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Abstract  

Background: Understanding complex body-brain processes, and putative interplay between 

adipose tissue and brain health, is of vital importance for brain and somatic disease prevention 

in the general population. We studied the link between body composition and brain structure 

through large-scale investigation in a healthy population without secondary disease effects.  

Methods: We processed brain magnetic resonance imaging (MRI) data and extracted measures 

of brain morphometry from 19,330 healthy UK Biobank participants, of which a subset 

(n=2,703) had body MRI. We investigated associations between brain structure and (i) 

anthropometric body composition measures, and (ii) regional/specific body MRI measures of 

abdominal fat and muscle tissue.  

Findings: We identified highly significant body-brain associations (p-values≤0·0002). 

Anthropometric measures showed negative, nonlinear, associations with cerebellar/cortical 

gray matter, and brain stem structures, negative associations with white matter, and positive 

associations with ventricular volumes. Subcortical structures exhibited mixed effect 

directionality, with strongest positive association for accumbens. Among body MRI measures, 

liver fat was negatively associated with thinner/lower cortical gray matter thickness/volume, 

and thigh muscle volume positively associated with accumbens volume.  

Interpretation: We demonstrate significant body-brain associations, and map individual 

differences in body composition to brain morphology in healthy individuals. Common 

measures of body composition correlated negatively with cerebellar and cortical structures and 

positively with the accumbens, a dopamine rich structure involved in reward processing. These 

findings of a relationship between brain anatomy and body composition provide new insight 

into body-brain processes and suggest shared mechanisms of cardiometabolic risk factors and 

brain disorders. This may form the foundation for a new type of prevention studies, and 

provides a framework for studies of underlying mechanisms related to unhealthy lifestyle and 

obesity, with implications for public health and prevention.  

Funding: The Research Council of Norway, South-Eastern Norway Regional Health Authority, 

European Union's Horizon 2020 Research and Innovation Programme & European Research 

Council.   
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Research in context  

Evidence before this study  

Prior studies have indicated an association between brain structure and both obesity and 
fitness levels - of opposing directionality. Despite this, normal body-brain association 
patterns in healthy individuals have not been established, and the causal mechanisms are 
unclear. To enhance our understanding and establish the link between the body and the 
brain, we saw the need for large-scale investigations in healthy populations. For the study, 
we searched the PubMed database from March 12th, 2019, through February 25th, 2020, 
for scientific literature related to adipose tissue, body composition, brain morphology, and 
body and brain MRI. Search terms included: body fat, adipose tissue, 
subcutaneous/visceral adipose tissue, liver fat, body composition, anthropometric 
measures, body mass index, waist circumference, waist-to-hip ratio, adiposity, obesity, 
metabolic syndrome, cardiovascular, cardiometabolic, disease/disorder, muscle volume, 
fitness, brain structure, brain morphology, brain MRI, and body MRI. We based the 
scientific foundation on review studies, meta-analyses, and other larger studies, but 
generally excluded smaller studies, and thereby lowering the risk of evidential bias such 
as winner's curse, although this does not eliminate the risk of publication bias.  

 

Added value of this study  

In the largest study, to date, including 19,330 healthy participants without secondary 
disease effects, we provide insight into normal body-brain processes by identifying body-
brain associations that map normally varying body composition to brain morphology.  

 

Implications of all the available evidence  

We identified body-brain associations that give insight into normal physiological body-
brain processes in healthy individuals, providing a reference point for studies of underlying 
mechanisms related to unhealthy lifestyle, obesity, and disorders of the body and the brain. 
Whereas the directionality and causal chain is unknown, these findings have potential 
implications for public health and disease prevention.  
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Introduction  

Obesity is a risk factor for disorders of both the body1 and the brain,1,2 and represents a global 

health challenge. Although causal mechanisms remain unclear, the associations between brain 

and physical health likely reflect body-brain interactions and common mechanisms across the 

soma and the mind. Indeed, patients with mental disorders show subtle structural brain 

alterations as revealed using brain imaging,3 and are at increased risk for poor physical health, 

including obesity, metabolic syndrome, cardiovascular disorders, and shorter life-expectancy.4 

Yet, how these factors relate to brain health remains poorly understood.  

Cross-sectional brain magnetic resonance imaging (MRI) studies have documented negative 

associations between obesity/poor metabolic health and gray matter volumes5–9 and white 

matter microstructure,5,6 while there is conflicting evidence for white matter volume.5,6 It is not 

clear how different aspects of obesity, e.g. adipose tissue distribution, or intra-abdominal fat - 

a known risk factor for adverse health outcomes1,10 - relate to brain health. Nonlinear 

associations are a common phenomenon in neuroimaging (e.g. accelerated brain atrophy at 

higher ages11), yet it is unknown whether aspects of obesity are nonlinearly related to brain 

structure. The genetic contribution to obesity is substantial and interacts with the environment, 

lifestyle, and sex.12 Additionally, body composition/obesity, as well as brain structure, are 

modifiable and sensitive to environmental and lifestyle factors, and sex. Indeed, physical fitness 

and activity have been positively associated with gray and white matter volumes13, indicating 

their importance for brain health, while negative associations have been reported for mobility 

impairment.14  

Prior studies have largely investigated associations between brain structure and anthropometric 

measures (e.g. body mass index (BMI), waist-to-hip ratio (WHR)), which are informative, but 

nonspecific measures of body composition. In contrast, body MRI enables more specific and 

detailed in vivo measures of regional fat and muscle distribution, allowing for individual body 

composition profiling which has relevance for clinical prediction.15 How, and to what degree, 

these body MRI measures relate to individual differences in brain structure is unknown.  

The pathophysiological mechanisms of psychiatric disorders, and other brain disorders, have 

proven elusive. To disentangle these complex and multifactorial mechanisms, with each 

contributing factor having small effects, we need an improved foundational understanding of 

normal body-brain connections in healthy individuals. To accurately capture such small effects, 
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and thereby improve our understanding of normative body-brain connections, large-scale 

investigations are needed.16  

To this end, we tested for associations between body composition and brain structure in healthy 

individuals aged 44 to 82 years using anthropometric measures and brain (n=19,330) and body 

(n=2,703) MRI from the UK biobank.17 Based on prior studies5–9,13 we expected brain structure 

to show negative associations with body composition measures, possibly with stronger 

associations for intra-abdominal fat, and positive associations with muscle volume. Through 

large-scale mapping, we hypothesized that we would obtain insight into, and identify robust 

patterns of normal body-brain connections, in a healthy population.  

 

Methods  

Study design and participants  

We included 19,330 healthy UK biobank participants (10,104 women, 9,226 men) with brain 

MRI and anthropometric measures (i.e. the full sample). A subsample (n=2,703) had body MRI 

measures available. We excluded participants with known diagnosis of cancers, selected 

traumas, neurological, psychiatric, substance abuse, cardiovascular, liver, or severe infectious 

conditions (Note S1), with incomplete demographic or clinical data, or who withdrew their 

consent. We did not exclude based on common metabolic syndrome or lifestyle factors, but 

adjust for these in the analyses.  

UK biobank has IRB approval from North West Multi-center Research Ethics Committee and 

its Ethics Advisory Committee (https://www.ukbiobank.ac.uk/ethics) oversees the UK biobank 

Ethics & Governance Framework.17 We obtained access to the UK biobank cohort through 

Application number 27412. The study was approved by the Regional Committees for Medical 

and Health Research Ethics (https://helseforskning.etikkom.no), and conducted in accordance 

with the Helsinki Declaration.  
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Demographic and clinical data  

We extracted demographic and clinical data (age, sex, ethnicity), and variables reflecting 

cardiovascular risk (including history of diabetes, hypercholesterolemia, hypertension, current 

cigarette smoker, current alcohol consumption), and body composition (waist/hip 

circumference, weight, height). We computed BMI and WHR (Table 1; Note S2).  

 

MRI acquisition  

Participants underwent 3T brain and 1·5T body/liver MRI on the same day and site. Brain MRI 

was available from three sites (Cheadle, Reading, and Newcastle), while body/liver MRI was 

from one site (Cheadle). Similar scanners/protocols were used across all sites17 (Note S3).  

 

MRI processing  

We processed brain MRI DICOM images in-house using FreeSurfer (version 5·3·0; 

http://www.freesurfer.net). We extracted mean cortical thickness and white surface area from 

the cortical parcellation, and volumes of cortical/cerebellum gray/white matter, brain stem, 

CSF, lateral ventricle, third ventricle, thalamus, hippocampus, amygdala, accumbens, caudate, 

putamen, and pallidum. For bilateral measures, we computed the average across the 

hemispheres. Additionally, we extracted Euler numbers as a proxy of image quality.  

We extracted body and liver MRI data processed for abdominal and liver fat, and thigh muscle 

volumes. Body MRI was processed for visceral adipose tissue (VAT), abdominal subcutaneous 

adipose tissue (ASAT), total abdominal adipose tissue (VAT+ASAT), and total thigh muscle 

volume (TTMV) by AMRA (https://www.amramedical.com). Liver MRI was processed for 

liver proton density fat fraction (PDFF) by Perspectum Diagnostics (https://perspectum-

diagnostics.com/) (Note S4).  
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MRI quality control  

Among the 33,303 participants with available brain MRI, 21,395 met the inclusion criteria. Of 

these, we excluded two participants with missing Euler numbers prior to iteratively excluding 

Euler outliers defined as participants with higher negative Euler numbers that exceeded three 

standard deviations from the mean in either hemisphere. We iterated until no outliers remained, 

resulting in eight iterations. This led to further exclusion of 2063 participants, yielding a total 

sample of n=19,330 (Figure S1; Note S5).  

For body MRI, participants labelled with severe motion artifacts, corrupted data, broken coil 

element, outer field-of-view inhomogeneities, or metal contamination were removed. We 

further excluded participants with incomplete measures. In total, 857 participants were 

excluded, largely due to missing liver PDFF measures (n=676), yielding a total body MRI 

subsample of n=2,703 (Figure S1).  

 

Statistical analysis  

We investigated the sample demographics across and within sexes. Categorical variables were 

compared using χ2-test. For normally/non-normally distributed continuous variables we used 

the two-sample t-test/Wilcoxon rank-sum test. For unequal variance across sexes, t-test was 

replaced by Welch approximation. Normality was assessed by visual evaluation of density plots 

(Figure S2-S3). For brain structure, we assessed density plots for expected distribution patterns 

(Figure S4-S5), and scatter plots of body-brain associations (Figures S6-S13).  

For descriptive purposes, and to establish fundamental properties of the dataset, we initially 

assessed age- and sex-related associations on body composition and brain structure using a 

three-step multiple linear regression approach: model 1a included age, age2, and sex; model 1b 

additionally included age-by-sex and age2-by-sex interactions; and model 1c additionally 

included metabolic/lifestyle variables, including ethnicity (relates to ethnic differences in 

adipose tissue distribution/accumulation10), current cigarette smoking (yes/no), current alcohol 

consumption (yes/no), diabetes (yes/no), hypertension (yes/no), and hypercholesterolemia 

(yes/no). Model 1c was only applied to body composition measures.  
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In the main analyses, building upon model 1b/c, we tested for linear and quadratic associations 

between brain structure (dependent variable) and body composition, specifically (i) 

anthropometric measures, and (ii) regional/specific body MRI measures. We used a three-step 

multiple linear regression approach: model 2a included linear body composition term; model 

2b additionally included a quadratic body composition term; and model 2c additionally included 

metabolic/lifestyle variables. Model 2a/b extends model 1b, while model 2c extends model 1c.  

We used regression models of incremental complexity to motivate the fully adjusted models, 

and to explore the importance of nonlinearities in body-brain association. Separate analyses 

were conducted for the full sample and body MRI subsample (when applicable). For brain MRI, 

we additionally adjusted for intracranial volume (except cortical thickness), image quality 

(average Euler number), and site (when applicable). Categorical variables were included as 

factors, continuous variables were mean-centered.  

We evaluated model residuals for normality using residual vs fitted value and Q-Q plots, 

leading to log-transformation of dependent variables for models showing a significant departure 

from normality, namely: all outcomes for sample description analyses of body composition, 

and CSF, lateral, and third ventricle volumes for brain MRI analyses (Figures S14-S19 presents 

selected illustrations). Remaining dependent variables were not log-transformed.  

All statistical analyses were conducted in R (version 3·5·2; https://www.r-project.org). We used 

lm for the regression analyses (Note S6 presents pseudocode), and computed the partial 

correlation coefficients, r, effect size directly from the t-statistics for continuous variables and 

via Cohen’s d for categorical variables.18 We used Bonferroni correction to adjust for multiple 

comparison at α=0·05 across N independent tests, defined as N=(3+8)(1+17)+17=215, which 

is the number of regression models from sample description and main analyses for both the full 

sample and body MRI subsample, counting partly overlapping models once. This resulted in a 

study-wide significance threshold of p≤α/N=0·0002. We present the overall global picture of 

significant findings from model 2c, and the range of p-values and r effect sizes (absolute values; 

indicated by |r|). The full results are presented in the supplemental material.  
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Role of funding source  

The funding source did not contribute to study design, data collection, analysis, interpretation, 

manuscript preparation, or decision to submit the manuscript for publication. The 

corresponding author (TPG) had full access to the data, and TPG, TK, LTW, and OAA had 

final responsibility for the decision to submit for publication.  

 

Results  

Demographic variables  

The full subject sample (n=19,330) included more women (n=10,104; 52·3%) than men 

(n=9226; 47·7%), and was largely of self-identified European ancestry (96·8%). The age-range 

was 44-82 years. Compared to women, men had significantly higher age, more alcohol 

consumers and cigarette smokers, higher anthropometric measures (except hip circumference), 

and more were diagnosed with diabetes, hypercholesterolemia, and hypertension (Table 1; 

Figure S2). Similarly, the body MRI subsample (n=2,703) included more women (n=1,496; 

55·4%) than men (n=1,207; 44·7%), the age-range was 46-77 years, and men had higher age 

and more adverse factors than women (Table S1; Figure S3).  

Primarily for descriptive purposes, the sample characteristics were further explored for age- 

and sex-effects on body composition and brain structure in Note S7.  

 

Brain structure and anthropometric measures  

Analyses in the full sample revealed a robust body-brain association pattern, and we observed 

overall negative and nonlinear associations between anthropometric body composition 

measures and global brain volumes, and positive associations with accumbens (Figures 1, S6-

S8). Using model 2c (Figure 2a), the largest negative effect sizes were observed for cerebellum 

gray matter, brain stem, and cortical gray matter volumes, mean surface area, and cortical 

thickness (Figure 2b), together with significant quadratic terms suggestive of negative and 

accelerating reductions for cerebellum gray matter, brain stem, and cortical gray matter volume 
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and thickness (Figure 2c) with higher anthropometric measures. We also observed decreasing 

cortical and cerebellum white matter volumes with increasing body composition measures, with 

indications of accelerating differences for cerebellum white matter volume. There were positive 

associations between anthropometric measures and CSF, third ventricle, and lateral ventricle. 

Lateral ventricle also displayed positive quadratic associations suggestive of accelerated 

expansion. Subcortical structures exhibited mixed results. Higher anthropometric measures 

were negatively associated with pallidum, and hippocampus, and positively associated with 

amygdala, accumbens, and putamen. There were significant negative quadratic terms for 

thalamus, hippocampus, amygdala, and accumbens, suggestive of accelerating reductions for 

thalamus and hippocampus, while amygdala and accumbens increases were quadratically 

attenuated. The effect sizes of the quadratic terms were small (|r|≤0·06). Findings did not reach 

significance across all anthropometric measures.  

These findings were robust across models 2a/b/c, with some adjustment of significant levels 

and effect sizes, with p in [2·8×10-80, 0·0002], and |r| in [0·03, 0·14] (Figure S20; Tables S5-

S7). For model 2c, compared to models 2a/b, we observed attenuation of significance levels 

and effect sizes with p in [1.6×10-72, 0·0002] and |r| in [0·03, 0·13] between body and brain 

anthropometrics. Additionally, we here observed significant associations (|r| in [0·03, 0·07]) 

between self-reported diabetes, hypertension, or hypercholesterolemia diagnosis, and brain 

structure, including lower cortical and cerebellum white and gray matter volumes, and higher 

ventricular volumes. Current cigarette smoking was associated with lower mean cortical 

thickness, while current alcohol consumption was not significantly associated with brain 

structure.  

 

Brain structure, anthropometric, and body MRI measures  

Analyses in the body MRI subsample (Figure 3a) revealed significant negative associations 

between BMI and surface area and cortical gray matter volume, and between WHR and caudate 

volume. For body MRI metrics (Figure 3b), liver PDFF was negatively associated with cortical 

gray matter thickness/volume, while TTMV was positively associated with accumbens. The 

associations were similar across model 2a/b/c, with anthropometric measures showing 

significant p in [3.0×10-06, 0·0002], and |r| in [0·07, 0·09], and regional body MRI measures 

showing significant p in [1·3×10-07, 8·9×10-05], and |r| in [0·08, 0·1]. There were fewer 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.02.29.970095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.29.970095


11 

 

significant findings for anthropometric measures in model 2c compared to 2a/b (Figures S21-

S22; Tables S8-S15).  

 

Discussion  

In the largest study of body-brain connections to date, we mapped normal body-brain 

connections in 19,330 healthy participants without secondary disease effects. We identified a 

comprehensive picture of small, but highly significant, effects across body composition and 

brain structures, linking normally varying anthropometric measures to the majority of included 

brain structures. Further, we examined the novel body MRI measures (n=2,703) in this context. 

We revealed significant associations between liver fat and cortical gray matter volume and 

thickness, and between thigh muscle volume and accumbens volume.  

For global brain measures, we observed the strongest, negative and nonlinear, associations 

between anthropometric body composition measures and cerebellar and cortical gray matter, 

and brain stem structures. These findings suggest accelerating cortical/cerebellum and brain 

stem reductions with increasing body composition levels, but also of attenuation at low body 

composition. Furthermore, we observed positive associations for CSF, lateral, and third 

ventricles. These findings are in line with our hypothesis, and with prior research showing lower 

total gray matter volume,5–8 and regional cortical and cerebellar reductions9 in obese 

individuals. Brain atrophy is observed at higher ages.11 Although cross-sectional evidence and 

small effects, our findings suggests accelerating brain atrophy also at higher adiposity levels, 

possibly relating to regulatory differences in brain and body lipids. Prior studies on subcortical 

structures and obesity are limited. Here, we showed a mixed subcortical association pattern, 

that were similar across anthropometric measures. Accumbens, a structure associated with 

motivation and reward and part of the dopamine motivation system,19 showed the strongest 

positive associations. The association between accumbens volume and body composition is 

generally in line with a previous study documenting larger accumbens volume in children with 

increased genetic risk for obesity,20 and supports the assumption of a critical role of brain 

mechanisms for reward and reinforcement learning for lifestyle and dietary choices and obesity.  

Higher liver fat was associated with lower/thinner cortical gray matter volume/thickness in 

healthy individuals. Non-alcoholic fatty liver disease is linked with metabolic factors, show 
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increasing prevalence rate similar to that of obesity, and increased mortality from 

cardiovascular disease, and patients benefit from weight loss lifestyle interventions.21 Our 

findings point towards ongoing biological processes related to liver fat that may affect brain 

structures, or vice versa, in healthy individuals. We may only speculate that lifestyle 

interventions for addressing non-alcoholic fatty liver disease may be important also for brain 

health.  

Contrary to our expectations, we did not observe any associations between visceral adipose 

tissue and brain structures. Instead, we observed a largely analogous pattern across 

anthropometric and regional body composition measures. Effect sizes were generally stronger 

for anthropometric measures, which may reflect combinatorial effects of multiple factors that 

likely influence these measures. The novel body MRI measures may capture more specific 

features, but were available for less than 15% of the sample.  

Earlier studies have linked vascular risk factors to brain structure.5,8 Our study further 

corroborates this in healthy individuals, and indicates an association between fat distribution 

and brain structure. Effect sizes and significance levels were attenuated when we adjusted for 

lifestyle factors and metabolic syndrome, suggestive of complex body-brain mechanisms. Self-

reported diagnosis of hypercholesterolemia, hypertension, or diabetes – factors related to 

metabolic health - were associated with several brain structures, while current cigarette smoking 

was associated with thinner cortical thickness. Thus, cardiometabolic risk factors appear 

important for brain health.  

The observed body-brain connections cut across several body compositions measures and brain 

structures, and appeared fairly global. Causal mechanisms are unknown and likely highly 

complex and multifactorial, and our findings could be mediated by modifiable lifestyle choices 

with known links to obesity1; e.g. metabolic factors could influence both somatic and brain 

health, impaired brain health could influence somatic health, or the effects could be reciprocal 

as previously implied for obesity and depression.2 Physical fitness and activity – common 

lifestyle interventions - are associated with reduced risk for obesity,1 may counteract a genetic 

predisposition for obesity,12 have neuroprotective effects on the brain,22 and have been 

positively related to brain structure.13 We found significant associations between thigh muscle 

volume and accumbens, and negative nonlinear association pattern between anthropometric 

measures and cortical, cerebellar gray matter, and brain stem structures. Although it is 
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premature to conclude, from a public health perspective, this nonlinear association in healthy 

participants may imply that lifestyle interventions for normalizing body fat composition could 

affect biological processes related to brain function and disease.  

The high degree of somatic comorbidity in mental and other brain disorders requires a better 

understanding of the complex biological interactions between body and brain, and of how they 

relate to lifestyle or environmental factors. The observed body-brain connections could be 

associated with obesity-related neuroinflammatory processes.23 A recent large-scale meta-

analysis showed increased risk for vascular dementia – similar to other vascular conditions - in 

both underweight and obese individuals,24 which is interesting in light of our observed 

nonlinear associations between body composition and brain structure. Shared genetic 

underpinnings could influence both adipose tissue accumulation and brain structure, similar to 

the genetic overlap relating immune-related disorders,25 BMI,26 or cardiovascular risk factors,27 

to brain disorders. Yet other complex biological and possibly polygenic processes, 

lifestyle/environmental factors, and/or their combinatorial effects could influence the findings. 

To understand both nature and nurture of somatic comorbidities in brain disorders, and brain 

disorders per se, further mechanistic investigations are warranted. The findings of this study 

may suggest that body composition is an important confounding factor that should be 

considered in future case-control studies.  

Small effects are common across heterogeneous psychiatric disorders and research domains, 

including neuroimaging and genetics, making simple underlying causal mechanisms unlikely.28 

Combinatorial complex mechanisms of additive small effects are more likely, but these are not 

well captured by smaller studies prone to both false positive and negative findings.16 Instead, 

large-scale investigations are needed, where effect size convergence and increasing accuracy is 

obtained,16 but this is challenging to achieve. To our knowledge, this is the first study of its 

magnitude investigating body composition, fitness metrics, and brain structure in healthy 

individuals. Through such large-scale investigations we may better understand small, but 

normal, body-brain processes. This will provide us with a better understanding of putative 

interactive or confounding factors in psychiatric and other brain disorders, thereby enhancing 

our conceptual understanding of the complex mechanisms at play.  

This study had some limitations. At the time of MRI, the available diagnostic information was 

self-reported. We did not investigate the cumulative or unit effect of alcohol consumption or 
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cigarette smoking, nor severity of hypertension, hypercholesterolemia, or diabetes diagnosis. 

Liver fat was assessed from selected regions of interest and not the whole liver. The observed 

liver-brain associations could be influenced by alcohol consumption although this was not 

captured by the current study. We limited our investigations to coarser brain measures. Findings 

deviated somewhat from prior studies using partly overlapping samples,7,8,29 probably due to 

differences in inclusion/exclusion criteria, sample size, image processing, and analyses 

pipeline. The exploratory cross-sectional design makes it difficult to disentangle cause from 

effect, determine underlying body-brain mechanisms, and draw final conclusions from the 

findings. Further investigations of sex-specific body-brain trajectories, and of combinatorial or 

additive effects of body composition, additional metabolic markers, and fitness metrics on brain 

structure, together with links to cognition, sex, age, disease risk, lifestyle, and environmental 

factors are needed.  

Strengths of the study include an unprecedented sample size, including ≥160% larger sample 

than prior UK biobank studies,7,8,29 that were assessed using standardized procedures and MRI 

protocols.17 Fully automated data cleaning, inclusion and exclusion criteria, and quality control 

limits chance for subjective variations or errors. We build upon confirmatory analyses of known 

age- and sex-related associations on both body composition10 and brain structure11,30 that 

largely mirrored the current knowledge, which strengthened our confidence in the reported 

body-brain patterns. We applied rigorous diagnosis-based exclusion criteria to capture 

normative body-brain associations in healthy individuals, and rigorous correction for multiple 

comparisons.  

 

Conclusions  

Through large-scale body-brain mapping we link normally varying body composition measures 

to brain structure in a healthy population. The results imply correlated effects of adipose tissue 

and poor metabolic health on brain structure, affecting global brain structures, brain cavities, 

and accumbens, at higher measured body composition - yet the causal mechanisms remain 

unknown. It is of vital importance to investigate the underlying complex body-brain pathways, 

shared mechanisms of cardiometabolic risk factors and brain disorders, and lifestyle-related 

modifying factors. If brain structure alterations can be linked to lifestyle-related body 

composition characteristics, then preventive public health interventions for normalizing 
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cardiometabolic risk factors, could prevent the development of disorders of the body and the 

brain.  

 

Data sharing  

The UK biobank resource is open for eligible researchers upon application 

(http://www.ukbiobank.ac.uk/register-apply/).  

 

Code availability  

We made use of publicly available resources for processing the image data and for conducting 

the statistical analyses. The project R-scripts will be made publicly available upon publication.  
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Table 1: Demographics 

 
Men  

n=9226 

Women  

n=10,104 

c2-test / t-test 

/ Wilcoxon 

rank-sum test 

p-value 

Age (year)1 62.5±7.5 62.1±7.2 4.5 7.1´10−6 

European ancestry, N (%)2 8891 (96.4) 9822 (97.2) 10.7 0.0011 

Smoker, N (%)2,3 397 (4.3) 298 (2.9) 25.1 5.4´10−7 

Alcohol drinker, N (%)2,3 8751 (94.9) 9444 (93.5) 16.5 5.0´10−5 

Height (cm)1 176.3±6.6 162.7±6.2 147.2 0 

Weight (kg)1 83.2±13.1 68.3±12.6 80.4 0 

BMI1 26.7±3.8 25.8±4.6 15.5 4.5´10−54 

Waist circumference (cm)1 93.4±10.3 82.2±11.4 71.6 0 

Hip circumference (cm)1 100.7±7.1 100.7±9.6 0.1 0.8895 

WHR1 0.9±0.1 0.8±0.1 120.6 0 

Diabetes, N (%)2,3 169 (1.8) 84 (0.8) 36.6 1.5´10−9 

Hypercholesterolemia, N 

(%)2,3 

1178 (12.8) 734 (7.3) 163.3 2.2´10−37 

Hypertension, N (%)2,3 1998 (21.7) 1531 (15.2) 136.3 1.8´10−31 

Notes: Report mean ± standard deviation for continuous variables, unless otherwise stated. P-
values<0.05 considered significant. Abbreviations: BMI – body mass index; WHR – waist-to-
hip ratio.  

1 Welch two sample t-test.  

2 c2-test. 

3 Self-reported.  
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Figure 1: Association pattern between selected brain structures and body composition 

measures.  

 

Notes: Regression lines are modeled as brain structure = body composition + body 

composition2. The confidence intervals are indicated in gray. Illustrations are split on sex 

(commonly a significant factor in neuroimaging studies), but are not adjusted for other 

confounders. Abbreviations: BMI – body mass index; WHR – waist-to-hip ratio.  
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Figure 2: Body-brain association patterns in healthy individuals (n=19,330). 

  

Notes: Results from model 2c (Panel a) that investigates body-brain connections through the 

inclusion of linear (Panel b) and quadratic (Panel c) body composition terms after adjusting for 

lifestyle/metabolic factors. Additional confounding variables included age, age2, sex, age-by-

sex, age2-by-sex, intracranial volume (except cortical thickness), Euler number, and site. 

Significant associations indicated by *. Dependent variables CSF, lateral/3rd ventricle were log-

transformed. Abbreviations: BMI – body mass index; circ. – circumference; GM – gray matter; 

WHR – waist-to-hip ratio; WM – white matter. 
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Figure 3: Linear body-brain association pattern in healthy individuals for the MRI 

subsample (n=2,703). 

 

Notes: Results from model 2c that investigates body-brain connections through the inclusion 

of linear and quadratic body composition terms after adjusting for lifestyle/metabolic factors, 

for a) anthropometric body composition measures, and b) regional body MRI measures on brain 

structure, on brain structure. Significant associations indicated by *. Dependent variables CSF, 

lateral/3rd ventricle were log-transformed. Abbreviations: ASAT – abdominal subcutaneous 

adipose tissue; BMI – body mass index; circ. – circumference; GM- gray matter; PDFF – proton 

density fat fraction; TTMV – total thigh muscle volume; VAT – visceral adipose tissue; WHR 

– waist-to-hip ratio; WM – white matter. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.02.29.970095doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.29.970095

