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Abstract 

Importance:  

Multiple Sclerosis (MS) is a common neuro-inflammatory disorder caused by a combination 

of environmental exposures and genetic risk factors. Interaction between environmental and 

genetic factors may impact on MS risk. 

Objective:  

To determine whether genetic risk modifies the effect of environmental MS risk factors. 

Design and setting:  

Retrospective case-control study using data from a longitudinal cohort (UK Biobank). 

Participants: 

People with MS (pwMS; 72.7% female, mean age=55.2, SD=7.64, median age at 

diagnosis=41.06) were identified using ICD10-coded MS or self-report. The remainder of the 

cohort was used as controls. For interaction, only people with white British ancestry were 

included.  

Exposure(s):  

Confounders: age, sex, Townsend deprivation index at recruitment, self-reported ethnicity, 

birth latitude. Exposures: age at puberty, age at first sexual intercourse, birth weight, 

breastfeeding, exposure to maternal smoking, month of birth, smoking status, body size aged 

10, and self-reported Infectious Mononucleosis. Genetic exposures were HLA-DRB1*15, 

HLA-A*02, and an autosomal non-HLA genetic risk score.  

Main Outcome(s) and Measure(s):  

Associations with MS risk were quantified using odds ratios from multivariable logistic 

regression. Interaction between environmental and genetic risk factors was quantified using 

the Attributable Proportion due to interaction (AP). Departure from additivity refers to the 
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risk of an outcome which exceeds the risk expected from adding individual excess risks (risk 

differences) together. Model fits were quantified using Nagelkerke’s pseudo-R2 metric.  

Results:  

Phenotype data were available for 2151 pwMS and 486,125 controls. Exposures associated 

with MS risk were childhood obesity (OR=1.39, 95%CI 1.22-1.58), smoking (OR=1.19, 

95%CI 1.07-1.33), earlier menarche 0.95, 95%CI 0.92-0.98), HLA-DRB1*15 (ORHomozygote 

5.05, 95%CI 4.22-6.05) and lack of the HLA-A*02allele (ORHomozygote=0.57, 95%CI 0.46-

0.70). The autosomal polygenic risk score (PRS) was associated with MS disease status 

(ORTop-vs-bottom-decile=3.96, 95%CI 3.11-5.04). There was evidence of positive (synergistic) 

interaction between elevated childhood body size and the PRS (AP 0.11, 95% CI 0.008 to 

0.202, p = 0.036), and weaker evidence suggesting a possible interaction between smoking 

status prior to age 20 and the PRS (AP 0.098, 95% CI -0.013 to 0.194, p = 0.082). 

 

Conclusions and Relevance:  

This study provides novel evidence for an interaction between childhood obesity and a high 

burden of autosomal genetic risk. These findings have significant implications for our 

understanding of MS biology, and inform targeted planning of prevention strategies.  
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Introduction 

Susceptibility to Multiple Sclerosis (MS) is multifactorial: both a large heritable component1 

and a number of environmental associations2,3 have been identified through a combination of 

genetic and epidemiological studies. Established environmental exposures associated with 

MS include smoking, obesity during adolescence, vitamin D deficiency, increasing latitude, 

infectious mononucleosis (IM) and Epstein-Barr Virus seropositivity. Additional protective 

associations of CMV seropositivity and breastfeeding, and harmful associations with HHV6 

seropositivity, night shift work, organic solvent exposure, low dietary fatty acids, head injury, 

earlier puberty, and maternal smoking have been identified2,3. 

 

The genetic architecture of MS susceptibility has been delineated through the efforts of the 

International Multiple Sclerosis Genetic Consortium (IMSGC). Meta-analysis of genome-

wide association studies in over 47,000 cases and 68,000 controls revealed 233 independent 

loci, accounting for ~48% of the estimated heritability of MS1. Of the total heritability 

explained by common genetic variation, the Major Histocompatibility Complex (MHC) locus 

accounts for ~20%, and non-MHC for ~20%1. Attempts to model MS risk using polygenic 

risk scores have had some success4–6, supporting the view that MS susceptibility is influenced 

by both MHC and genome-wide variation, that non-genetic factors play a substantial role, 

and that a substantial proportion of population genetic risk is not explained by common 

variants1. 

 

Evidence from Scandinavian and North American cohorts suggests that environmental 

influences on MS risk can be modified by HLA genotype. The deleterious effects of 

childhood obesity, smoking, infectious Mononucleosis, and solvent exposure on MS risk are 

reported to be potentiated among carriers of the HLA DRB1*15 allele and people who do not 
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carry the protective HLA A*02 genotype789–11. It is not known whether such gene-

environment interactions extend beyond the HLA locus in the pathogenesis of MS. 

  

This work sets out to exploit the availability of deep phenotyping and genotype data in UK 

Biobank to validate and extend previous case-control studies examining MS susceptibility. In 

particular, we focus on exposures during early life and adolescence, as these are well-

characterised in the UK Biobank population, and are less likely to be confounded by 

prodromal disease, which may influence behaviour and exposure years before the disease is 

diagnosed.12 

  

Methods 

Data sources 

UK Biobank is a longitudinal cohort study described in detail elsewhere13. In brief, 

participants between the ages of 40 and 69 were recruited between 2006 and 2010 from 

across the UK. Participants underwent genotyping, donated body fluid samples, and answered 

a range of questions about lifestyle, environmental and demographic factors. Health records 

were linked to participants using Hospital Episode Statistics (HES). Phenotype data are 

composed of survey data, linked healthcare records, anthropometric measurements, and a 

variety of other biochemical and imaging data.  

  

Identification of cases and controls 

We determined MS status (case vs control) using the following approach: individuals were 

defined as cases if they had at least one ICD-coded diagnosis of Multiple Sclerosis (ICD10 

G35; ICD9 3409) or if they self-reported a diagnosis of MS. ICD codes in UK Biobank are 
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extracted from HES and refer to diagnoses recorded during a hospital admission/encounter. 

We included all participants with any MS code in either a main or secondary diagnosis field. 

Age at diagnosis was determined using the approximate age of diagnosis from self-report. 

Controls were unmatched UK Biobank participants without a coded diagnosis of MS.  

 

Genotype data 

Individuals were genotyped using the Axiom or Bileve arrays. Genotyping and quality 

control protocols are described in detail elsewhere14. Imputed HLA alleles were provided by 

UK Biobank. HLA alleles were imputed to four-digit resolution using the HLA*IMP:02 

software with a multi-population reference. We extracted each participant’s allelic dosage for 

the MS risk allele HLA-DRB1*15:01 and the protective allele HLA-A*02:01 by thresholding 

posterior allele probabilities at 0.7 as suggested by UK Biobank. These two HLA alleles were 

used as they have the largest effect sizes across multiple studies2. The imputation procedures 

and quality control are described in detail elsewhere14. Genetic principal components and 

kinship coefficients were supplied by UK Biobank.  

  

Construction of a polygenic risk score (PRS) 

A variety of PRS (twenty-eight in total) were created using the clumping-and-thresholding 

approach: 

1.     We extracted variant associations with MS from the discovery stage meta-analysis 

summary statistics obtained from the IMSGC1.  

2.     We excluded variants within the extended MHC (chr6:25,000,000 to 

chr6:35,000,000 on hg19), those with strand-ambiguous alleles (A/T and C/G SNPs), 

and variants without an rsid.  
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3.     We excluded variants with association statistic p values above an arbitrary p value 

threshold (0.01, 0.1, 0.2, 0.4, 0.6, 0.8, and 1).  

4.     We clumped using several r2 thresholds (0.2, 0.4, 0.6, 0.8) and a clumping distance 

of 250kBP, with the 1000 genomes EUR samples as a reference genome.  

  

Reference genome data were obtained from the 503 participants of European ancestry in the 

1000 genomes project15. Only autosomal, biallelic variants which passed quality control in 

both the reference and target (UK Biobank) datasets were included. We excluded all 

duplicate rsIDs, duplicate positions, variants deviating from Hardy-Weinberg Equilibrium (p 

<1e-06), rare variants with minor allele frequencies <0.01, variants with genotype 

missingness <10%, and variants with low imputation quality (R2< 0.3). For genetic analysis, 

individuals with >10% missing genotypes were excluded, and only individuals with self-

reported ‘British’ ethnicity and genetic ‘Caucasian’ ancestry as defined by genetic principal 

components were included. We excluded one of each pair of related individuals (Kinship 

coefficient > 0.0844). A total of 486125 controls and 2151 cases were included in the case-

control study. After exclusion of related individuals, and restricting to only individuals with 

both self-reported and genetic white British ancestry, 375986 controls and 1740 cases 

remained. 

  

Beta coefficients from the IMSGC discovery GWAS were calculated from odds ratios1. 

Standard errors were estimated from odds ratios and p values. Effect allele dosage at each 

locus was multiplied by the beta coefficient to generate the risk score for that locus. Scores 

were standardised to have mean 0 and unit variance for each SNP. For missing genotypes, the 

score at that locus was defined as the mean of all scores at that locus. Risk scores were 
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totalled across the genome to calculate an individual’s score. Analysis was performed in 

PLINK2 using the ‘--score’ flag16,17.  

  

In order to examine gene-environment interactions on the genome-wide scale, twenty-eight 

polygenic risk scores (PRS) for MS were created using the pruning-and-thresholding 

approach excluding the HLA region (see above).  PRS scores were normalised using inverse-

rank normal transformation. Depending on the underlying genetic architecture of the trait, the 

pruning and thresholding parameters which give optimal PRS performance vary18. We 

selected the best-fitting PRS by fitting a logistic regression model with MS status as the 

outcome, and including age, sex, birth latitude, current deprivation, and the first four genetic 

principal components as covariates. We evaluated model fit using Nagelkerke’s pseudo- R2  

metric, comparing the full model to a null model consisting of age, sex, birth latitude, current 

deprivation, and the first four genetic principal components as covariates. The PRS with the 

highest Nagelkerke’s pseudo- R2  metric was used for further analyses17. 

  

Definition of exposures 

All reliably coded exposures pertaining to early life, childhood and adolescence in UK 

Biobank were used. These included variables previously shown to be associated with MS 

risk: month of birth, age at menarche, breastfeeding, comparative body size at age 10 

(CBS10), smoking before the age of 20, and infectious mononucleosis. Age, ethnicity, sex, 

birth latitude, and Townsend deprivation index at recruitment were included as additional 

covariates in all models to control for confounding19. Vitamin D status was not included, as 

only current vitamin D levels are available, which are liable to reverse causation and/or 

confounding. Where multiple data points were available for a participant, the first recorded 
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reading was used. Details on exposures are given in supplementary table 1. This yielded a 

total of twelve exposures selected for analysis. 

  

The number of HES-coded infectious mononucleosis (IM) cases within UK Biobank was 

very small (79 ICD-10 coded cases). IM prevalence in Scandinavian cohorts is around 8-

11%; giving an estimated 50,000 cases in Biobank20. The HES code-derived estimate is likely 

a significant underestimate due to the small proportion of IM cases presenting to secondary 

care. We therefore used self-reported IM status. 

  

Statistical methods 

Multivariable models were built for each risk factor including age, sex, ethnicity, current 

deprivation status, and birth latitude as confounders, using the entire UK Biobank cohort as 

controls. A total of twelve models were built using the selection criteria described above. 

Secondly, a multivariable logistic regression model comprising all environmental factors with 

robust associations to MS risk was built, including the above confounders. Model likelihood 

ratio was used to assess the improvement of model fit after correcting for multiple 

comparisons (p<0.05/12 for 12 models).  

  

For interaction analyses, the CBS10 variable was dichotomised such that participants were 

classified as “not overweight” if they answered “thinner” or “average”, and “overweight” if 

they answered “plumper”. Smoking status was characterised as “ever” or “never” smoking. 

We treated HLA alleles (DRB1*15 and A*02) as additive traits, with each individual coded 

as having 0, 1, or 2 alleles. Age at menarche was treated as a continuous variable. All 
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analyses regarding menarche were restricted to women and models do not include a sex 

term.  

  

Interaction was assessed on both the additive and multiplicative scales. Interaction on the 

additive scale was assessed by calculating the Attributable Proportion due to interaction (AP). 

Additive interaction analyses were based on multivariable logistic regression models 

incorporating age, sex, and the first four genetic principal components as confounders21. 

For a logistic regression model of the form: 

 

In which log(p/1-p) is the log odds of MS, x and y are the values of exposure variables (e.g. 

childhood body size, smoking, polygenic risk score), and xy is the interaction term, then the 

Relative Excess Risk due to Interaction (RERI) can be calculated as: 

 

The AP can be conceived of as the proportion of the disease in the doubly-exposed group 

attributable to the interaction between the risk factors, i.e: 

 

This model can be expanded to include confounding covariates, in which case the beta 

coefficients are adjusted for confounders21. We restricted this analysis to participants with 

genetically European ancestry determined by both self-report (“Caucasian”) and genetic 

ethnic grouping. 
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For interaction analyses using the PRS, covariates were age, sex, birth latitude, Townsend 

deprivation index, and the first four genetic principal components. For the PRS-menarche 

interaction analysis, sex was not included as a covariate as the analysis was restricted to 

females. The PRS was transformed using the inverse-normal transformation and treated as a 

continuous variable for these analyses. Confidence intervals for the AP were estimated using 

bootstrap resampling of the entire dataset with replacement for 10000 iterations21 with 95% 

confidence intervals derived from the 2.5th and 97.5th centile values. Two-sided p values for 

the AP due were calculated from the exact method with a correction for finite sampling, i.e. 

for AP > 0:  

� � 2 �  
1 �  �	
�� �� ��������� � 0

10001
 

Interaction on the multiplicative scale was assessed using a logistic regression model 

incorporating an interaction term and quantified using the likelihood ratio.   

  

Ethical approval 

This work was performed using data from UK Biobank (REC approval 11/NW/0382). All 

participants gave informed consent on Biobank registration and are free to withdraw from the 

study at any point, at which point their data are censored and cannot be included in further 

analyses.  

  

Computing 

This research was supported by the High-Performance Cluster computing network hosted by 

Queen Mary, University of London22.  
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Statistical analyses were performed in R version 3.6.1 using RStudio version 1.2.1335. 

Extraction of European individuals from the 1000 genomes reference genome was conducted 

using vcftools. Construction of the polygenic risk score, application of the polygenic risk 

score to individuals, and quality control were performed in PLINK 1.9 and PLINK2.  

  

Results 

Population demographics 

Phenotype data were available for 488,276 UK Biobank participants comprising 2151 people 

with MS (pwMS) and 486,125 unmatched controls. Among pwMS, the median age at 

diagnosis was 41.06 (IQR 14.28). Demographic characteristics of people with pwMS and 

unmatched controls (entire UK Biobank cohort) are shown in table 1.  

  

Exposures associated with MS in UK Biobank 

  

After adjustment for age, sex, ethnicity, birth latitude and current deprivation, factors 

associated with increased risk of MS were higher CBS10, smoking, earlier menarche, carriage 

of the HLA DRB1*15:01 risk allele, and lack of the protective HLA A*02:01 allele (table 2, 

Fig. 1). The estimate for IM was imprecise (OR 1.70, 95% CI 0.88 to 3.23), likely due to the 

small number of IM cases in this analysis (Fig. 1). We did not examine interactions between 

genotype and IM because IM was not clearly associated with MS risk in this analysis. 

  

Gene-environment interactions 

To analyse gene-environment interactions we used data from unrelated individuals of 

European descent, yielding 375986 controls and 1740 cases. We selected the best-fitting PRS 
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using Nagelkerke’s pseudo- R2metric (methods) (Fig. 2). Participants in the highest score 

decile of the best performing score were more likely to have MS than those in the lowest 

decile (OR 3.96, 95% CI 3.11-5.04). The PRS added a modest amount of additional 

explanatory power to models containing HLA, environmental risk factors (for this analysis, 

only smoking and CBS10 to avoid excluding males), and a combination of the two (Fig. 2), 

suggesting that the PRS captures genetic risk which is independent of the effects of these 

other predictors.  

There was evidence of positive (synergistic) interaction between elevated childhood body 

size and the PRS (AP 0.11, 95% CI 0.008 to 0.202, p = 0.036), although this did not survive 

multiple comparison testing (threshold p = 0.05/9). We found weaker evidence suggesting a 

possible interaction between smoking status prior to age 20 and the PRS (AP 0.098, 95% CI -

0.013 to 0.194, p = 0.082). There was no evidence of additive interaction between age at 

menarche and the PRS (table 3, Fig. 3), nor was there strong evidence of multiplicative 

interaction between the PRS and any of these three exposures (data not shown). To illustrate 

the practical importance of these putative interactions, we performed stratified logistic 

regression modelling the effect of childhood body size and smoking for individuals in the 

highest and lowest PRS decile groups. The effects of childhood obesity (ORMS|Overweight & high 

PRS 1.40, 95% CI 1.08 - 1.83; ORMS|Overweight & low PRS OR 1.03, 95% CI 0.56 - 1.83) and 

smoking status prior to age 20 (ORMS|Smoker & high PRS 1.48, 95% CI 1.14 to 1.92; ORMS|Smoker & 

low PRS 1.11, 95% CI 0.64 to 1.92) on MS risk were more pronounced for the highest PRS 

decile than the lowest PRS decile (Fig. 3). We were unable to demonstrate strong evidence 

for interaction between HLA genotype and any of the environmental exposures tested, 

however the estimates were highly imprecise (Fig. 3, table 3). There was no evidence of 

statistically significant interaction on the multiplicative scale for any traits (data not shown). 
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Discussion 

In this study we used data from UK Biobank to further our understanding of how gene-

environment interactions contribute to MS risk. We demonstrate suggestive evidence of a 

novel interaction on the additive scale between autosomal genetic risk for MS and childhood 

body size. In addition, we replicate the associations between smoking, childhood body size, 

early menarche, and MS risk. We found no clear evidence of interaction on the additive scale 

between these risk factors and HLA genotype. 

Polygenic risk scores (PRS) capture the genetic risk conferred by genome-wide variation. 

The autosomal PRS in this study - which excluded variation within the MHC - captured a 

small proportion of overall MS liability, but was robustly associated with MS. Previous 

efforts using PRS from the IMSGC explained up to ~3% of liability5. The best-performing 

PRS in this study explained ~1% of MS liability. This discrepancy could be explained by 

several factors, including the relatively low number of cases in UK Biobank, the possibility 

of missed cases, the possibility of self-report being less accurate than clinical diagnosis, 

differences in population structure, restriction according to self-declared ethnicity and 

ethnicity as determined by genetic principal components analysis, and some SNPs not being 

available/failing QC checks in Biobank. Nevertheless, despite the low overall liability 

captured, the validity of the PRS is underscored by the monotonic relationship between PRS 

and OR of MS, the robust model fit when using the PRS to model MS risk, and the disease-

specificity of the PRS.   

 

We provide suggestive evidence that the impact on MS risk of elevated childhood body size 

is intensified among individuals with a high genomic risk of MS. Although these results 

should be interpreted cautiously in light of the lack of prospective data, they suggest that - on 

a population level - preventing childhood obesity may prevent greater numbers of MS cases 
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among high-risk individuals. To our knowledge, this is the first evidence of interaction 

between an environmental risk factor for MS and genome-wide, non-HLA risk3. It should be 

noted that this PRS, as is common, would not perform well for individual risk prediction 

given the substantial overlap in score distributions between control participants and pwMS18. 

Our results also suggest that there may be a similar direction of effect for smoking prior to 

aged 20, however the lack of precision in this estimate warrants caution in interpreting this 

result.  It should be noted that the method we use for estimating p values of the attributable 

proportion due to interaction (taking the absolute number of replicates above or below 0) is 

conservative compared to asymptotic tests, which assume that the test statistic follows a 

distribution (e.g. the z distribution).  

  

Our failure to replicate the observed interactions between HLA genotypes, smoking, and 

childhood body size789 could be explained by methodological differences between our study 

and published literature. Our cohort is likely to differ in key respects from the Kaiser 

Permanente and EIMS cohorts in that UK Biobank is a participants are predominantly 

Caucasian, from relatively affluent parts of the UK, are self-selecting and are middle-ages 

(recruitment from 40-69). We control for different covariates in our interaction analyses 

(using principal components to account for ancestry) and we used imputed HLA alleles to 

four-digit resolution. UK Biobank survey data is also prone to recall bias as it is 

retrospective. Prospective data – as has been used to demonstrate the HLA-environmental 

interactions - are likely to provide more reliable estimates of gene-environment interactions, 

and thus we would interpret the lack of HLA-environment interactions in our study with 

caution, as an absence of evidence rather than evidence of absence.  
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The limited overall liability explained by the PRS, the relatively small absolute number of 

people with MS, and the imperfect nature of self-reported phenotypes all limit the 

interpretation of these results. The inherent biases that come with retrospective survey data, 

using prevalent rather than incident cases, and the lack of some known important exposures 

in the dataset (childhood vitamin D levels were not available) are further limitations. MS 

prevalence in UK Biobank approaches the expected UK prevalence, suggesting that the 

majority of individuals with MS are correctly identified.  

 

This study thus provides novel suggestive evidence that childhood body size – and possibly 

smoking - interacts with non-HLA MS genetic risk. It additionally replicates the associations 

between childhood BMI, smoking, earlier menarche, and MS. Demonstrating benefit for 

preventive measures in rare, complex diseases like MS is a challenge due to the low 

population incidence and the small effects of individual interventions. Power can be 

enhanced by enriching for high-risk individuals, and by selecting individuals who are likely 

to experience greater benefit from the intervention. As the effects of childhood body size and 

smoking on MS risk appear greater among individuals with a high genome-wide genetic risk, 

trials attempting to demonstrate benefit of smoking prevention/cessation may benefit from 

risk-stratifying individuals using this approach.  
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Figure and table legends 

Figures 

Figure 1: odds ratios and 95% confidence intervals for the association of each exposure with 

MS. ORs and Cis are from the output of a multivariable logistic regression with the following 

covariates: age, sex, ethnicity, birth latitude, current deprivation status, and the exposure in 

question. For menarche (females only) and voice-breaking (males-only), sex was not 

included as a covariate.  

Figure 2: A: Nagelkerke’s pseudo- R2 metric for each of the individual PRS used. The R2 was 

calculated by comparing the model fit (age, sex, birth latitude, Townsend deprivation index, 

the first 4 genetic PCs, and PRS) vs the null model (age, sex, birth latitude, Townsend 

deprivation index, and the first 4 genetic PCs). A variety of p value thresholds and clumping 

parameters were used to create different PRS. Note that the clumping R2 refers to the linkage 

disequilibrium threshold within which variants were ‘clumped’, and is a different quantity 

from the Nagelkerke pseudo- R2. B: odds ratios and 95% confidence intervals for MS for 

individuals in each PRS decile (reference: lowest decile). ORs were calculated from logistic 

regression models with the following covariates: age, sex, first 4 genetic PCs, and PRS. C: 

histogram showing PRS distributions among MS cases and controls. D: Nagelkerke pseudo- 

R2 metric for models of MS risk. Models were as follows: PRS: MS risk ~ age + sex + first 4 

genetic PCs + PRS. HLA: MS risk ~ age + sex + first 4 genetic PCs + HLA genotypes. ENV: 
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MS risk ~ age + sex + first 4 genetic PCs + childhood BMI + smoking. HLA + PRS: MS risk 

~ age + sex + first 4 genetic PCs + HLA genotypes + PRS. HLA+ENV: MS risk ~ age + sex 

+ first 4 genetic PCs + HLA genotypes + childhood BMI + smoking. HLA+PRS+ENV: MS 

risk ~ age + sex + first 4 genetic PCs + HLA genotypes + PRS  + childhood BMI + smoking.  

Figure 3: A: Forest plot demonstrating Attributable Proportion due to interaction (AP) and 

95% CIs for interactions between environmental exposures and genetic risk factors for MS. If 

there is no interaction, the AP is 0. AP > 1 indicates positive interaction (combined effects 

exceed the sum of the individual effects), and vice-versa. APs depicted are derived from 

logistic regression adjusted for age, sex, and the first 4 genetic principal components. CIs are 

derived from taking the 2.5th and 97.5th percentiles of 10000 bootstrap replicates. B: forest 

plot demonstrating odds ratios and 95% CIs for MS given childhood body size (overweight 

vs not overweight) and smoking status at aged 20 (smoker vs non-smoker). ORs are from the 

output of logistic regression model of the form MS risk ~ Age + Sex + first 4 genetic PCs. 

Models were built separately for individuals with the highest 10% of genetic risk scores and 

the lowest 10% of genetic risk scores (‘top’ and ‘bottom’ decile respectively).  
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Tables 

Table 1: demographic characteristics of included participants. Continuous variables are 

presented as mean(SD), categorical variables are presented as n(%). Missing data are not 

tabulated. Proportions are calculated as a proportion of individuals with non-missing data for 

each variable.  

Table 2: odds ratios for Multiple Sclerosis for each exposure studied. The first three columns 

depict the multivariable odds ratios from the output of regression models incorporating age, 

sex, ethnicity, birth latitude and current deprivation as covariates. Predictors which conferred 

good model fit (likelihood ratio p value < multiple testing threshold for alpha=0.05) were 

combined in a second model (fourth and fifth columns). This model included all of the above 

covariates plus comparative body size aged 10, smoking status, age at menarche, and HLA 

genotype.  

 

Table 3: additive interaction terms and 95% confidence intervals for significant categorical 

predictors of MS risk.  
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Table 1: demographic characteristics of included participants. Continuous variables are 

presented as mean(SD), categorical variables are presented as n(%). Missing data are not 

tabulated. Proportions are calculated as a proportion of individuals with non-missing data for 

each variable.  

TRAIT CONTROLS CASES 

AGE 56.54 (8.09) 55.16 (7.64) 

SEX   

FEMALE 263150  ( 54.13 %) 1563  ( 72.66 %) 

MALE 222975  ( 45.87 %) 588  ( 27.34 %) 

COUNTRY OF BIRTH   

UK 446458  ( 92.09 %) 2060  ( 95.99 %) 

NON-UK 38324  ( 7.91 %) 86  ( 4.01 %) 

ETHNICITY   

WHITE 458046  ( 94.69 %) 2100  ( 98.22 %) 

NON-WHITE 25669  ( 5.31 %) 38  ( 1.78 %) 

A*02 ALLELES   

0 264819  ( 54.48 %) 1366  ( 63.51 %) 

1 186045  ( 38.27 %) 676  ( 31.43 %) 

2 35261  ( 7.25 %) 109  ( 5.07 %) 

DRB1*15 ALLELES   

0 360497  ( 74.16 %) 1084  ( 50.4 %) 

1 115808  ( 23.82 %) 914  ( 42.49 %) 

2 9820  ( 2.02 %) 153  ( 7.11 %) 

BIRTH LATITUDE 360105.64 (162180.95) 359723.28 (167494.39) 

BIRTH WEIGHT (KG) 3.32 (0.67) 3.28 (0.68) 

MONTH OF BIRTH   

APRIL 41724  ( 8.58 %) 184  ( 8.55 %) 

AUGUST 40074  ( 8.24 %) 186  ( 8.65 %) 

DECEMBER 39050  ( 8.03 %) 161  ( 7.48 %) 

FEBRUARY 38684  ( 7.96 %) 168  ( 7.81 %) 

JANUARY 41058  ( 8.45 %) 172  ( 8 %) 

JULY 41201  ( 8.48 %) 181  ( 8.41 %) 

JUNE 40989  ( 8.43 %) 176  ( 8.18 %) 

MARCH 43665  ( 8.98 %) 194  ( 9.02 %) 

MAY 43666  ( 8.98 %) 201  ( 9.34 %) 

NOVEMBER 37129  ( 7.64 %) 174  ( 8.09 %) 

OCTOBER 39266  ( 8.08 %) 183  ( 8.51 %) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2020. ; https://doi.org/10.1101/2020.03.01.971739doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.01.971739
http://creativecommons.org/licenses/by-nc-nd/4.0/


TRAIT CONTROLS CASES 

SEPTEMBER 39619  ( 8.15 %) 171  ( 7.95 %) 

BREASTFED   

NO 102542  ( 27.61 %) 537  ( 30.72 %) 

YES 268847  ( 72.39 %) 1211  ( 69.28 %) 

MATERNAL SMOKING   

NO 296365  ( 70.73 %) 1311  ( 70.67 %) 

YES 122652  ( 29.27 %) 544  ( 29.33 %) 

AGE COMPLETED FULL-TIME 

EDUCATION 

16.72 (2.33) 16.95 (2.41) 

AGE HAD SEXUAL 

INTERCOURSE 

19.11 (3.89) 18.75 (3.87) 

AGE AT MENARCHE 12.97 (1.62) 12.78 (1.66) 

COMPARATIVE BODY SIZE 

AGED 10 

  

THINNER 158648  ( 42.72 %) 581  ( 33.24 %) 

AVERAGE 241829  ( 65.11 %) 1104  ( 63.16 %) 

PLUMPER 75381  ( 20.3 %) 427  ( 24.43 %) 

AGE AT VOICE BREAKING   

AVERAGE 182877  ( 89.71 %) 481  ( 87.77 %) 

YOUNGER 8926  ( 4.38 %) 33  ( 6.02 %) 

OLDER 12043  ( 5.91 %) 34  ( 6.2 %) 

SMOKER AGED <20   

NO 394287  ( 81.11 %) 1718  ( 79.87 %) 

YES 91838  ( 18.89 %) 433  ( 20.13 %) 

PREVIOUS IM   

NO 484970  ( 99.76 %) 2139  ( 99.44 %) 

YES 1155  ( 0.24 %) 12  ( 0.56 %) 

CURRENT TOWNSEND 

DEPRIVATION INDEX 

-1.31 (3.09) -1.38 (3.06) 
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Table 2: odds ratios for Multiple Sclerosis for each exposure studied. The first three columns 

depict the multivariable odds ratios from the output of regression models incorporating age, 

sex, ethnicity, birth latitude and current deprivation as covariates. Predictors which conferred 

good model fit (likelihood ratio p value < multiple testing threshold for alpha=0.05) were 

combined in a second model (fourth and fifth columns). This model included all of the above 

covariates plus comparative body size aged 10, smoking status, age at menarche, and HLA 

genotype.  

 MODEL ADJUSTED FOR AGE, SEX, ETHNICITY, BIRTH 

LATITUDE, AND DEPRIVATION 

MODEL ADJUSTED FOR AGE, SEX, 

ETHNICITY, BIRTH LATITUDE, 

DEPRIVATION, AND INCLUDING ALL 

COVARIATES ASSOCIATED WITH MS 

 OR (95% CI) P Value Likelihood 

ratio p value 

OR (95% CI) P Value 

HLA DRB1*15 ALLELES   3.04E-115   

1 2.55 (2.33 - 2.8) 1.69E-88  2.54 (2.31 - 2.79) 2.48E-86 

2 5.04 (4.22 - 6.02) 4.92E-71  5.05 (4.22 - 6.05) 3.46E-70 

HLA A*02 ALLELES   1.36E-20   

1 0.66 (0.6 - 0.73) 6.13E-17  0.66 (0.6 - 0.73) 1.86E-16 

2 0.57 (0.46 - 0.69) 3.36E-08  0.57 (0.46 - 0.7) 5.79E-08 

BIRTH WEIGHT 0.97 (0.89 - 1.06) 0.539171 0.539438985   

MONTH OF BIRTH   0.975713464   

AUG 1.04 (0.84 - 1.28) 0.732411    

DEC 0.93 (0.74 - 1.15) 0.499897    

FEB 0.95 (0.76 - 1.18) 0.649151    

JAN 0.93 (0.75 - 1.16) 0.518807    

JUL 0.96 (0.77 - 1.18) 0.678821    

JUN 0.94 (0.76 - 1.17) 0.577315    

MAR 1 (0.81 - 1.23) 0.994643    

MAY 1.01 (0.82 - 1.25) 0.8998    

NOV 1.03 (0.83 - 1.28) 0.778539    

OCT 1.07 (0.86 - 1.32) 0.553756    

SEPT 0.99 (0.8 - 1.23) 0.915099    

BREASTFED 0.99 (0.88 - 1.1) 0.798447 0.798604505   

COMPARATIVE BODY SIZE AGED 10   3.84E-06   

AVERAGE 1.19 (1.07 - 1.32) 0.001352  1.19 (1.07 - 1.32) 0.001385521 

PLUMPER 1.39 (1.22 - 1.58) 7.67E-07  1.39 (1.22 - 1.58) 6.72E-07 

EXPOSED TO MATERNAL SMOKING 0.94 (0.85 - 1.05) 0.275974 0.274170936   

AGE AT MENARCHE 0.93 (0.9 - 0.96) 4.54E-05 4.25E-05 0.95 (0.92 - 0.98) 0.002185041 

RELATIVE AGE AT VOICE BREAKING   0.194365056   
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YOUNGER THAN AVERAGE 1.41 (0.99 - 2.01) 0.059277    

OLDER THAN AVERAGE 0.98 (0.68 - 1.42) 0.927958    

SMOKER AGED <20 1.21 (1.08 - 1.35) 0.000911 0.001124345 1.19 (1.07 - 1.33) 0.002151235 

AGE FIRST HAD SEXUAL INTERCOURSE 0.99 (0.97 - 1) 0.054173 0.05036614   

PREVIOUS IM 1.7 (0.88 - 3.28) 0.115743 0.147382119   

Table 3: additive interaction terms and 95% confidence intervals for significant predictors of 

MS risk and their interaction with HLA genotype and the genome-wide polygenic risk score 

(PRS).  

 

ENVIRONMENT

AL EXPOSURE 

GENETIC RISK 

FACTOR 

AP 95% LOWER CI 95% UPPER CI P VALUE 

CHILDHOOD 

BMI 

A*02 -0.150760249 -0.45315 0.100878 0.250575 

MENARCHE A*02 0.114768285 -0.04547 0.491886 0.233177 

SMOKING AGED 

<20 

A*02 0.042817986 -0.21541 0.255306 0.738926 

CHILDHOOD 

BMI 

DRB1*15 0.086845636 -0.06554 0.204275 0.234377 

MENARCHE DRB1*15 -0.041392527 -0.10011 0.042104 0.271773 

SMOKING AGED 

<20 

DRB1*15 0.007479754 -0.15018 0.134183 0.924508 

CHILDHOOD 

BMI 

PRS 0.111913013 0.007967 0.202299 0.035996 

MENARCHE PRS -0.018559382 -0.07235 0.051991 0.579342 

SMOKING AGED 

<20 

PRS 0.097967464 -0.01324 0.194468 0.081792 
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Supplementary table 1: definitions of covariates extracted from UK Biobank.  

 

Variable Method of data acquisition UK Biobank URL 

Sex Registry http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=31 

Month of birth Registry http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=52 

Age at recruitment Derived from birth date and date 

of 1st assessment 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21022 

Place of Birth in 

UK North Co-

ordinate (latitude) 

Verbal interview http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=129 

Townsend 

Deprivation  

Index at 

recruitment 

Derived from census data and 

postcode 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=189 

Breastfeeding 

status 

Touchscreen question: “Were 

you breastfed when you were a 

baby?” 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1677 

Age at voice 

breaking 

Touchscreen question "When did 

your voice break?" 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2385 

Age at menarche Touchscreen question "How old 

were you when your periods 

started?" 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2714 

Age first had 

sexual intercourse 

Touchscreen question "What was 

your age when you first had 

sexual intercourse? (Sexual 

intercourse includes vaginal, oral 

or anal intercourse)" 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2139 

Smoking status  Derived from 2 touchscreen 

questions: 

1. "Do you smoke tobacco 

now?" 

2. "In the past, how often 

have you smoked 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20116 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=3436 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=2867 
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tobacco?" 

And for current/previous 

smokers, age when started 

smoking was derived from the 

question "How old were you 

when you first started smoking 

on most days?" 

Comparative body 

size aged 10 

Touchscreen question: "When 

you were 10 years old, compared 

to average would you describe 

yourself as:" 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1687 

Ethnicity Derived from several touchscreen 

questions 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=21000 

Birth weight (Kg) Touchscreen http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20022 

Infectious 

mononucleosis 

Self-reported 

 

 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20002 

Multiple sclerosis HES records - 

ICD10 G35; ICD9 3409 

Self-reported 

Multiple 

Maternal smoking 

around the time of 

birth 

Touchscreen question: "Did your 

mother smoke regularly around 

the time when you were born?" 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=1787 

Other diseases 

(PD, SLE, RA, 

IBD etc) 

Self-reported 

 

 

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=20002 
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