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Abstract 

The availability of extensive transcriptome data of the human brain has greatly expanded the 

possibilities to study the molecular differentiation of brain regions. A previously proposed 

method enabled the spatially comprehensive prediction of gene expression in the brain based 

on discrete microarray data. The resulting data was employed in the current work in order to 

derive a parcellation of the human cerebral cortex. To this end, the transcriptome dataset 

comprising normalized expression of 18,686 genes was used for agglomerative hierarchical 

clustering with Pearson correlation distance and average linkage. The optimal number of 

clusters indicated by the Bayesian Information Criterion was k=33. The transcriptome based 

parcellation was able to reproduce several well-established boundaries between cortical 

regions, such as primary sensory and motor areas, while revealing novel insights into their 

hierarchical organization. 
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Introduction  

The evolution of brain functions which subserve several uniquely human behaviors was 

paralleled by the specialization of the cerebral cortex.1 Accordingly, the parcellation of the 

cortex was among the earliest pursuits in modern neuroscience. It continues to advance our 

understanding by providing definitions of discrete areas and networks which facilitate specific 

scrutiny, interpretation of results and communication between researchers.2  

This work utilizes human brain transcriptome data provided in the scope of the Allen Human 

Brain Atlas (AHBA) project.3 Previously, a regression model which exploits the spatial 

dependence of gene expression4 was used to generate continuous and unbiased predictions of 

messenger ribonucleic acid (mRNA) expression in the entire cortex from microarray data of 

samples collected from six adult brain donors.5 In the current work, the resulting spatially 

comprehensive mRNA expression maps of 18,686 genes were used to parcellate the cortex 

based on transcriptomic profiles using hierarchical clustering.  

This preprint version outlines the methods and rudimentary results in order to facilitate 

scientific discourse on the results.   
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Methods 

Estimation of cortical gene expression  

Human brain transcriptome data provided by the Allen Institute (Allen Human Brain Atlas, 

http://human.brain-map.org/) was downloaded and processed as described previously5 to 

generate comprehensive maps of mRNA expression in the cortex which are openly available 

at our homepage (http://www.meduniwien.ac.at/neuroimaging/mRNA.html). In short, 

microarray probes with signal not significantly different from background in a minimum of 

1% of samples and probes without an association with an Entrez ID were excluded, such that 

40,205 probes mapped to 18,686 genes were retained. Probes associated with the same gene 

were averaged and individual probes were removed step-wise if their exclusion resulted in a 

higher spatial dependence of gene expression. For each gene, expression intensity in the six 

donor brains was set to an equal mean across brain regions to minimize the influence of inter-

individual variation. Cortical surface reconstruction was performed using the recon-all 

pipeline in FreeSurfer 5.1 (Harvard Medical School, Boston, USA; 

http://surfer.nmr.mgh.harvard.edu/) and microarray samples from all donors were mapped to 

their respective nearest vertices in fsaverage space. Variogram models were fitted and 

Gaussian process regression (ordinary Kriging) was performed to predict mRNA expression 

for all surface vertices using the gstat 1.1-5 package6 in R. This was performed for the left 

hemisphere, as data for the right hemisphere was not available for 4 out of 6 brains. To reduce 

noise, observed expression intensities of vertices associated with microarray samples were 

replaced by the average of the estimated expression intensity of the directly adjacent vertices. 

Furthermore, smoothing was applied to the mRNA expression maps with an isotropic 

Gaussian kernel and full width at half maximum (FWHM) of 3,4 mm which corresponds to 

the average Euclidean distance of vertices separated by four edges in fsaverage space. 

Expression maps were normalized by subtraction of the mean expression intensity of each 

gene across the cortex.  
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Parcellation of the cortex  

18,686 gene expression maps were used as input for agglomerative hierarchical clustering in 

Matlab R2014a (https://www.mathworks.com/). Hierarchical clustering was chosen in order 

to reveal the hierarchical differentiation of the cerebral cortex. The distance between two 

vertices of the cortex was calculated from Pearson correlation coefficients (r) using the 

formula d(x,y)=1/2(1−rx,y), which provides high accuracy at an acceptable computational 

cost.7 A correlation based distance was used because the contrast between nearest and furthest 

neighbors decreases with an increasing number of dimensions for Minkowski measures, such 

as Euclidean or Manhattan distances, which are otherwise frequently used in clustering 

applications.8 In order to select the optimal linkage method (average, complete or median 

linkage), robustness analysis was performed for each linkage method using data from the left 

cortical hemisphere. Further, the effect of z-scoring gene expression data was assessed, which 

was predicted to reduce robustness due to the assignment of more weight to genes with a low 

spatial variance in expression. Robustness analysis was performed using bootstrapping by 

creating 1,000 random subsets of 6,229 genes, i.e. one third of the entire transcriptome 

dataset, and performing clustering analysis on each of these subsets. Subsequently, the 

robustness of clustering results was determined by calculating the average of the Adjusted 

Rand Index (ARI)9 obtained for each pair of clustering results obtained from the 1,000 subsets 

and for each number of clusters from k=5 to k=100. The ARI is a measure ranging between 0 

and 1 which reflects the concordance between different partitions. In order to achieve 

computational feasibility, robustness analysis was performed on a downsampled 

representation of the cerebral cortex (fsaverage5) comprising 10,242 vertices.  
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Results  

Effect of linkage and standardization method 

Based on ARI, highest robustness was observed for average linkage across all cluster numbers 

analyzed, which is in agreement with a previous analysis of the optimal choice of linkage 

method for gene expression data.7 Z-scoring reduced robustness of clustering results 

irrespective of linkage method. On this basis, agglomerative hierarchical clustering with 

Pearson correlation distance, average linkage and without z-scoring was used as the final 

clustering algorithm. 

 

Figure 1: Effect of linkage method and standardization on robustness of clustering 

results.  

For each linkage method, average Adjusted Rand Index (ARI) calculated for clustering results 

based on 1,000 random subsets comprising one third of the brain transcriptome dataset is 

plotted as a function of the number of clusters. This was performed for standardized (z-

scored) and non-standardized (each gene’s expression set to zero mean) gene expression data. 
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Hierarchical clustering results 

The parcellation and the dendrogram created by hierarchical clustering are shown in Figure 2. 

The displayed parcellation at k=33 corresponds to the optimal solution indicated by the 

Bayesian information criterion (BIC).  

 

Figure 2 Transcriptome based parcellation of the human cerebral cortex.  

a) The parcellation is displayed superimposed on the pial surface of the left cortical 

hemisphere of the average subject. b) The dendrogram created by the hierarchical clustering 

algorithm is shown with correlation distance calculated from Pearson’s r plotted on the y-axis. 

The Bayesian Information Criterion indicated 33 as the optimal number of clusters (red line). 

For display purposes, nine basic colors were used. Further subdivisions down to the solution 

of 33 clusters are visualized by differences in brightness, darker clusters being more distant 

with respect to mRNA expression from the center of their respective higher-order cluster 

indicated by color assignment. 
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Discussion 

The transcriptome based parcellation was able to reproduce several well-established 

boundaries between cortical regions, such as primary sensory and motor areas, while 

revealing novel insights in their hierarchical organization. 

 

Detailed results and their discussion will be made available in the near future. Before 

publication of the final paper, further data can be obtained through correspondence.  
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