC-seq   dataset.   

3. Cross-modality   imputation   by   Restricted   k-Partners   (RKP) .   To   integrate   all   8   datasets,   we  

impute   the   scRNA_10x_v2_A   gene   features   for   cells   in   all   7   other   datasets.   The   imputation   is  

done   in   pairwise   between   the   scRNA_10x_v2_A   dataset   and   one   other   dataset.   For   each  

pairwise   imputation,   we   followed   the   procedure   described   in    37    with   20   RKP   and   relaxation  

parameter   3   [k=20,   z=3].   Instead   of   using   Euclidean   distance   in   a   low-dimensional   space,   we  

here   use   the   (flipped)   spearman   correlation   coefficient   across   genes   that   are   highly   variable   in  

both   datasets   as   the   distance   metric   between   cells   in   2   different   modalities.  

4. Clustering   and   visualization.    We   start   from   a   cell-by-feature   matrix,   where   cells   include   all  
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cells   from   8   datasets   and   features   are   highly   variable   genes   of   the   scRNA_10x_v2_A   dataset.  

We   reduce   the   dimensionality   of   features   into   top   50   Principal   Components.   Next,   we   perform  

UMAP   embedding   on   the   PC   matrix   [n_neighbors=60,   min_dist=0.5].   Finally,   we   perform   Leiden  

clustering   on   the   kNN   graph   (symmetrized,   unweighted)   generated   from   the   final   PC   matrix  

[Euclidean   distance,   k=30,   resolution=0.1].  

 

Fig.   4   related   panel-specific   analysis  

Figure   4h    We   created   the   embedding   of   the   cluster   centroids   using   the   imputed   scRNA_10x_v2_A  

gene   features   (log10(CPM+1))   for   all   cells   from   the   8   different   datasets   generated   from  

SingleCellFusion   integration.   Clusters   are   defined   by   individual   dataset   clusterings   and   by   the   joint  

clustering   with   SingleCellFusion.   Cluster   centroids   are   calculated   by   the   mean   imputed  

scRNA_10x_v2_A   gene   profiles   across   cells.   After   getting   a   gene-by-cluster   matrix,   we   apply   PCA   to  

reduce   to   50   feature   dimensions,   followed   by   applying   a   UMAP   embedding   with   min_dist=0.7   and  

n_neighbors=10.  

 

Figure   4i    To   compare   molecular   signals   across   data   modalities,   all   signals   are   normalized   to   [0,   1].   This  

is   achieved   by   first   getting   molecular   signals   by   dataset-specific   normalization   (Step1),   followed   by   a  

linear   transformation   (Step2).   In   Step1,   for   SMART-seq   datasets,   we   show   log10(TPM+1);   for   10x  

RNA-seq   datasets,   we   show   log10(CPM+1);   for   the   ATAC-seq   dataset,   we   show   log10(RPM+1)  

normalized   gene   body   counts,   and   for   DNA   methylation   we   show   gene   body   mCH   normalized   by   global  

mCH   level   of   each   cell.   For   Step2,   we   apply   a   linear   transformation   to   map   the   range   of   the   signal   to   [0,  

1].   For   datasets   other   than   DNA   methylation,   we   apply   the   following   formula:  

xnormalized =
x xmin

x xmax min
 

Where     is   the   dataset-specific   gene-level   signal   for   a   cell,   and     are   defined   as   the   bottom   2 x xmin xmax  

percentile   and   top   2   percentile   of     across   all   cells,   respectively.   For   the   DNA   methylation   dataset,   we x  

apply   the   following   formula:  

 xnormalized = 1
x xmin

x xmax min
 

,   with   which   signals   are   still   mapped   to   [0,   1]   but   flipped--a   high   signal   on   the   plot   means   a   low   DNA  

methylation   level.   We   do   this   to   align   DNA   methylation   signals   with   gene   expression   (and   open  

chromatin)   signals,   because   DNA   methylation   is   a   repressive   marker   of   gene   expression   and   negatively  

correlates   with   it.   Besides,   and     are   defined   as   the   bottom   2   percentile   and   top   50   percentile   of xmin xmax  

  across   all   cells,   respectively. x  

 

37  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.02.29.970558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.29.970558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure   4j    For   each   gene,   cell-level   signals   are   normalized   the   same   way   as   described   in   Step1   of  

Figure   4i.   Cluster   level   signals   are   the   mean   cell-level   signals   across   cells   in   clusters.   After   getting  

gene-by-cluster   matrices   this   way,   for   non-DNA   methylation   datasets,   the   matrices   are   further  

normalized   by   the   maximum   of   each   cluster   (column);   for   DNA   methylation   datasets,   no   further  

normalization   is   done,   for   they   are   already   normalized   by   cell.  

Extended   Data   Figure   5g,h    The   heatmaps   show   pairwise   Spearman   correlation   coefficients   between  

the   centroids   of   cells   from   each   cell   type   (SingleCellFusion)   and   each   dataset,   using   the   gene  

expression   levels   (log 10 (CPM+1);   measured   or   imputed   by   SingleCellFusion)   of   the   scRNA_10x_v2_A  

dataset   as   features.   Centroid-level   profiles   are   computed   as   the   average   of   cell-level   profiles   across  

cells   from   the   same   cell   type   and   the   same   dataset.   The   row   and   column   orderings   are   the   same,  

generated   by   a   hierarchical   clustering   on   the   above   defined   centroid-level   features   with   average   linkage  

and   euclidean   distance.   5f   shows   the   correlations   between   broad-level   joint   clusterings   (10   subclasses;  

SingleCellFusion   L0;   Supplementary   Table   8);   5g   shows   those   between   fine-level   joint   clusterings   (56  

clusters   in   total;   not   all   are   shown;   SingleCellFusion   L2;   Supplementary   Table   8)   for   four   example  

broad-level   subclasses   (MGE,   CGE,   L2/3   IT,   L4/5   IT).  

 

Extended   Data   Figure   5i   (Agreement   metric)  

We   calculated   dataset   agreement   metrics   as   described   in   the   LIGER   paper    42 .   Briefly,   we   performed  

dimensionality   reduction   using   either   NMF   (for   LIGER)   or   PCA   (for   SingleCellFusion)   and   built   a  

k-nearest   neighbor   graph   for   each   individual   dataset.   Then   we   built   a    k -nearest   neighbor   graph   using  

the   joint   latent   space   from   either   LIGER   or   SingleCellFusion   and   calculated   what   fraction   of   the   nearest  

neighbors   from   individual   datasets   were   still   nearest   neighbors   in   the   joint   space.   This   metric   assesses  

how   well   the   joint   latent   space   preserves   the   structure   of   each   individual   dataset.   An   agreement   metric  

close   to   zero   indicates   poor   preservation   of   structure   from   individual   datasets,   while   an   agreement  

metric   close   to   1   ideally   preserves   the   structure.  

 

Extended   Data   Figure   5j   (Alignment   metric)  

We   calculated   dataset   alignment   metrics   as   described   in   the   LIGER    42    and   Seurat    40    papers,   except   that  

we   first   downsampled   cells   so   that   the   cluster   proportions   and   total   number   of   cells   were   identical  

across   all   datasets.   Then   we   built   a    k -nearest   neighbor   graph   using   the   joint   latent   space   from   either  

LIGER   or   SingleCellFusion   and   calculated   what   fraction   of   the   nearest   neighbors   around   each   point  

come   from   each   dataset.   We   then   normalized   the   metric   to   be   between   0   (no   alignment)   and   1   (perfect  

mixing   of   datasets).   This   metric   assesses   how   well   the   joint   latent   space   aligns   the   datasets.   Note   that  

maximizing   alignment   and   maximizing   agreement   are   competing   objectives.   For   example,   it   is   possible  

to   trivially   maximize   alignment   by   randomly   mixing   cells   from   all   datasets   according   to   a   spherical  
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Gaussian   distribution;   conversely,   one   could   trivially   maximize   agreement   by   simply   assigning  

non-overlapping   latent   representations   to   all   datasets.   However,   methods   must   balance   these  

competing   objectives   to   score   highly   on   both   alignment   and   agreement   metrics.  

 

Extended   Data   Figure   5k    To   get   cluster-level   gene   signals,   we   first   get   normalized   cell-level   signals  

the   same   way   as   Step1   of   Figure   4i,   followed   by   taking   the   mean   cell-level   signals   across   cells   in  

clusters.  

 

Analysis   of   enhancers   (Fig.   5)  

Epigenome   Cluster   Level.    Based   on   the   cell-cell   integration   in   Figure   4,   in   order   to   have   enough  

whole-genome   coverage   of   each   cell   type,   we   further   merged   the   co-clusters   into   a   higher   level   to  

increase   the   coverage   of   each   cluster,   which   we   termed   as   the   epigenome   cluster   level.   

DMR   and   Peak   Calling .   For   DMR   calling   in   the   snmC-seq2   data,   we   merged   single-cell   ALLC   files   into  

the   pseudo-bulk   level   for   each   cluster,   and   then   used   methylpy 77    DMRfind   function   to   calculate   mCG  

DMRs   across   all   clusters.   The   base   call   of   each   paired   CpG   sites   was   added   up   before   analysis.   In  

brief,   the   methylpy   function   used   a   permutation-based   root-mean-square   test   of   goodness-of-fit   to  

identify   differentially   methylated   sites   (DMS)   simultaneously   across   all   samples,   and   then   merge   the  

DMS   within   250bp   into   DMR.   Hypo-DMR   and   Hyper-DMR   were   then   assigned   to   each   sample   by  

examining   the   residue   of   observed   counts   from   the   expected   counts.   We   also   filtered   the   DMRs   by  

requiring   the   maximin   difference   of   mCG   rate   between   clusters   larger   than   0.3.   For   peak   calling   in   the  

snATAC   data,   we   extracted   all   the   fragments   for   each   cluster,   and   then   performed   peak   calling   on   each  

aggregate   profile   using   MACS2 78    with   parameter:   “--nomodel   --shift   -100   --ext   200   --qval   1e-2   -B  

--SPMR”.   We   used   the   " bedtools   intersect"    with   the   "-wa   -u"   parameter    to   calculate    DMR   and   ATAC  

peak   overlaps.  

Saturation   analysis.    To   investigate   the   efficiency   of   regulatory   elements   identification   in   terms   of   cell  

number   in   the   epigenomic   data,   we   did   a   saturation   analysis   using   the   two   most   abundant   cell   types:  

the   L2/3   IT   and   the   L6   CT   excitatory   neurons,   the   total   reads   assigned   to   these   two   cell   types   were  

comparable   to   bulk-seq.   We   subsampled   a   different   number   of   cells   without   replacement   in   each  

cluster   three   times   when   having   enough   cells,   and   used   cells   from   each   replicate   separately   when  

possible.   In   the   last   group,   we   used   all   the   cells   for   each   cell   type   as   a   maximum   reference.   For  

methylome   data,   We   call   DMRs   between   L2/3   IT   and   L6   CT   within   each   cell   number   group.   Peaks   are  

called   for   each   cell   type   group.  

REPTILE   enhancer   prediction .    We   performed   enhancer   prediction   using   the   REPTILE 79    algorithm.  

The   REPTILE   is   a   random-forest-based   supervised   method   that   incorporates   different   sources   of  

epigenomic   profiles   with   base-level   DNA   methylation   data    to   learn   and   then   distinguish   the   epigenomic  
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signatures   of   enhancers   and   genomic   background.   We   trained   the   model   in   a   similar   way   as   in   previous  

studies 79,80    using   CG   methylation,   chromatin   accessibility   of   each   epigenome   clusters   and   mouse  

embryonic   stem   cells   (mESC).   The   model   was   first   trained   on   mESC   data   and   then   predicted   a  

quantitative   score   we   termed   enhancer   score   for   each   cell   type’s   DMRs.   The   positives   were   2kb  

regions   centered   at   the   summits   of   top   5,000   EP300   peaks   in   mESCs.   Negatives   include   randomly  

chosen   5,000   promoters   and   30,000   2kb   genomic   bins.   The   bins   have   no   overlap   with   any   positives   or  

promoters 80 .   Methylation   and   chromatin   accessibility   profiles   in   bigwig   format   for   mESC   were   from   the  

mouse   ENCODE   project 80 .   The   mCG   rate   bigwig   file   was   generated   from   cell   type-merged   ALLC   files  

using   in-house   python   script.   For   chromatin   accessibility   of   each   cell   type,   we   merged   all   fragments  

from   snATAC-seq   cells   that   assigned   to   this   cell   type   in   the   integration   analysis   and   used   “ deeptools  

bamcoverage ”   to   generate   CPM   normalized   bigwig   files.   All   bigwig   files’   bin   size   was   50bp.  

 

Motif   Enrichment   Analysis .   We   used   724   motif   PWMs   from   the   JASPAR   2020   CORE   vertebrates  

database 81 ,   where   each   motif   was   able   to   assign   corresponding   mouse   transcription   factor   genes.   For  

each   set   of   REPTILE   predicted   enhancers,   we   standardized   the   region   length   into   center   ±   250bp   and  

used   the   FIMO   tool   from   the   MEME   suite 82    to   scan   the   motifs   in   each   enhancer   with   log   odds   p-value   <  

10 -6    as   the   threshold   of   motif   hit.   To   calculate   motif   enrichment,   we   use   the   adult   non-neuronal   mouse  

tissue   DMRs 46    as   background   regions.   We   subtracted   enhancers   in   the   region   set   from   the   background,  

and   then   scanned   the   motifs   in   background   regions   using   the   same   approach.   We   then   used   Fisher’s  

exact   test   to   find   motifs   enriched   in   the   region   set,   and   the   Benjamini-Hochberg   procedure   to   correct  

multiple   tests.   Transcription   factors   with   significant   motif   enrichment   were   grouped   by   TFClass 48  

classification.   Genes   within   the   same   group   share   very   similar   motifs.  

 

Cluster   validation   analysis   (Fig.   6)  

Downsampling   analysis   of   cluster   number   (Fig.   6a-e)  

Preprocessing    Preprocessing   is   done   in   the   same   way   as   described   in   the   section   of   Computational  

integration   with   SingleCellFusion.   After   preprocessing,   we   get   a   gene-by-cell   feature   matrix   for   each  

dataset.   Only   neuronal   cells   passing   QC   (Supplementary   Table   1)   and   highly   variable   genes   for   each  

dataset   are   included.   

 

Clustering   (Fig.   6a)    Clustering   takes   3   steps.   We   first   reduce   feature   dimensions   by   PCA   [n=50].   We  

then   build   a   k-nearest   neighbor   graph   [k=30]   between   cells   using   the   Euclidean   distance   in   the  

Principal   Component   space.   We   finally   apply   the   Leiden   clustering   algorithm   with   a   fixed   resolution  

parameter   [r=6].   For   each   dataset,   we   report   the   number   of   clusters   as   a   function   of   the   number   of   cells  

40  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.02.29.970558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.29.970558
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

randomly   downsampled   from   the   full   dataset.   Error   bars   show   the   standard   error   of   the   mean   of   [n=10]  

repeats   of   downsampling.  

 

Clustering   with   within-modality   cross   validation   (Fig.   6d)    This   analysis   aims   to   estimate   the  

“optimal”   number   of   clusters   of   a   dataset,   by   testing   which   clustering   granularity   best   preserves   the  

gene-level   features   of   cells.   For   a   given   dataset--a   gene-by-cell   matrix,   we   first   randomly   split   gene  

features   into   2   sets,   for   clustering   and   validation,   respectively.   To   avoid   any   potential   linkage,   the   split   is  

done   by   separating   chromosomes   into   2   sets,   such   that   genes   from   the   same   chromosomes   are   always  

in   the   same   set.   We   then   perform   Leiden   clustering   (as   described   in   methods   related   to   Fig.   6a)   on   all  

cells   using   the   clustering   feature   set   only   with   different   clustering   resolutions.   After   clustering,   every   cell  

in   the   dataset   gets   a   cluster   label.   We   next   randomly   separate   those   cells   into   2   sets--for   training   and  

testing,   respectively.   Using   training-set   cells,   we   train   a   supervised   model   to   predict   the   validation   set  

gene   features   based   on   cluster   assignments.   Assuming   a   R2   loss,   this   is   equivalent   to   calculating   the  

cluster   centroid   of   each   cluster   in   the   space   of   validation   gene   set   using   training-set   cells   only.   Finally,  

we   apply   the   model   to   cells   in   the   test   set,   and   evaluate   the   mean   squared   error   of   model   performance.  

This   is   equivalent   to   estimating   the   mean   squared   distance   between   individual   cells   in   the   test   set   to   its  

cluster   centroid   calculated   by   training   set.   As   a   function   of   number   of   clusters   (by   varying   the   resolution  

parameter   in   Leiden   clustering),   we   observe   a   U-shaped   curve   of   mean   squared   error,   because   both  

under-splitting   and   over-splitting   results   in   high   mean   squared   error.   The   minimum   point   of   the   curve  

represents   the   most   plausible   clustering   resolution.   Applying   this   scheme   to   each   dataset   and   different  

downsampling   levels   of   cells,   we   report   in   Fig.   6d   the   number   of   clusters   as   a   function   of   the   number   of  

cells,   for   each   dataset.   For   robustness,   random   split   of   gene   features   are   repeated   n=5   times;   random  

split   of   cells   are   repeated   n=5   times   with   k=5   fold   cross   validations   each   time.  

 

Clustering   with   cross-modality   cross   validation   (Fig.   6e)    Extending   the   within-modality   clustering  

cross   validation   scheme   used   in   Fig.   6d,   we   developed   a   cross-modality   cross   validation   method,   by  

combining   the   previously   described   within-dataset   cross-validation   method   with   a   joint   clustering  

method--SingleCellFusion.   First   of   all,   similar   to   within-dataset   cross   validation,   we   first   randomly   split  

gene   features   into   clustering   and   validation   set   for   all   datasets.   We   then   generate   integrated   clusterings  

across   data   modalities   by   applying   SingleCellFusion   on   all   cells   and   half   of   the   gene   features   (the  

clustering   feature   set).   After   clustering,   we   estimate   the   mean   squared   error   of   clustering   on   the  

validation   feature   set   as   described   above   for   each   dataset   on   its   own.   Applying   this   scheme   to   different  

downsampling   levels   of   cells,   we   report   in   Fig.   6e   the   number   of   clusters   as   a   function   of   the   number   of  

cells   from   each   dataset.  
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Clustering   on   network   of   samples   (Conos)   analysis   (Fig.   6g-i)   

To   evaluate   the   extent   to   which   different   cell   subpopulations   were   supported   by   different   platforms,   we  

assessed   the   difference   in   the   ability   to   recover   the   corresponding   cell   with   and   without   within-platform  

comparisons.   The   clustering   of   cells   was   performed   using   Conos 55 ,   using   walktrap   community   detection  

method   to   detect   hierarchical   cell   populations.   The   stability   of   the   resulting   hierarchical   clustering   result  

was   estimated   as   follows:   20   random   cell   subsampling   rounds   were   performed,   each   drawing   random  

95%   of   cells   from   each   dataset,   repeating   the   walktrap   hierarchical   clustering   procedure.   For   each   node  

in   the   original   walktrap   tree,   we   evaluated   stability   as   a   minimum   of   specificity   and   sensitivity   relative   to  

the   ensemble   of   subsampled   trees   by   finding   the   best   matching   subtree.   To   evaluate   the   ability   to  

recover   subpopulations   based   on   cross-platform   comparisons   only,   we   removed   within-platform   edges  

(those   connecting   datasets   generated   by   the   same   platform)   in   the   joint   graph   (generated   by   Conos).  

This   way   the   subpopulation   is   detected   only   if   it   is   aggregated   based   on   its   mapping   to   the   other  

platform.   The   modified   approach   will   facilitate   the   grouping   of   cell   population   that   are   common   in   the  

different   platforms   as   it   removed   the   platform-specific   information   in   the   joint   graph.  

To   assess   similarity   of   expression   profiles   detected   by   different   platforms   for   a   given   cell   type  

(Fig.   6i),   we   used   Jensen-Shannon   divergence   to   assess   the   overall   similarity   of   gene   expression  

patterns   between   the   four   RNA-Seq   platforms   (scRNA   10x   v3   A,   snRNA   10x   v3   B,   scRNA   SMART   and  

snRNA   SMART).   Specifically,   1000   cells   were   sampled   from   each   cell   type   for   each   platform.   If   the  

number   of   cells   from   a   cell   type   is   smaller   than   1000   cells,   sampling   with   replacement   was   performed.  

Cell   types   that   accounted   for   less   than   1%   (<300   cells)   in   any   specific   platform   were   omitted.   The  

molecules   detected   for   each   gene   were   then   aggregated   across   all   sampled   cells   for   each   cell   type   in  

each   platform.   The   counts   were   normalized   by   the   total   number   of   molecules   for   each   cell   type   /  

platform,   and   Jensen-Shannon   divergence   was   calculated.  

 

Integrated   analyses:   trade-off   between   replicability   and   resolution   and   cluster   consistency   (Fig.  

6f,   j)  

We   collected   the   clusters   obtained   with   the   4   integrative   clustering   methods   described   previously  

(Conos,   LIGER,   RNA   consensus   clustering   from   Figure   2,   SingleCellFusion),   as   well   as   the   “subclass”  

level   from   the   independent   clustering   of   the   RNA   datasets.   Each   integrative   method   returned   clusters   at  

two   granularity   levels,   we   named   the   coarser   level   of   clustering   L1   and   the   finer   level   of   clustering   L2  

clusters.   We   focused   our   analyses   on   the   neuron   clusters   of   the   transcriptomic   data,   as   we   wished   to  

investigate   the   agreement   of   neuron   cluster   hierarchies.  

To   quantify   replicability,   we   used   the   same   modified   version   of   MetaNeighbor,   same   datasets   and   same  

variable   genes   as   defined   above   (see   “MetaNeighbor   analysis”).   We   used   the   one-vs-best   AUROC   to  

obtain   cluster   similarity   scores,   then   computed   an   average   AUROC   score   per   integrated   cluster  
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(averaged   over   every   pair   of   datasets   in   which   the   cluster   is   present).   For   every   method,   we   reported  

the   median   AUROC   across   integrated   clusters   as   the   final   reproducibility   score.   To   quantify   the   overall  

similarity   of   the   clustering   results,   we   computed   the   Adjusted   Rand   Index   (ARI).   When   necessary,   we  

restricted   the   ARI   computation   to   the   intersection   of   labeled   cells   (the   intersection   being   recomputed   for  

every   pair   of   methods).  
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Neuroscience Multi-Omic (NeMO) portal and analytics 
(https://nemoarchive.org, https://nemoanalytics.org)

Extended Data Figure 1
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Brainome epigenomics portal
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Extended Data Figure 7

a

Within-dataset cross-validationb c Within-dataset cross-validation,
downsampled cells (5,000 cells each)
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Slice 2

Extended Data Figure 8

Nissl-stained images show the posterior face of tissue slices (600 µm thickness) used
for mouse MOp dissection (epigenomic data, snmC-Seq and snATAC-Seq).

Slice 3

Slice 4 Slice 5
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