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Figure 8. fALFF correlation plots, depicting the correlations between the fALFF values of participants’ mean voluntary 

responses vs. the fALFF values of individual participants’ resting state time-courses in the anterior LH IFG ROI/pars 

triangularis (shown in red markers, each marker specifies an individual participant); and the correlations between 

fALFF values of participants’ mean control activations vs. the fALFFs of their resting state time-courses (shown in 

blue markers), for the same ROI. The results are shown for the VF task (A), the AU task (B) and the INST task (C). The 

inflated left hemispheres presented here denote the anterior LH IFG ROI, and are identical to those in figure 6 (see 

figure 6 legend for details). Spearman’s R correlation coefficients are presented in the plots, together with their p -

values, derived from a subject-wise label-shuffling permutation test (10,000 permutations). Significant correlations 

are marked with an asterisk (p<0.05, FDR corrected for multiple comparisons across the additional ROIs defined, 

presented in Supplementary figures S9, S10 and S11).  All tasks showed  significantly higher correlations between the 

voluntary buildups and resting state fALFFs, than between the control activations and the resting state fALFFs 

(p<0.05, dependent  correlation percentile bootstrapping test (Wilcox, 2016)). 
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individual participants’ voluntary event-related responses and the resting state time courses, and the 

right-side plots show the correlations between the control activations and the resting state fluctuations 

(VF task results shown in A; AU task shown in B; and INST task in C). As can be seen, significant correlations 

were found between the voluntary average buildups and the resting state fALFF values, in all three tasks 

(VF task: Spearman’s R=0.71, p<0.001; AU task: Spearman’s R=0.52 p=0.017; INST task: Spearman’s R=0.62 

p=0.009. All p-values derived from a subject-wise label-shuffling permutation test, across 10,000 

permutations, and survived FDR correction for multiple comparisons at p<0.05). Critically, no significant 

correlations were found between the fALFF values of the mean deterministic control responses and the 

resting state time courses (VF task: Spearman’s R=0.10, p=0.32; AU task: Spearman’s R=-0.11 p=0.65; INST 

task: Spearman’s R=-0.05 p=0.56. All p-values derived from a subject-wise label-shuffling permutation 

test, across 10,000 permutations).  To directly compare these correlations between the anticipatory 

buildup during voluntary events and the resting state dynamics to the correlations between the control 

activations and resting state, separately for each of the three tasks, we used a percentile bootstrapping 

test for comparing robust dependent correlations (Wilcox, 2016). This analysis revealed that all voluntary 

vs. resting state correlations were indeed significantly higher than their counterpart control vs. resting 

state correlations (VF task: p=0.02; AU task: p=0.032; INST task: p=0.008; dependent correlations test, 

one-sided α=0.05).  

The voluntary vs. rest and control vs. rest fALFF across-subject correlations were inspected in additional 

ROIs, aside from the anterior LH IFG, including the posterior LH IFG (or pars opercularis), paracingulate 

cortex, LH precentral gyrus and LH anterior insula (for the VF task only). The correlation plots for these 

ROIs are presented in the supplementary figures S10 (for the VF task), S11 (AU task) and S12 (INST task). 

Significant correlations between the fALFF values of mean voluntary responses and resting-state 

fluctuations were found in the posterior LH IFG ROI in the VF and AU tasks (VF task: Spearman’s R=0.58, 

p=0.002; AU task: Spearman’s R=0.57 p=0.006; All p-values derived from a subject-wise label-shuffling 

permutation test, across 10,000 permutations, and survive FDR correction at p<0.05), and these 

correlations were higher than the non-significant correlations between control and resting-state in this 

ROI (VF task: p=0.012; AU task: p=0.04; Wilcox dependent correlations test, one-sided α=0.05, statistical 

significance marked by yellow frames in figure S10 and S11). Yet this effect in the posterior LH IFG was 

not evident in the instances task (Spearman’s R=0.02, p=0.47, permutation test). Additional positive 

correlations were found between the AU voluntary response and resting state in the paracingulate cortex 

(Spearman’s R=0.68, p<0.001, permutation test, survived FDR correction at p<0.05) and between the INST 

voluntary response and rest in the LH precentral gyrus (Spearman’s R=0.64, p=0.008, permutation test, 
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survived FDR correction at p<0.05), though in both cases, the correlations were not statistically higher 

than the correlations  between control and rest (p=0.12 and p=0.31, accordingly, Wilcox dependent 

correlations test, one-sided α=0.05). Importantly, no significant correlations were found between the 

mean control responses and resting state fluctuations, in all tasks and in all ROIs examined (see figures 

S10, S11 and S12 for all correlation plots and R and p values). 

Thus, our analysis revealed a significant correlation between the dynamics of the anticipatory build-up 

preceding voluntary verbal events, and the dynamics of resting state fluctuations. Critically, this 

correlation did not exist between the externally-driven control verbal events and resting state, thus ruling 

out that this effect is possibly a general BOLD-related or language-production related phenomenon.  

Rather, it indicates that the link between resting state and task was specific to the free, inner-generation 

mode. The significant voluntary-rest correlations were apparent in all three voluntary tasks, suggesting a 

common mechanism for free language production, creative verbal production and verbal divergent 

thinking. This effect was also specific to the left IFG ROIs, regions that are well known to be involved in 

language processing and production (e.g. Petersen et al., 1988; Gabrieli et al., 1998). 

 

Discussion 

Our study supports the notion that a common neuronal mechanism underlies all types of free voluntary 

behaviors. In our study we focused specifically on voluntary verbal behaviors, including the free 

generation of verbal exemplars, ideas and creative thoughts. By using three different tasks- a very 

common language production and fluency task (verbal fluency or VF), a classic verbal creativity task 

(alternative uses or AU) and a verbal divergent thinking task (instances or INST), we were able to highlight 

the common neuronal mechanism for the internal, unpredictable, “free” generation of a verbal idea, that 

can be generalized across different tasks and contexts. 

Our findings thus extend previous studies (reviewed in Moutard et al., 2015) indicating that a common 

neuronal “signature” of free behavior (as we operationally defined in the introduction) is a slow buildup 

of activity in the relevant task-related networks preceding the actual moment of free behavior. In the 

present paper we have extended this common principle to the case of free verbal behaviors. Specifically, 

in all three tasks, we found a slow, gradual buildup of BOLD signal preceding the reported time of the 

freely-generated verbal idea or creative event by ~1-2 seconds, evident in language and additional task-

relevant brain regions (see figure 6). Importantly, this gradual anticipatory increase was not present 

before the control events: deterministic, externally-driven word repetitions.  Thus, the anticipatory 
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buildup appears to be specifically linked to free, voluntary, internally-generated events, and not to verbal 

responses in general.  

Further support for the validity of the anticipatory buildup as a signature of free behavior is provided by 

our pupil dilation measures.  These pupillary measurements were conducted concurrently with the task 

performance and manifested a slow buildup of similar dynamics prior to the voluntary “free” events, but 

not before the deterministic control events (as shown in figure 4). This pupil dilation is in concordance 

with previous works, by ourselves and others, that have proposed that such pupil dilations provide a 

reliable index to  processing levels (e.g. Kahneman & Beatty, 1966; Alnaes et al., 2014; de Gee et al., 

2014; Yellin et al., 2015; Broday-Dvir et al., 2018), and this observation was nicely compatible with the 

suggestion that free behaviors are characterized by a slow anticipatory buildup of subliminal activity.  

An important concern to be ruled out is that the observed gradual ramping of activity was in fact merely 

an artifact, caused by the lack of precision in participants’ ability to accurately report the timing of the 

emergence of the verbal idea or exemplar.  Thus, it could be argued that in fact each free-behavior event 

is characterized by a rapid, step-wise, activation increase (see figure 7). Under such an interpretation, the 

gradual buildup that was observed might in fact be merely a “smeared” byproduct of averaging multiple 

step-functions with jittered timings. Indeed, in our simulation analysis (presented in figure 7), we were 

able to recreate a slow buildup by averaging a set of such temporally-jittered step-function responses. 

However, a major discrepancy between the true, single trial, gradual buildup model we proposed, and the 

averaged, jittered step-function model, is revealed when considering the inter-trial variance (right-side 

panels in figure 7A and B). Here, the jittered step-function model predicts a significant increase in the 

cross-trial signal variance during the buildup period (due to the jittered event timing), while the single 

trial-ramping model predicts similar variance levels across the entire anticipatory period. Careful 

examination of the BOLD variance during our experiments revealed a flat variance time-course, with no 

increases (or any significant differences at all) compared to baseline variance levels, unequivocally 

supporting a real gradual buildup prior to every voluntary event (see figure 7C). 

What could be the neural mechanism that accounts for the slow anticipatory buildup? Two aspects of this 

phenomenon are helpful in narrowing the range of possibilities. First, free behavior is an extremely 

ubiquitous phenomenon, occurring at diverse modalities and functions (Moutard et al., 2015), from the 

classically studied decisions to perform a simple movement (Libet et al., 1983; Schurger et al., 2012), to 

spontaneous music and dance improvisation, as well as idea generation and creative behaviors.  Even 

tasks that are typically considered to be mainly stimulus driven, such as visual perception, can manifest 
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free or voluntary aspects, for example in the spontaneous alterations during bistable perception (Gelbard-

Sagiv et al., 2018) or spontaneous visual imagery (Norman et al., 2017; Norman et al., 2019). 

Consequently, if our hypothesis states that there is a shared neural mechanism underlying this diverse set 

of free behaviors, then it should be a ubiquitous neuronal process, that can be found essentially across all 

cortical networks. 

Another key aspect of this neuronal process is its slow dynamics: examining both the BOLD activity 

changes and the pupillary dilations here, as well as EEG and ECoG signals from previous studies of free 

behavior (Gelbard-Sagiv et al., 2008; Schurger et al., 2012; Norman et al., 2019), reveals a process that 

has a time constant of 1-2 seconds.  This is an order of magnitude slower than the typical 200-millisecond 

stimulus-response cortical dynamics (e.g. Bitterman et al., 2008; Fisch et al., 2009; Podvalny et al., 2017).  

Examining the possible neuronal candidates manifesting both slow and ubiquitous cortical activity reveals 

a readily obvious candidate: the spontaneous (also termed resting-state) fluctuations that have been 

observed and studied extensively across essentially every human cortical network (Biswal et al., 1995; 

Arieli et al., 1996; Nir et al., 2006; Fox & Raichle, 2007). So how can these ultra-slow resting state 

fluctuations account for the ramping buildup observed prior to free behaviors? Our hypothesis, extended 

from an earlier proposal by Schurger (Schurger et al., 2012) for the case of volitional movements, is 

illustrated in figure 1. Essentially, we propose that free and creative behaviors are initiated by the slow 

resting state fluctuations. These fluctuations drive the network that is relevant for the voluntary task 

across a decision threshold. Thus, prior to free behavior, the activity in the network manifests slow 

spontaneous fluctuations, and when such a fluctuation crosses the activation threshold, a free behavior 

can emerge. A strong prediction of this hypothesis is that prior to each and every free behavior event, we 

expect to see the slow uprising phase of a spontaneous fluctuation, hence the slow ramping activity 

evident prior to the free verbal and creative moments shown here.  

An obvious counter-argument to this proposed mechanism could be that the observed similarity between 

the slow time constants of the resting state and the anticipatory slow buildup are a mere coincidence. 

Accordingly, it could be argued that the two phenomena are unrelated, and are derived from completely 

different mechanisms that simply happen to both exhibit slow time constants. 

If this was indeed the case, the temporal dynamics of the resting state fluctuations and the anticipatory 

buildup should also be independent of each other.  However, measuring the response characteristics 

across individuals revealed significant positive correlations between the fractional amplitude of low 

frequency fluctuations (fALFF) of the resting state time-courses and the anticipatory buildup preceding 
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the freely generated verbal responses (see figure 8). This correlation was evident across all three different 

tasks that were examined, including the verbal fluency task- a classic language production task (Troyer et 

al., 1997; Schlosser et al., 1998), the alternative uses task- used commonly for verbal creativity assessment 

(Guilford, 1967; Torrance, 1988), and the instances task, a divergent thinking task (Silvia, 2011). This 

replication across the three separate tasks suggests that the resting state fluctuations constitute a 

common mechanism underlying a variety of diverse voluntary verbal behaviors.  The correlation between 

the anticipatory buildup and the resting state fluctuations was spatially specific to the LH IFG, the central 

region involved in language processing and generation, which are of course the key components of these 

tasks. Importantly, the correlations were specific to the free-behaviors, and were not evident for the 

deterministic externally-driven control tasks (see figure 8). Thus, the correlations could not be attributed 

to general individual differences in the BOLD responses, or to general verbal-related or language-related 

responses, but rather were specific to voluntary, internally-driven events.   

Together, these results strongly support our hypothesis (shown in figure 1A) that the resting state 

fluctuations constitute a common neuronal mechanism that drives free behaviors, and that their rising 

phase constitutes the anticipatory buildup observed prior to the initiation of these behaviors. 

 Our study strongly supports the notion that creative behaviors rely on a similar neuronal mechanism that 

drives free verbal behaviors in general.  Three aspects of our results support this conclusion. First, our 

behavioral results show significant similarities in the participants’ performance across the three different 

tasks, including correlations in number of words and verbal ideas produced, as well as common temporal 

dynamics of production, shown in figure 3. Second, the slow anticipatory buildup, both in the BOLD signal 

as well as in the pupillary response, precedes all voluntary events, including the fluency and creativity 

tasks, but not the control events. Finally, the link between resting state fluctuations and the anticipatory 

buildup was evident in the three different tasks as well. Additionally, the proposed role of spontaneous 

fluctuations in the emergence of creative thoughts and verbal ideas also fits nicely with previous reports 

of links between resting state activity patterns and creative abilities (Takeuchi et al., 2012; Beaty et al., 

2014; Yin et al., 2015; Beaty et al., 2018; Shi et al., 2019; Sun et al., 2019), as well as changes in resting-

state connectivity patterns following creative or divergent-thinking training (Wei et al., 2014; Fink et al., 

2018). 

 Of course, the verbal exemplars or creative ideas that are generated depend on previous experience and 

learning, the underlying brain structure and connectivity, etc. Here we suggest that the generation 

process, in which a new idea is created, or a specific exemplar comes to mind (out of a dozen or more 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.01.971705doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.01.971705
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

relevant possibilities), involves accumulation of stochastic noise in the specific task-relevant region, in our 

case the language-related ROI. We propose that the spontaneous, or resting-state fluctuations, constitute 

a stochastic exploration process, that may tilt the system towards a specific idea, exemplar or creative 

thought at a random moment in time.  

Given the importance of creative behavior to human progress and achievements, our findings, pointing 

to resting state fluctuations as a candidate driving mechanism for creativity, are particularly significant. It 

is perhaps no coincidence that many anecdotal reports of creative ideas and problem solving in day-to-

day life, as well as stories of great ideas or inventions, occur while taking a walk (Nikola Tesla and the AC 

motor), in the shower or bath (Archimedes' principles of density and buoyancy) or while daydreaming in 

public transport (J.K Rowling and Harry Potter). These are all situations that reduce attention to specific 

tasks or external stimuli, and hence likely enhance resting-state fluctuations. As our results suggest that 

these intrinsic fluctuations are involved in driving idea generation, it is an intriguing question whether this 

type of behavior will be enhanced in contexts in which these fluctuations flourish.  Thus, our present 

findings may open future informed directions for identifying the optimal conditions and even developing 

methods for enhancing human creativity.  

 

Online Methods 

Participants 

In total, 24 healthy, right-handed participants (11 female, mean age 27.56± 3.89) with normal vision 

participated in the study, that included three different tasks in two separate scanning sessions. One 

participant was excluded due to excessive motion. Another participant was excluded from one scanning 

session due to excessive motion, while his second session was maintained. All participants provided 

written consent and received payment for their participation. All procedures were approved by the local 

ethics committee. The experiment included three different tasks: a verbal fluency (VF) task, an alternative 

uses (AU) task and an instances of common concepts (INST) task. 22 participants participated in the VF 

task (10 female, mean age 27.5±3.97), 20 in the AU task (10 female, mean age 27.7± 4.16) and 15 in the 

INST task (8 female, mean age 27.47± 4.75). 15 participants completed all three tasks, 4 completed only 

the VF and AU tasks, 3 completed only the VF and 1 completed only the AU.  
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The experimental tasks and design 

Our study included a total of three different verbal tasks: a verbal fluency (VF) task, an alternative uses 

(AU) task and an instances (INST) task, that were completed in 2 separate scanning sessions. One session 

included 5 runs of the VF task, and the other session included 2 AU runs and 2 INST runs. Session and run 

order were counterbalanced and randomized. All experimental sessions were initiated with a short 

training period outside magnet, in order to familiarize the participants with the task/tasks that were to be 

performed in the current scanning session. Next, the participants entered the scanner and underwent an 

8-minute resting state scan with eyes open. Then, the participants either completed 5 VF task runs, or 2 

AU and 2 INST runs. All tasks were performed in a covert manner, in order to avoid movement-related 

artifacts due to overt speech, specifically artifacts during the time period preceding to the idea onset and 

report. An anatomical scan was also completed after 2 experimental runs. Figure 2 depicts the three tasks 

as well as the control condition, which was the same in all experimental runs. 

Each VF block was initiated with a visual cue instructing the participants to covertly generate words from 

a specific category, that could be either a phonemic or a semantic category. The semantic categories  were 

tools, birds, fish, vegetables and USA states; the phonemic categories were words that begin with the 

Hebrew letters “yud”, “tzadik”, “pay”, “vav” and “tet”. The semantic categories were intended to be 

relatively harder than more general categories, such as animals or food and drinks, in order to try to induce 

a slower generation pattern, that will lead to longer time intervals between the words generated. The 

participants were instructed to press a button immediately every time they thought of a new word from 

the relevant category, after which a short audio “beep” was heard. Each VF block lasted 2.5 minutes and 

was terminated by the visual cue "Break", followed by a 30-second break period.  

Control blocks began with the visual instruction “repeat the word ‘__’ when the auditory cue is heard”, 

with a different specified word to be repeated on each block. Here, the participants needed to wait until 

they heard the auditory cue. Once it was played, they were instructed to covertly repeat the instructed 

word, and immediately afterwards press the button. Importantly, the auditory cues in the control blocks 

replayed the participants’ performance in the VF blocks, specifically reconstructing the participants’ inter-

response intervals during the 100 final seconds of these blocks. This manipulation allowed us to compare 

similarly spaced control and VF events in during the data analysis stages. Control blocks were 100 seconds 

long, and were also terminated with the visual cue “Break”, followed by a 30-second break. Each 

experimental run lasted ~10 minutes, and included 2 VF blocks, one of a semantic category and one 

phonemic, and two control blocks, in random order. In both the control and VF conditions, the initial visual 
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instructions for each block appeared for 2 seconds, after which a blank gray screen was presented for the 

rest of the block. Participants were instructed to maintain their gaze in the middle of the screen for the 

entire block duration.  

The AU task, a divergent thinking task used commonly in creative thinking studies, requires the 

participants to think of creative uses for everyday objects: a button, a paperclip, a barrel and a cup 

(Guilford, 1950; Arden et al., 2010; Dietrich & Kanso, 2010; Beaty et al., 2014). AU blocks began with the 

instruction to generate creative uses for a specific object. Participants then needed to press the button 

every time a new idea came to their mind, after which the auditory “beep” was played. AU blocks were 

terminated after 210 seconds with the cue “Break”, followed by a 30-second break period. Control blocks 

were similar to those in the VF experiment described above, requiring “passive” word repetition that 

replayed the participants’ AU block performance, with 120 seconds long blocks. Each AU run lasted ~ 13 

minutes, and included 2 AU blocks and 2 control blocks, in random order. The final task, the INST task, 

had a similar structure to the two previous tasks, only here the participants needed to generate exemplars 

for common instances, including things that are heavy, loud, round and tall  (Silvia, 2011). INST blocks 

were 210 seconds long, during which the participants pressed a button each time they thought of a new 

exemplar. Control blocks, same as in the other tasks, lasted 120 seconds. INST runs were ~ 13 minutes, 

and included 2 INST blocks and 2 control blocks.  

By setting long voluntary-block durations, in all three tasks, we were able to obtain voluntary and control 

verbal events that were separated in time with a relatively long “no-event” period preceding them. 

Specifically, only events that were separated by at least 12 seconds from the previous event were further 

examined in the event-related analyses. This allowed us to inspect the “clean” neural activity leading up 

to the subjective experience of a spontaneous emergence of an idea, as compared to the control passive 

word production in response to an external cue, without contamination of the previous event-related 

response. 

At the end of each experimental session, the participants filled out questionnaires reporting the all the 

words and creative ideas they remembered generating for each category that was probed.  This was done 

in order to ensure they had understood the tasks correctly, and generally sample their responses. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 3, 2020. ; https://doi.org/10.1101/2020.03.01.971705doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.01.971705
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

MRI setup 

16 participants (of which all 16 completed the VF experiment, and 15 completed the AU and the INST 

experiments) were scanned in the 3 Tesla MRI scanner (Magnetom Prisma, Siemens), at the Weizmann 

Institute of Science, using a 20-channel receive head/neck coil. Functional images of blood oxygenation 

level dependent (BOLD) contrast were obtained using a T2* -weighted gradient echo planar imaging (EPI) 

sequence (TR =2000 ms, TE = 30 ms, flip angle = 75°, FOV 210 mm, voxel size 3.0×3.0×3.3 mm, 32 slices, 

tilted to the ACPC plane). Whole-brain T1-weighted anatomical images were acquired for each participant 

using a 3D Magnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE) sequence (TR = 2300 ms, 

TE = 2.32 ms, TI = 900 ms, flip angle = 8°, voxel size 0.9×0.9 ×0.9 mm, with integrated parallel acquisition 

(iPAT) acceleration factor of 2).  

The additional seven participants (of which 6 completed the VF experiment and 5 the AU experiment), 

were scanned in the 3 Tesla MRI scanner (Tim Trio, Siemens) at the Weizmann Institute of Science, using 

a 12-channels head matrix coil. Functional images of blood oxygenation level dependent (BOLD) contrast 

were obtained using a T2*-weighted gradient echo planar imaging (EPI) sequence (TR =2000 ms, TE = 30 

ms, flip angle = 75°, FOV 216 mm, voxel size 3×3×3 mm, 32 slices, tilted to the ACPC plane). Whole-brain 

T1-weighted anatomical images were acquired for each participant using a 3D MPRAGE sequence (TR = 

2300 ms, TE = 2.98 ms, TI = 900 ms, flip angle = 9°, voxel size 1×1 ×1 mm).  

 

Pupil size and eye-tracking acquisition, preprocessing and analysis 

Pupil size and eye-movements of the participants’ dominant eye were recorded continuously throughout 

the experimental scanning sessions, using an Eyelink-1000 eye-tracking device (SR Research, Osgoode, 

ON, Canada), at a sampling rate of 500 Hz. The pupillary data of 3 participants was not recorded in the AU 

and INST sessions, due to technical issues. Furthermore, scans in which the amount of missing data, due 

to technical issues or excessive blinking, was larger than 20% were also removed, resulting in the exclusion 

of two additional participants from the INST task analysis. In total, pupillary analyses included 22 

participants for the VF task, 17 participants in the AU task, and 10 participants in the INST task.  

The scaled index estimate of the pupil diameter, as recorded by the Eyelink system, was preprocessed 

using custom-made MATLAB scripts, following previously reported pipelines (Yellin et al., 2015; Broday-

Dvir et al., 2018). Points of missing pupil data or unlikely pupil size (3 SDs from mean pupil size within a 

trial) were removed, along with their neighboring data points 80 ms before the onset and after the offset 
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of the detected segments. The resulting gaps of missing data were replaced using an inverse-distance 

weighted interpolation (Howat, University of Washington, 2007). The entire pupillary time-course of each 

run was then bandpass filtered, removing frequencies outside the 0.015-5 Hz range, using the least-

squares FIR filter adapted from the EEGLab MATLAB toolbox (Delorme & Makeig, 2004). Next, the time-

courses underwent z-score normalization.  

Pupil event-related response onsets were defined as the moment of the button press, by which the 

participants reported generating a new verbal exemplar or idea in the voluntary conditions, or repeating 

a specific word in the control condition. The pupillary time-courses for each event were extracted from     

-5 seconds before event onset, to 6 seconds after the event onset.  Only creative and control events that 

were preceded by at least a 5-seconds event-free period were further analyzed, while the events that 

were not “isolated” in time, as defined, were discarded.  

In order to rule out eye-movements as possible confounds to pupil dilation differences between the 

voluntary and the control conditions, we ensured no eye-movement differences were found between the 

two conditions. This was done by first calculating the Euclidean distance of the eye gaze location from the 

screen center, as determined by the x and y gaze coordinates, for each time point in each trial. Next, the 

mean distance and the variance of the distances from screen center were calculated per trial, and 

averaged across voluntary and control trials separately for each participant, for each of the three 

experiments. For the VF experiment and the INST experiment, no significant differences were found in 

the mean eye-movement distance between the voluntary and control conditions (paired two-tailed t-test, 

VF experiment, for VF>control: t(21)= -0.645, p= 0.526; INST experiment, for INST>control: t(9) = 0.158, 

p=0.88). Similarly, no significant differences were found in the variance of eye-movements between the 

voluntary and control conditions in these two tasks (paired two-tailed t-test, VF experiment, for 

VF>control: t(21)= 0.532, p= 0.60; INST experiment, for INST>control: t(9) = 1.83, p=0.10). The AU task, 

however, did show significant difference in the eye-movement distance mean and variance between the 

two conditions (p<0.05). In order to control for this, we removed both voluntary and control trials in which 

the mean distance or mean distance-variance of that trial were larger by 2 s.d. or more from the mean 

values across trials of each participant. These trials were discarded from further analyses. Following this 

procedure, the mean and variance of the eye-movement distances were not different between the 

voluntary and control conditions in the AU task as well (paired two-tailed t-test; for mean AU 

distance>mean control distance: t(16)= 1.583, p= 0.133; for AU distance variance>control distance 

variance: t(16)= 1.581, p= 0.134).  
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Next, pupil event-related responses were averaged across individual trials in each participant, separately 

for the voluntary and the control conditions in each of the three experiments, and the responses were 

then averaged across all participants. In order to examine the difference between the voluntary and 

control conditions, separately in each experiment, we used a paired two-tailed t-test at each time point, 

and corrected for multiple comparisons using FDR correction, according to Benjamini-Hochberg method 

(α= 0.05) (Benjamini & Yekutieli, 2001).  

 

fMRI preprocessing  

MRI data processing was achieved using FSL 5.0.4 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and in house 

MATLAB codes (R2016b, The MathWorks). The functional task data was preprocessed using FEAT version 

6 (FMRIB's expert analysis tool), and included the following steps: removal of the first 2 volumes from 

each functional scan; motion correction using FMRIB's Linear Image Registration Tool MCFLIRT (Jenkinson 

et al., 2002); brain extraction using BET (Smith, 2002); high pass temporal filtering of 100s; and spatial 

smoothing using a Gaussian kernel of FWHM=6mm. Similar preprocessing was done for the resting-state 

data, except for the smoothing. Tissue-type brain segmentation was run using FAST (Zhang et al., 2001), 

resulting in white-matter and ventricle masks for each participant.  Functional images were aligned to the 

high-resolution anatomical volumes in each participant, initially using linear registration (FLIRT) and then 

optimized with Boundary-Based Registration (Greve & Fischl, 2009). Anatomical images were transformed 

to MNI space using FMRIB’s Nonlinear Image Registration Tool (FNIRT), and the resulting wrap fields were 

applied to the functional images in order to allow the projection of all participants onto a common brain 

template.  

 

Whole brain GLM analysis 

Whole brain statistical maps were computed using a general linear model (GLM), separately for each of 

the three tasks. Voluntary and control blocks were used as the regressors, as well as the 6 standard and 

18 extended motion parameters, as estimated by FSL MCFLIRT, in order to regress out motion artifacts. 

The regressors were convolved with the canonical double-gamma hemodynamic response function (HRF), 

attaining a model of the expected hemodynamic responses (Boynton et al., 1996). Multiple linear 

regression was performed for each run of each participant, obtaining estimates of the response 

amplitudes (beta values) in each voxel, for each of the conditions. The comparisons that were contrasted 
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included the voluntary blocks (VF, AU and INST) vs. baseline, the control blocks vs.  baseline, and the 

voluntary blocks vs. control blocks.  Resulting contrast images were entered into a second-level analysis 

per participant, in order to combine the functional runs of each individual participant (fixed effects 

model). Next, group analysis was run using FMRIB Local Analysis of Mixed Effects (FLAME) (Smith et al., 

2004), using the beta values of each participant as the dependent variables in a paired t-test in order to 

estimate inter-subject random effects. Resulting Z-statistic maps were corrected for multiple comparisons 

using cluster correction, determined by a voxel threshold of Z>2.3 and a corrected cluster significance 

threshold of p=0.05. Statistical maps were projected on inflated and flat cortical surfaces in MNI space, 

constructed using Freesurfer 5.3 (Dale et al., 1999; Fischl et al., 1999).  

An additional GLM analysis was run in order to define individual participants’ ROIs, for further ROI 

analyses. It was identical to the GLM described above, only instead of modeling the entire blocks with a 

single predictor per block (for both voluntary and control blocks, in all three experiments), we created 

separate predictors for the initial 26 seconds of each block, and predictors for the remaining later part of 

each block. First level contrast images were entered into a second-level fixed-effect analysis, combining 

the separate functional runs of each participant. Individual ROI definition was based on the contrast of 

the initial 26 seconds of the voluntary blocks vs. baseline.     

 

ROI definition and time course extraction 

Regions of interest (ROIs) were defined in order to carry out ROI analyses, examining the average 

responses and amplitude changes during the voluntary and control events, as well as the fALFF values 

during the verbal responses and resting state time courses, in the three different experiments. ROIs 

known to be involved in language processing, as well as in the three tasks employed here (verbal fluency, 

alternative uses and instances), were defined individually for each participant, including the left inferior 

frontal gyrus (IFG) and left middle frontal gyrus (MFG), separated to an anterior region (LH Pars 

Triangularis) and a posterior region (LH Pars Opercularis), the left precentral gyrus (LH PreCG), the 

paracingulate gyrus and anterior cingulate cortex (PCG and ACC), and the default mode network (DMN) 

regions (Schlosser et al., 1998; Costafreda et al., 2006; Beaty et al., 2014). All ROIs were defined 

individually for each participant, based on their activation maps in conjunction with atlas -based 

anatomical masks, in order to take into account the inter-subject variability in anatomical coordinates of 

functional regions. Critically, individual subjects’ activation maps were based on the contrast of the first 

26 seconds of the voluntary blocks (VF/AU/INST) > baseline (breaks between blocks), while all further ROI-
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based analyses included only the events that occurred 30 seconds or later into the blocks, for both 

voluntary and control events. Thus, we avoid circularity in the definition and the analyses of the ROI data. 

Anatomical masks based on the Harvard-Oxford Cortical Structural Atlas (Desikan et al., 2006) were 

created for the LH Pars Triangularis, LH Pars Opercularis, LH precentral gyrus, LH insular cortex, 

paracingulate gyrus and anterior cingulate gyrus combined, and for the DMN regions, the precuneus and 

the posterior cingulate cortex (PCC) combined. An additional DMN region, the inferior parietal lobule (IPL), 

was defined based on the Julich histological atlas  (Caspers et al., 2008) . All ROIs, except for the two DMN 

regions, were defined as the voxels that showed increased activation in each subject’s contrast of the first 

26 seconds of the voluntary blocks (VF/AU/INST) > baseline, thresholded at p<0.0001, in conjunction with 

the relevant anatomical masks. DMN ROIs were defined as the voxels that showed decreased activations 

in this contrast, using the same threshold. If no voxels survived the thresholding, it was gradually lowered 

until p<0.01, to obtain a minimal ROI of ~30 voxels. If still no voxels survived, the ROI region was not 

defined for that participant. The LH anterior insula ROI was defined only for the verbal fluency task, and 

not for the alternative uses and instances task, as it did not survive the thresholding in most participants 

in these two tasks.  

ROI time courses were extracted for each ROI in each participant, for the experimental runs as well as for 

the resting-state scans. Before the extraction of the ROI time courses, further motion correction 

procedures were done: in addition to regressing out the 6 standard and 18 extended motion parameters, 

estimated by FSL MCFLIRT, we also identified and excluded TRs with  head movements using a scrubbing 

procedure (Power et al., 2012). Additionally, in the resting state data, non-neuronal contributions to the 

BOLD signal were removed by linear regression of motion parameters and ventricle and white-matter 

time courses from the unsmoothed data, for each participant (Fox et al., 2009; Hahamy et al., 2014). 

Following these steps, we averaged the BOLD signals across all voxels in each ROI, computing the time 

courses for each ROI in each participant. 

 

ROI event-related response analysis 

In order to examine the event-related ROI responses, we first normalized the ROI BOLD time courses to 

percent signal change, relative to the mean BOLD amplitude across each entire run. The BOLD responses 

were locked to the onset of the voluntary and control verbal events, indicated by the button presses, 

excluding events that occurred in the first 30 seconds of each block, as explained in the ROI definition and 
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time course extraction section above. Furthermore, only events that were separated by at least 12 “event-

free” seconds from the previous event were analyzed, for both the voluntary and control conditions, thus 

allowing examination of the activity preceding these events, that is not contaminated by residual activity 

from previous events. Event-related responses were averaged across trials and experimental runs for each 

participant, separately for the voluntary and control conditions in the three experimental tasks, from -8 

to +12 seconds relative to the button press. The BOLD responses were then averaged across all 

participants. The differential time courses of the two conditions were also calculated, defined as the 

within subject average voluntary response minus the control response, averaged across participants. 

Paired t-tests were conducted in each ROI and condition, comparing the BOLD amplitude at each time 

point to the baseline amplitude, defined as the average amplitude at times -6 and -4 relative to event 

onset.  

In order to rule out the possibility that the gradual buildup preceding the voluntary events, but not the 

control events, is caused by an amplitude difference between these two conditions, we normalized the 

responses of individual participants to their peak value, using min-max normalization: x’= (x-min)/(max-

min). This results in mapping the minimal value of the responses to 0 and the maximum value to 1, 

therefore obtaining an equal peak value of 1 in both the voluntary and control responses of each 

participant. After this normalization, we proceeded with the same pipeline as before, including averaging 

the responses across participants, calculating the differential time-courses, and conducting the statistical 

tests.  

 

Variance control simulation and analysis 

A critical possible confound underlying the gradual buildup results is that this buildup was actually formed 

artificially by averaging across multiple “step-function” responses with time-jittered onsets, due to 

inaccuracies in the participants’ button press reports. In order to differentiate between a “true” single-

trial-level gradual buildup and a time-jittered step-function alternative, we ran a variance simulation 

analysis, obtaining the expected variance time-courses of these two possible models, and then compared 

them to the real experimental data variance time-courses.  

The simulation of each of the two models included 1000 iterations, with each iteration consisting of 30 

simulated trials. For the jittered-time step function simulation, neural activity estimates for individual trial 

time-courses were constructed as box plot responses with 11 values, or “time-points”, in order to 
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resemble the experimental responses we examined in the tasks, that consisted of 11 TRs, or 20 seconds 

(see ROI event-related response analysis). These time points were marked between -8 and 12 seconds, 

solely for simple visual comparisons with the experimental data. These box plot responses began with an 

amplitude of 0±random noise, consisting of a random value between -0.35 to 0.35 (with 0.01 intervals), 

with a different random noise level for each time point and each trial. At a random time point, between  

-2 to 4 seconds relative to “event onset”, the amplitude abruptly increased to 1±random noise, remaining 

at this level until dropping back to ~0 at time 6 seconds, in all trials. This resulted in obtaining an across-

trials averaged response that displayed a gradual buildup, starting at around time -2, and peaking at time 

4 relative to event onset, matching the time dynamics in the real experimental voluntary event-related 

responses. Examples of 30 such simulated trials from one iteration are shown in the left panel of figure 

7a, each trial marked in a different color, and the across-trial average in a thicker black line. The amplitude 

jumps from ~0 to ~1 are clearly seen at different time points. Next, we obtained the BOLD response 

estimates by convolving the neural estimate responses with the standard hemodynamic response 

function (Boynton et al 1996), and divided each response by its maximum value, to maintain the ~0-1 

amplitude scale. The BOLD estimates of the individual trials are shown in different colors in the middle 

panel of figure 7a, and the across trial average is shown in the black line.   

In the single-trial gradual buildup simulation, the neural activity estimates had the same “time-duration” 

as in the jittered-time step function simulation, and also began with an amplitude of 0±random noise, 

consisting of a random value between -0.35 to 0.35 (with 0.01 intervals). Here, instead of a discrete step 

function occurring at a random time point, the responses demonstrated a triangular-shaped activity 

buildup, with a linear positive slope of 0.25, to which we added a random noise value of ±0.05 (with 0.01 

intervals) in each simulated trial. The signal increase began at time -2, and reached a peak amplitude of 

1±0.35 jittered noise, at time 4 relative to “event onset”. Thus, we obtain an across-trial average response 

that shows a slow accumulation from ~-2 seconds, and peaks at time 4 relative to “event onset”, matching 

the experimental event-related responses in the 3 experiments. The left panel in figure 7b shows 30 

example simulated trials from one iteration, each trial shown in a different color, with the across-trial 

average in black. BOLD responses estimates were obtained by convolving the responses with the standard 

HRF response, as was done in the step-function simulation, and these responses are shown in the middle 

panel of figure 7b. Comparing the left and middle panels of figure 7b with those in figure 7a, it is clear to 

see that the across-trial average in the step-function simulation and in the gradual-slope simulation are 

very similar, both displaying a gradual increase, yet one resulting from true single-trial gradual buildup, 

while the other results from a time-jitter in the abrupt step-function.   
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The variance time-courses for the two models were obtained by calculating the across-trial variance in 

each iteration (across the 30 trials), for each time point, and then averaging the variance values across 

the 1000 iterations. In order to evaluate changes in the variance along the time-course, the variance 

value at each time point was compared to the baseline variance, defined as the average variance at 

times -6 and -4 before “event onset”, similar to the comparisons done in the mean amplitude event-

related responses (see ROI event-related analysis). P-values for each time point were obtained from the 

distribution of 1000 variance difference values between the variance and the mean baseline variance 

(one difference value from each iteration). The p-values were defined as 2*minimum(P_val, 1-P_val), 

with P_val defined as the proportion of variance difference values smaller than 0.   

The variance time-courses of the actual experimental data were calculated for each of the three 

experiments, separately for the voluntary and control conditions, in each ROI, as well as for the pupil.  The 

across-trial variance time course of each participant was calculated from the same trials as explained in 

ROI event-related response analysis, and then averaged across participants. A one-tailed paired t-test was 

calculated for each time point, examining whether the variance at each time point was higher than the 

baseline variance (average variance at times -6 and -4 seconds before event onset).  

 

fALFF analysis and simulation 

In order to quantify and compare the time-frequency dynamics during the resting state, to those of the 

voluntary and control responses, we calculated the fractional amplitude of low frequency fluctuations 

(fALFF) (Zou et al., 2008; Zuo et al., 2010) in these conditions for each participant. The fALFF values of the 

voluntary and control responses were calculated from the average event-related response of each 

participant, for all the ROIs defined, separately for the 3 tasks (VF, AU, and INST). These individual 

averaged event-related responses were obtained as described in the ROI event-related response analysis 

section, following the preprocessing steps described in fMRI preprocessing and ROI definition and time-

course extraction, and percent signal change normalization. These mean responses, for each participant, 

each ROI, and each condition, were transformed to the power-frequency domain using the Fourier 

frequency transform. Next, the sum of the square root of the power amplitudes across the 0.01-0.1 Hz 

frequency range was divided by the sum of the square root of the power across the entire frequency range 

measured (0-0.25 Hz). This resulted in an fALFF value for each subject and each ROI, for the mean VF, AU, 

and INST responses, and their matching control responses.  Similarly, we obtained the fALFF values of the 

resting state time course of each subject, for the two resting state scans that were performed (prior to 
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the VF experiment, and prior to the AU and INST experiments, as explained in The experimental tasks and 

design section). Resting state data first underwent preprocessing, including regressing out the motion 

parameters, white matter and ventricle time-courses, as described in fMRI preprocessing and ROI 

definition and time course extraction. Next, the resting state time-courses were transformed to the power-

frequency domain, by Fourier Transform, and the square root of the power was calculated for each 

frequency. Then, the sum of the square root amplitudes across 0.01-0.1 Hz was divided by the sum across 

the entire frequency range, resulting in an fALFF value for each participant and each ROI.  

Finally, the resting state fALFF values were correlated with the voluntary and the control fALFF values, 

separately for the VF, AU and INST tasks, using Spearman correlation. All correlation p-values were derived 

from a non-parametric permutations test, with 10,000 random subject-wise permutations, followed by 

FDR correction at α=0.05, to correct for multiple comparisons across the different ROIs.  

fALFF calculations are usually commonly for depicting resting state data (Zou et al., 2008; Zuo et al., 2010). 

However, here we opted to use this measure for examining average event-related responses as well. In 

order to validate this usage, we run a simulation, in which we generated a series of 17 “resting-state” and 

“event-related” responses, with common slopes, or wave-shapes, and examined their fALFF measures.  

“Event-related responses” were created in a similar manner to the responses generated in the variance 

simulation, as described in Variance control simulation and analysis. Neural activity estimates were 

constructed as vectors with 30 elements, with all values ranging between 0 and 1. All responses began 

with an amplitude of 0, and then started linearly increasing in a triangular-shaped buildup with a different 

positive slope in each simulated response, ranging between 0.05 to 0.5 (with a total of 17 different slopes). 

After reaching a peak amplitude of 1, the next value in the series dropped back to 0.  Examples for two 

simulated “event-related responses”, with a gradual and a steep slope, are shown in figure S9a. In order 

to obtain the BOLD response estimates, the responses were then convolved with the standard HRF 

response (Boynton et al 1996), also shown in figure S9a.  

Simulated “resting state time courses” were generated by concatenating individual “event-related 

responses” with a constant slope, obtaining a vector with a total length of 360 values, as in the real 

experimental resting state data. Intervals of 0-amplitude elements with varying lengths, between 0 to 20 

elements, separated between two consecutive waves. Additionally, random overlaps between two 

consecutive waves were also inserted, with random overlap inserts of between -10 to 0 steps, or 

elements, thus allowing sporadic summation of two successive simulated waves. BOLD response 

estimates were obtained by convolving these time courses with the standard HRF. Figure S9a shows two 
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examples of the neural estimates and BOLD estimates of simulated resting state time courses with two 

different slopes. In the same manner as for the simulated “event-related responses”, we generated a total 

of 17 simulated “resting state time-courses” with varying buildup slopes, ranging between 0.05-0.5. Thus, 

for every slope value, we had generated one simulated “resting state time course”, and one simulated 

“event-related response”.  

Next, we calculated the fALFF value for each simulated resting state time course and event related time 

course, in the same manner that was done for the experimental data (as described above). In order to 

inspect the relationship between the slopes from which the time courses were generated, and the fALFF 

values, we correlated between the two parameters, both for the resting-state and the event-related 

simulated data separately, using Spearman correlation. Additionally, we checked for a correlation 

between the fALFF values of the resting state and event related simulated time courses that were 

generated with a common slope, using Spearman correlation. All correlation plots are shown in figure 

S9b.  
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