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Abstract

Single-cell transcriptome sequencing (scRNA-Seq) has allowed many new types of investigations
at unprecedented and unique levels of resolution. Among the primary goals of scRNA-Seq is the
classification of cells into potentially novel cell types. Many approaches build on the existing clustering
literature to develop tools specific to single-cell applications. However, almost all of these methods
rely on heuristics or user-supplied parameters to control the number of clusters identified. This
affects both the resolution of the clusters within the original dataset as well as their replicability
across datasets. While many recommendations exist to select these tuning parameters, most of them
are quite ad hoc. In general, there is little assurance that any given set of parameters will represent an
optimal choice in the ever-present trade-off between cluster resolution and replicability. For instance,
it may be the case that another set of parameters will result in more clusters that are also more
replicable, or in fewer clusters that are also less replicable.

Here, we propose a new method called Dune for optimizing the trade-off between the resolution
of the clusters and their replicability across datasets. Our method takes as input a set of clustering
results on a single dataset, derived from any set of clustering algorithms and associated tuning
parameters, and iteratively merges clusters within partitions in order to maximize their concordance
between partitions. As demonstrated on a variety of scRNA-Seq datasets from different platforms,
Dune outperforms existing techniques, that rely on hierarchical merging for reducing the number of
clusters, in terms of replicability of the resultant merged clusters. It provides an objective approach
for identifying replicable consensus clusters most likely to represent common biological features across
multiple datasets.

Improvements in single-cell transcriptome sequencing (scRNA-Seq) over the last decade have allowed
the characterization of gene expression in collections of thousands to hundreds of thousands of cells. While
datasets have grown in size by several orders of magnitude, cell type identification remains a primary step
in the analysis process [1]. We will focus here on unsupervised clustering, which can be broadly defined
as partitioning observations into clusters based on a set of features, without using any prior knowledge
on the groupings. In the scRNA-Seq context, clustering aims to identify groups of cells that are defined
by a unique and consistent transcriptomic signature. Such groups of cells can represent both transient
features, such as cellular states, or more permanent features, such as celullar types.

Many clustering algorithms have been proposed for scRNA-Seq, most of these being adaptations from
the clustering literature at large. Popular methods include SC3 [2], Seurat [3], and Monocle [4]. However,
clustering remains a complex task. Kiselev et al. [5] outlined the various challenges – both biological and
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computational – of this step, including technical noise, biological heterogeneity, and the impact of tuning
parameters for the clustering algorithms. In particular, obtaining replicable clusters can be difficult. In
this work, we declare clusters as replicable if running the exact same clustering algorithm on a related
dataset yields similar clusters. Duò et al. [6] offers a recent review and benchmark of some scRNA-Seq
clustering algorithms, identifying SC3 and Seurat as the best methods overall. The selection of tuning
parameters, however, remains an open question. While some methods, SC3 for example, provide a way
to estimate the optimal value of its main tuning parameter, most do not, leaving the choice to the user.
Consensus methods try to bypass this issue [2, 7], but they also rely on meta-parameters which can still
have substantial impact on the results.

The aforementioned clustering algorithms identify a pre-specified number of clusters either directly,
as in k-means, or indirectly, through another tuning parameter. They rely on the assumption that there
is only one relevant level of clustering resolution, i.e., an optimal number of clusters, in the dataset.
We argue that this is often not the case, since cell types usually have a hierarchy. For example, Tasic
et al. [8] propose a tree structure for the mouse anterolateral motor (ALM) and primary visual (VISp)
cortical areas. At the higher levels, cells can be clustered as neurons and non-neurons. Then, neurons
can be further split into GABAergic and glutamatergic neurons and so on and so forth. This hierarchical
structure means that the concept of an “optimal” number of clusters is not appropriate. Instead, many
datasets can be better characterized with ever-finer levels of resolution. At the higher levels, cells are
grouped into large clusters that are quite coarse, but are easily identifiable and very replicable across
datasets. As the resolution increases, there are more and more clusters, but these are less and less certain,
meaning that they are less likely to represent real biological cell types and more likely to be reflecting over-
partitioning (cf. overfitting) of the data or the presence of transient states. This resolution-replicabilty
trade-off is not obvious to quantify and is heavily dataset-dependent: it is not only influenced by the
biological setting under study and its complexity, but also depends on technical properties of the data,
such as sequencing depth and number of cells [1].

By far the most common method to establish a hierarchy for pre-defined clusters is agglomerative
hierarchical clustering, a bottom-up method in which clusters are merged one-by-one until they are all
merged into a single cluster. This procedure yields a tree structure linking clusters that are merged
together. The tree can also be defined by merging clusters according to the fraction of differentially
expressed (DE) genes between them [7, 8]. While several extensive benchmarks of clustering methods
have been proposed [6, 9], these only focus on the resulting partitions rather than the full hierarchical
structure. Zappia and Oshlack [10] proposed a representation of clustering trees to visually describe
hierarchies but this type of analysis heavily relies on user-supervision.

Here, we present Dune, a method that aims to reconciles multiple clustering results and extract the
common structure that they all identify. Dune takes as input a set of clustering results (i.e., results
from a variety of clustering algorithms and associated tuning parameters applied to a given dataset) and
produces hierarchies of clusters by merging clusters within each partition using information borrowed
from the other partitions. While different clustering algorithms run with different tuning parameters will
naturally provide discrepant clusters, all good clustering methods should be able to identify a common
higher-level clustering that is robust to the choice of tuning parameters. Dune identifies this common
higher level of resolution shared by all methods without requiring any tuning by the user. Examining
this level can provide both useful biological insight and help to compare various clustering methods.

In this manuscript, we first introduce the Dune algorithm. Then, using a variety of scRNA-Seq and
snRNA-Seq datasets from different sequencing platforms, we show that Dune outperforms agglomerative
merging methods in navigating the trade-off between resolution and replicability and in identifying gold-
standard high-level clusterings. Finally, we assess Dune’s robustness to poor inputs and to sample size.

Results

The Dune algorithm

The Dune algorithm is a general framework that increases the agreement between different clusterings
of the same dataset through iterative merging. It takes as input R sets of clustering results, generally
produced from running R clustering algorithms (or the same algorithm with different tuning parameter
values) on the same dataset. An example can be seen in Figure 1a, where a small subset of the AIBS
snRNA-Smart dataset [11] (see the “Methods, Case Studies” section) is used to demonstrate some of
the main concepts underlying Dune. The first row displays three examples of clusterings (i.e., sets of
cluster labels) produced by three different clustering algorithms applied to the same dataset, reduced
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Figure 1: Measuring and improving the concordance between clusterings. We used a subset of the AIBS
snRNA-Smart dataset as an example. Panel a. SC3, Monocle, and Seurat were run on the dataset and
their results are displayed using scatterplots of the first two t-SNE components, where the color of the
plotting symbol corresponds to the cluster label. Each pair of clusterings was then compared using a
confusion matrix, resulting in three such matrices. For a pair of clusterings/partitions, a confusion matrix
is a contingency table, where each entry corresponds to the number of observations in both a cluster from
the first partition and a cluster from the second. The size of the dot represents the number of observations
in both clusters and the color corresponds to the Jaccard index. Each confusion matrix produces one
ARI value. Panel b. Merging clusters 20 and 21 from SC3 into one cluster changes the confusion matrix
and increases the ARI.

to two dimensions using t-SNE[12–14]. All three methods identify similar, but not identical clusters.
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Indeed, the algorithms output partitions with different levels of resolution. For example, Monocle splits
the bottom region (in reduced dimension) into two clusters, while the other two methods find three
clusters. Likewise, Monocle and SC3 find two clusters in the top region, while Seurat only finds one.
These differences can be displayed using confusion matrices (second row of Figure 1a), where the overlap
between two clusters from any pair of clusterings is displayed both in terms of the number of cells in
the intersection and by the Jaccard index (i.e., the cardinality of the intersection of the two clusters
over the cardinality of their union; [15]). Rows and columns are ordered so as to maximize, as much
as possible, the sum of the diagonal entries. Confusion matrices can be further summarized using the
adjusted Rand index (ARI). The ARI [16, 17] is a commonly used measure for the agreement between
two sets of clustering labels, see the “Methods, ARI” section for more details. As can be seen in the
confusion matrices, SC3 and Seurat have the highest level of agreement. Indeed, this is also reflected in
the fact that they have the highest ARI of any pair.

Dune merges together the clusters within each of the R partitions so that the R clustering results
more closely match each other. An example of the merging is displayed in Figure 1. Clusters 20 and 21
from SC3 are merged together, resulting in one larger cluster named 20. Doing so increases the agreement
between SC3 and Monocle in the confusion matrix, as reflected by an increase in ARI from 0.59 to 0.66.
This merge also improves the ARI between SC3 and Seurat (from 0.8 to 0.9) and hence increases the
overall agreement between the three clusterings. This is the main idea behind Dune. Specifically, Dune
performs an iterative search, where, at each iteration, it identifies the partition and pair of clusters within
this partition that, when merged, most improve the average of the adjusted Rand index over all pairs of
clusterings (ARI). Thus, the Dune algorithm can be viewed as an iterative algorithm for maximizing the
average pairwise ARI of a collection of clustering results. A more formal definition of the algorithm is
provided in the “Methods, Dune” section.

We demonstrate how the Dune algorithm works in Figure 2, using the AIBS scRNA-Smart dataset, a
scRNA-Seq dataset of 6,300 mouse brain cells further described in the “Methods, Case Studies” section.
For this example, we ran SC3, Seurat, and Monocle to obtain our initial clustering results for input into
Dune (R = 3). Figure 2a displays the confusion matrix for a pair of clusterings (SC3 and Monocle)
before any merging and Figure 2b displays a pseudocolor image of the matrix of all pairwise ARIs for the
three clusterings before any merging. The overlap between the three methods is moderate. Indeed, the
pairwise ARIs vary between 0.55 and 0.68 in Fig. 2b. However, as can be seen in the confusion matrix,
the clusterings do capture a shared underlying structure, which will serve as grounding for the Dune
merging. Figure 2d shows the confusion matrix for the same two partitions as in 2a, after merging with
Dune. We can see that we have, by design, fewer clusters in both partitions, but also that the concordance
between the two partitions is greatly improved (as indicated by the color of the plotting symbols, which
represents the Jaccard Index). This is further evidenced in Figure 2e, where the pairwise ARIs between
the three partitions are displayed. The average ARI after all merging steps increased from ∼ 0.6 to
∼ 0.89. Figures 2c and 2f demonstrate the evolution of the average ARI and of the number of clusters
per partition through the Dune merging process. At each step, we merge the pair of clusters that leads
to the greatest increase in average ARI. Hence, at each step, the average ARI increases (Fig. 2c) and
the number of clusters in one of the partitions decreases by one (2f). The final partitions are achieved
when the average ARI can no longer be improved.

In the following sections, we evaluate Dune and compare it to two hierarchical tree merging methods,
using four datasets: two mouse brain datasets from the Allen Institute *** HRB: waiting for main paper
and two human pancreas datasets [18, 19]. We then discuss the value of Dune’s stopping rule. Finally,
we investigate the stability of the Dune algorithm to the clustering inputs and the sample size.

Dune outperforms other methods in recovering known biological subtypes

To evaluate Dune, we first considered how well the resulting merged clusters compare to known biological
subtypes. We used the output of Dune on the R = 3 clustering methods (namely, SC3, Seurat, and
Monocle) applied to the AIBS scRNA-Smart dataset, as described above. For this dataset, we treated
the labels from the original publication as the gold standard. At each merge (i.e., iteration), we computed
the ARI between the the known subtypes and the Dune clusters. Figure 3a displays the ARI evolution
for the clusters from SC3 as they are merged with Dune (blue curve). As merging occurs, the resolution
(i.e., number of clusters) decreases and the ARI with the known cell subtypes increases. The entire ARI
curve can be summarized by computing the the area under it, referred to herein as the area under the
ARI curve (AUARIC), as depicted in Figure 3b.

We compared the performance of Dune to other methods of merging, referred to as Dist and DE (red
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Figure 2: Illustrating Dune on a dataset with three sets of clusters. We used the AIBS scRNA-Smart
dataset [11] as an example. Before any merging, the sets of cluster labels – or partitions – resulting
from running SC3, Seurat, and Monocle have a moderate agreement. Panel a displays the confusion
matrix between two of the partitions, where each entry corresponds to the number of observations in
both a cluster from Partition 1 and a cluster from Partition 2. The confusion matrix shows that while
many cells are clustered in similar clusters, i.e., along the main diagonal, many others are not. This
can be summarized by the ARI between Partitions 1 and 2. Panel b displays a pseudocolor image of
the matrix of all pairwise ARIs between the three partitions. Panel c illustrates that the average ARI
between partitions increases as pairs of clusters are merged when applying Dune. After running Dune,
the confusion matrix in Panel d and the pairwise ARI matrix in Panel e both show that the partitions
are indeed more similar. Panel f shows that, at each merging step, the number of clusters in one of the
partitions is decreased by one, in Dune’s greedy procedure to improve the average ARI by merging pairs
of clusters.

and green curves in Figure 3a, respectively). Both are hierarchical methods, that start by building a tree
between the clusters. The Dist method then merges clusters in a bottow-up manner, starting with the
two clusters that are closest in the tree and then iteratively until all clusters are merged. The second
approach, DE, follows the method implemented in RSEC and merges clusters bottom-up based on the
percentage of DE genes between clusters. It uses the limma package [20], where a gene is declared DE
if its nominal false discovery rate (FDR) adjusted p-value is below 0.05 [21]. Pairs of clusters with less
than a certain fraction of DE genes are merged. Increasing this threshold from 0 to 1 leads to an iterative
merging procedure. More details on these two procedures can be found in the Method section.

In Figure 3a, we see that Dune consistently outperformed the other two integration methods in terms
of concordance with BICCN-curated clusters throughout the merging process and therefore also in term
of AUARIC. We note that while Dune stops merging when the average ARI can no longer be improved,
the hierarchical merging procedures have no meaningful stopping point and continue merging until only
one cluster is left. To provide a reasonable stopping point, we stopped the other methods when merging
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Figure 3: Dune outperforms other methods in recovering known biological subtypes. Panel a. SC3 was
run on the AIBS scRNA-Smart dataset for θsc3 = 0 and merged down with either DE, Dist, or Dune
(with θMonocle = 45 and θSeurat = 1.2, for Dune). The ARI with the labels from the original publication,
treated as gold standard, was computed at each step of all three merging procedures. Panel b. For each
merging method from a, the area under the ARI curve (AUARIC) was computed. This was repeated
for three clustering methods, each with three different values of their respective tuning parameter θ,
and four datasets. The resulting 36 AUARIC are displayed in the pseudocolor image of Panel c. The
AUARIC values are scaled to have a column mean of zero and column variance of 1. This was done to
make AUARIC values comparable across datasets, clustering methods, and parameter values, since the
AUARIC can have different scales across scenarios.

no longer improves the ARI, similar to the requirement of Dune, which means we did not penalize the
other methods for not providing a natural stopping point. For each merging method, we computed an
area under its ARI curve (AUARIC), as depicted in Figure 3b for the merging of the SC3 clusters of the
AIBS scRNA-Smart dataset using Dune.

Figure 3c show the results when repeating this process over a multiplicity of scenarii. Dune and
the other merging methods rely on one or multiple clustering results – in this work, clusterings from
SC3, Seurat, and Monocle. Because each of these methods have tuning parameters than can affect
their performance, we ran each of the three clustering methods on a grid of tuning parameter values
for all 4 datasets, as described in the “Methods, Data analysis” section. The AUARIC for the three
merging methods across these 36 scenarios are displayed in Figure 3c and Table S2. Overall, Dune clearly
outperformed the other two merging methods. Table S2 recapitulates all rankings. In particular, in 29
out of the 36 evaluations, Dune resulted in the highest ARI increase and was the lowest performer only
twice.
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Dune outperforms other methods in terms of the resolution-replicability trade-
off

We then considered the replicability of the clusters found by Dune compared to the other two merging
strategies. We measured replicability by evaluating whether the method finds similar clusters for multiple
independent datasets – for example, datasets on the same biological system but from different labs or
technologies. We considered two pairs of datasets: The two mouse brain AIBS Smart datasets from the
Allen Institute and the two human pancreas datasets Baron and Segerstople. To measure replicability,
we relied on the MetaNeighbor algorithm from Crow et al. [22], which identifies replicable clusters between
pairs of datasets (see “Methods, metaneighbour” for description). The replicability of a set of clusters
was then defined as the fraction of cells in replicable clusters. We used this measure to compare Dune to
other merging procedures.

Illustration of the trade-off between resolution and replicability

Figure 4a displays replicability vs. resolution for a wide range of clustering results, where three clustering
methods (SC3, Seurat, and Monocle) were run with a large grid of tuning parameter values, on the pair
of mouse brain datasets. This clearly demonstrates the trade-off between replicability and resolution:
As the number of clusters increased, the fraction of cells in replicable clusters decreased, regardless of
the clustering method used. While the actual trade-off is specific to the biological context and the pair
of datasets that are being considered, it should be noted that a similar trade-off is clearly visible when
applying the same type of analysis to the human pancreas datasets (Figure S2). Note that although
it might be tempting to use this figure to contrast and benchmark clustering methods, this would not
appropriate. Indeed, pre-processing steps were not identical between the three methods – as described
in “Methods, Data analysis” – and, as such, no direct comparison is possible.

Comparison of merging methods

As pairs of clusters are merged, the resolution decreases, so a well-performing merging method is one
that improves the replicability of the clusters. Therefore, a natural way to benchmark merging methods
is to measure how and if replicability improves as the number of clusters is reduced. For example, in
Figure 4b, Seurat was run with θSeurat = 1.7 on each of the two AIBS Smart datasets. The two sets
of clusters were then merged using the three different merging methods, independently on each dataset.
Dune also used the clusterings from SC3 (θSC3 = 15) and Monocle (θMonocle = 15). At each step of
the merging, we then tracked how replicability evolves. All three merging methods outputted sets of
clusters with increasing replicability as resolution decreases, but Dune produced clusters that have higher
replicability compared to the other two. The area under the replicability curve (AURC) was computed
for each merging method. This was repeated for the three clustering methods, each with three values of
their respective tuning parameter θ, and two pairs of datasets, which lead to 18 comparisons, depicted
in the pseudocolor image of Figure 4c. Dune outperformed the other two merging methods in all 18
comparisons. Note that, as in the previous section, merging for the other methods was stopped at the
resolution level where Dune stopped, which provided these methods with more information than they
would otherwise have had.

Dune has a natural stopping point

Unlike other merging methods, Dune provides a meaningful stopping point, i.e., it keeps merging clusters
until no improvement in average ARI occurs. By contrast, the two hierarchical merging methods continue
to merge until there is only one cluster, which is not biologically meaningful or interesting.

Each clustering method has some strengths and drawbacks: Dune’s stopping point identifies the level
of resolution where all clustering algorithms are close to full agreement. Furthermore, at the stopping
point, the clusters overlap very well with gold-standard clusters. In Figure S3a, the outputs from SC3,
Seurat, and Monocle were used as inputs to Dune on the AIBS snRNA-Smart dataset. After merging
with Dune, the clusters from SC3 overlap well with the Allen Institute subclass labels. Indeed, the ARI
between the SC3 clusters and the subclasses increases from ∼ .63 before merging to ∼ .83 after merging.

Dune robustness analysis

Robustness to poor clustering inputs Since Dune takes as input the results from clustering algo-
rithms, it is sensitive to the quality of the clusterings produced by these algorithms. In general, Dune will
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Figure 4: Dune correctly navigates the resolution-replicability trade-off. Panel a. SC3, Seurat, and Monocle
were run on the two AIBS snRNA-Smart datasets, as described in Methods, for a wide range of tuning
parameter values. Then, the MetaNeighbor method was used to find the clusters that replicate between
these two datasets. Replicability was then computed as the fraction of cells in replicable clusters. There
is an apparent trade-off between resolution and replicability. Panel b. For a given point from a, we
merged the clusters and tracked how replicability evolved as we decreased resolution. Panel c. For each
of the curves in b, we computed an area under the replicability curve (AURC). This was repeated over
the three clustering methods, each with three different values of their respective tuning parameter θ, and
for the two pairs of datasets. AURC were scaled column-wise for display in the pseudocolor image.

not be able to produce good clusters when merging only clusters that capture no underlying biological
signal. However, we showed that Dune is robust to a mix of “good” clustering inputs and “bad” clus-
tering inputs. We used as “good” inputs the results of SC3, Seurat, and Monocle and as “bad” inputs
fully random clusters (see the “Methods, Data analysis” section). Then, the replicability of the “good”
clusterings was measured as merging happened and the AURC was computed and compared to the AURC
when there was no “bad” inputs. As more and more “bad” clusters were added (Figure S3b), Dune still
improved the replicability of the “good” clusters as it merged them, even when half of the clusters used
as inputs were random. Hence, Dune can recover from very poor clustering inputs.

Robustness to sample size We investigated how Dune handles datasets with an ever-smaller number
of cells. To simulate such datasets, we downsampled the two pancreas datasets. Downsampling could
affect both the quality of input clusters and the merging procedure of Dune. To disentangle these two
effects, we downsampled the two human pancreas datasets after running SC3, Seurat, and Monocle, but
before running Dune. We then measured how and whether merging still improved the cluster replicability
by computing the AURC and constrasting it to its value without downsampling (see the “Methods, Data
analysis” section for more details).

When the datasets were downsampled to between 90% and as low as 10% of the original number of
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cells, Dune still correctly navigated the trade-off between resolution and replicability (Fig. S3c). Only
when fewer than 10% of the cells were used (which amounts to datasets of fewer than 200 cells) did Dune’s
capacity to improve cluster replicability worsen noticeably. This demonstrates that the method is very
stable to the number of cells.

Discussion

We have introduced Dune, a new method for navigating the resolution-replicability trade-off in cluster
analysis and for aggregating clustering results from multiple algorithms. We stress that Dune is not a new
clustering algorithm; instead, it relies on different clustering methods to identify the highest resolution
at which cluster quality (i.e., replicability across datasets) remains high. In doing so, Dune identifies the
commonalities of the input clusterings and uses this to improve each of these clusterings. The method is
stable with respect to the quality of the input clusterings as well as to the number of cells/observations
to be clustered. Furthermore, as a result of merging clusters, Dune provides a sensible hierarchy on the
clusters based on their commonality across different methods. As we go up in this hierarchy, the number
of clusters is reduced, but their replicability improves. In this regard, Dune outperforms more commonly
used hierarchical merging methods.

Dune automatically stops at a meaningful resolution level, where all clustering algorithms are in
agreement, while the other methods either keep merging until all clusters are merged into one or require
user supervision to stop early. This feature helps users in identifying reliable structure in their scRNA
and snRNA datasets. The manual choice of a stopping point is difficult since, in practice, it is often
impossible to measure replicability given the lack of a second appropriate dataset.

Dune relies on the adjusted Rand index (ARI) to decide which clusters to merge. Because of this,
it currently cannot be used with clustering methods that do not cluster all cells unambiguously, e.g.,
with soft or fuzzy clustering methods which could assign some cells to multiple clusters based on weights.
Other approaches, such as RSEC, leave some cells unclustered. For now, using such methods as input to
Dune would require forcing a hard assignments of the cells (possibly to their nearest cluster) or excluding
ambiguous/unclustered cells. Extensions of the ARI to fuzzy clustering have been proposed [23, 24] and
would need to be evaluated.

This manuscript focuses on the question of unsupervised clustering. Recent work in supervised clus-
tering [25–28] has proposed labeling cells in a new dataset by relying on information contained in other
datasets or even cell atlases. In practice, these methods define marker genes for known cell types and
build classifiers to assign new cells to these cell types. In particular, Garnett [29] allows a hierarchical
clustering structure, but one that needs to be predefined, and scClassify [30] uses the HOPACH [31] al-
gorithm to establish a hierarchy in the training dataset. Most of these algorithms can also identify new
cell types not present in the reference. It is therefore possible to use a supervised clustering method to
identify the cells of a dataset that have a known cell types. If these cells do not provide information to
help cluster the rest of the cells, we can remove them, and then use unsupervised clustering methods and
Dune on the remaining cells.

While the method we propose has only been benchmarked on scRNA-Seq and snRNA-Seq datasets,
it is a general framework that can be applied to any clustering setting.
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Methods

Consider a – possibly high-dimensional – dataset of n observations, X = {x1, . . . , xn}, where xi ∈ RJ ,
i = 1, . . . , n. For instance, in scRNA-Seq, xi corresponds to the J gene expression measures (i.e.,
normalized read counts) of cell i. Represent the results of any (non-fuzzy) clustering method as a
partition, P, which splits the set of n observations into k disjoint subsets or clusters, {C1, . . . , Ck}, where:
1) Ci ∩ Cj = ∅, ∀i, j ∈ {1, . . . , k}, and 2) ∪i∈{1,...,k}Ci = X. Accordingly, a collection of R clustering
results may be represented as multiple partitions, P1, . . . ,PR, with partition Pr containing kr clusters,
r = 1, . . . , R. For each observation xi, denote by ci,r ∈ {Cr1 , . . . , Crkr

} the cluster to which it belongs in
partition Pr.

The focus of the present manuscript is to develop a general approach to combine clusters within
the different partitions, P1, . . . ,PR, in order to balance the trade-off between cluster resolution and
replicability. In the remainder of this section, we first present the Rand index, a well-known measure of
concordance between two partitions, and its adjusted version. We also review popular clustering methods
in the scRNA-Seq literature and alternative approaches to merge clusters. Finally, we formalize the two
key notions of cluster resolution and cluster replicability.

Adjusted Rand index

The Rand index [16] measures the concordance between two partitions P1 and P2. Denote by a =
|{(xi, xj) ∈ X2|(ci,1 = cj,1)&(ci,2 = cj,2)}| the number of pairs of observations that are in the same
cluster for both partitions P1 and P2 and by b = |{(xi, xj) ∈ X2|(ci,1 6= cj,1)&(ci,2 6= cj,2)}| the number
of pairs of observations that are in different clusters for both partitions P1 and P2. The Rand index is
then the ratio of a+ b over the total number of pairs of observations

RI(P1,P2) =
a+ b(

n
2

) ∈ [0, 1]. (1)

Thus, intuitively, the Rand index is the proportion of pairs of observations for which the two partitions
are in agreement.

However, the Rand index does not account for the fact that a pair of observations might be in the
same (different) cluster(s) in the two partitions purely by chance. The adjusted Rand index (ARI) [17]
adjusts for the level of concordance expected by chance, yielding a value between −1 and +1. Specifically,
considering P a fixed partition and R a random permutation of P, then E[ARI(P,R)] = 0, where the
expected value is over all cluster permutations (i.e., permutations of the cluster assignments of the
observations, while keeping the number of clusters and the sizes of the clusters fixed). Negative values
indicate less than the expected level of concordance and positive values indicate more than the expected
level of concordance. The ARI relies on the contingency table of two partitions P1 and P2, with the
(i, j)th entry ni,j defined as the number of observations both in cluster i of partition P1 and cluster
j of partition P2 (Table 1). Examples of contingency tables between two partitions can be found in
Figures 1a, 1b, 2a, and 2d.
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Table 1: Adjusted Rand index. Contingency table for two partitions P1 and P2.

C21 C22 . . . C2k2
Sums

C11 n1,1 n1,2 . . . n1,k2 a1
C12 n2,1 n2,2 . . . n2,k2 a2
...

...
...

. . .
...

...
C1k1

nk1,1 nk1,2 . . . nk1,k2 ak1

Sums b1 b2 . . . bk2

Given the contingency table notation, the adjusted Rand index is defined as

ARI(P1,P2) =

∑
i,j

(
ni,j

2

)
− 1

(n
2)

∑
i

(
ai

2

)∑
j

(
bj
2

)
1
2

(∑
i

(
ai

2

)
+
∑

j

(
bj
2

))
− 1

(n
2)

∑
i

(
ai

2

)∑
j

(
bj
2

) . (2)

For R partitions, the level of concordance can be quantified by the average ARI for all possible pairs
of partitions

ARI(P1, . . . ,PR) =
1(
R
2

) ∑
{(r,s)∈{1,...,R}|r<s}

ARI(Pr,Ps). (3)

Note that, in the case of R = 2 partitions, this is simply the ARI between the two partitions. If one
considers the matrix of pairwise ARIs between partitions, such as displayed in Figures 2b and e, then the
average ARI is defined as the mean of the upper(or lower)-triangular matrix.

ARI merging with Dune

Given R partitions (possibly the result of different clustering algorithms or different tuning parameter
values for the same clustering algorithm or both), P1, . . . ,PR, with Pr containing kr clusters, r =
1, . . . , R, Dune seeks to improve the overall agreement among these, as measured by the average ARI,
through an iterative process of merging clusters within partitions.

Specifically, Dune searches over each partition Pr and over each of
(
kr

2

)
pairs of clusters in Pr for the

pair which produces the largest improvement in ARI when merged, i.e.,

(r∗, i∗, j∗) := arg max
r∈{1,...,R}

i,j∈{1,...,kr}

∑
{s∈{1,...,R}|s 6=r}

ARI(Pi∪j
r ,Ps)−ARI(Pr,Ps), (4)

where Pi∪j
r is the partition created by merging clusters Cri and Crj in partition Pr

Pi∪j
r :=Pr\{Cri , Crj } ∪ {Cri ∪ Crj }

={Cr1 , . . . , Cri−1, Cri+1, . . . , Crj−1, Crj+1, . . . , Crkr
, Cri ∪ Crj }.

Dune amounts to a greedy algorithm for maximizing the average ARI, ARI. At each step, we find the
pair of clusters that, when merged, lead to the greatest improvement in ARI. Once we have identified

this pair of clusters, we update the collection of partitions: {P1, . . . ,PR} → {P1, . . . ,P
i∗∪j∗
r∗ , . . . ,PR}.

We continue iterating until no beneficial merge can be identified, that is, we stop updating when

max
r,i,j

∑
s 6=r

ARI(Pi∪j
r ,Ps)−ARI(Pr,Ps) < 0.

This greedy approach means that each update step is constrained to merging a single pair of clusters
from a single partition. As such, we never merge three clusters together in one iteration or two pairs of
clusters in the same or in separate partitions. This ensures that, in our applications, we do not converge
to the naive optimal solution of merging all clusters, which does represent a full agreement between the
partitions but is of no practical interest.

While Dune provides a natural stopping point for merging, it is also possible to stop earlier in the
merging process, by tuning the merging parameter mDune, which is defined as the fraction of ARI improve-
ment over the total ARI improvement. For example, mDune = .5 means that Dune returns the merged
partitions that have a mean ARI halfway between the mean ARI of the original partitions and the mean
ARI of the final ones.
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Computational implementation and run time

The Dune algorithm has been implemented in an open-source R package available on Github: https:

//github.com/HectorRDB/Dune. It is implemented in a fully-parallel and efficient manner. Run time for
a large dataset of ∼ 100, 000 cells with 3 partitions is under 15 minutes with 10 CPUs. The package also
contains plotting functions used to create many panels of the paper, as well as options to create GIFs
and track the evolution of mean ARI or confusion matrices across the merging steps.

Clustering algorithms for scRNA-Seq data

Any combination of clustering algorithms and associated tuning parameters, applied to an appropriate
dataset, can produce a set of partitions that can be used as input to Dune. However, as our work was
motivated by the classification of cells based on transcriptomic signatures, we will focus on this particular
setting to benchmark Dune.

In the descriptions below, we use the notation from the original papers to describe the tuning param-
eters of each method; the same notation may therefore correspond to different parameters depending on
the algorithm.

SC3 [2] is a consensus clustering method that involves performing k-means clustering on different
dimensionality reductions of the input dataset. A hierarchical clustering method is then applied to the
resulting consensus matrix. The main parameter is the number of clusters k, which is used both in k-
means and to cut the hierarchical clustering tree. The method provides an estimate of the optimal value
of this parameter, k0, based on the number of eigenvalues of the centered and scaled distance matrix that
are significantly different from 0 (see Kiselev et al. [2] for more details). For large datasets, there exists
a hybrid version of the algorithm, where the full SC3 clustering method is run on only a fraction of the
cells to identify the clusters and the rest of the cells are assigned to the clusters using a support vector
machine (SVM) algorithm.

Seurat’s clustering algorithm has evolved over the different versions of the software; here, we focus on
version 3 [3] (we specifically use version 3.1.1). The algorithm first reduces the dimension of the data by
selecting the first p principal components (PCs) and then computes a k-nearest neighbor (k-NN) graph.
After refining the graph, it groups cells together using, as default, the Louvain algorithm [33]. The two
main tuning parameters are the number of neighbors k used to build the k-NN graph and the resolution
parameter for the Louvain algorithm.

Monocle’s clustering algorithm has also changed and we focus on version 3 [4] (implemented in the
Monocle3 package, although we keep the name Monocle for simplicity; we specifically use version 0.1.3).
Monocle’s clustering algorithm is similar to the one implemented in Seurat, with a few differences. After
initial dimensionality reduction based on principal component analysis (PCA), Monocle performs another
dimensionality reduction step using uniform manifold approximation and projection (UMAP) [34, 35] and
relies on that representation to build the k-NN graph. It then clusters cells using, by default, the Leiden
algorithm [36].

Resampling-based sequential ensemble clustering (RSEC [7]) is a consensus method over user-supplied
clustering algorithms and their associated tuning parameters. In order to improve the stability and tight-
ness of the clusters, it also provides the option to perform clustering on subsamples of the observations, as
well as sequential clustering. However, in this paper, we mainly use RSEC for its final step of hierarchical
merging, see section Existing methods to merge clusters.

Method parameters

For each method, we only tune the main parameter. For Seurat, however, there are two main tuning
parameters. The k parameter controls the number of neighbors used to build the k-NN graph, while the
resolution parameter defines the neighborhood in the Louvain clustering algorithm. In practice, the k
parameter has much less impact than the resolution parameter (see Figure S1). Moreover, depending on
the value of the resolution, increasing k either increases or decreases the final number of clusters. As a
result, we only consider changing the resolution parameter.

For ease and generality of notation, we will denote each method’s main tuning parameter by θ and
define θ such that increasing θ increases the number of clusters. Thus, for the methods described above,
θSC3 = k, θSeurat = Resolution, and θMonocle = −k. Each combination Θ = {θSC3, θSeurat, θMonocle} of
the three parameters defines a set of partitions that serves as input for Dune.
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Existing methods to merge clusters

Once a set of clusters has been identified, one can build a hierarchical tree for these clusters and then
merge clusters that are similar. This involves specifying a measure of distance or similarity between
individual observations (i.e., cells) as well as between clusters. It should be noted that the distance used
to build the tree of clusters need not be the same as the distance used to merge clusters.

For scRNA-Seq datasets, commonly used between-cell distance measures include the Euclidean dis-
tance and one minus the Spearman correlation coefficient. Between-cluster distances include classical
linkage measures used in hierarchical clustering, e.g., maximum/minimum/average of all pairwise dis-
tances between observations in two clusters or distance between the cluster averages or medoids. For
scRNA-Seq, another sensible between-cluster distance measure is the proportion of differentially expressed
(DE) genes between clusters [7, 8]. A detailed discussion of such measures is out of the scope of this
manuscript[37].

Here, we consider two possible ways of merging. In both cases, we compute the cluster medoids
(median of the cluster) based on the log-transformed count matrix (adding 1 to avoid taking the log
of zero). We then build a hierarchical tree of clusters using the Euclidean distance between the cluster
medoids. The first merging approach directly uses this tree to decide how to merge clusters. Specifically,
clusters are merged bottom-up, starting with the two clusters that are closest in the tree and then
iteratively until all clusters are merged. The parameter mDist = nmerges, the number of merges (between
0 and the initial number of clusters minus one), controls the amount of merging. The second approach
follows the method implemented in RSEC. It computes the percentage of DE genes between clusters,
using the limma package [20], where a gene is declared DE if its nominal FDR adjusted p-value is below
0.05 [21]. The main tunable parameter is mDE = α ∈ [0, 1], the threshold for the percentage of DE genes
below which we merge. We name these two methods Dist and DE, respectively.

Cluster replicability using MetaNeighbor

We quantify the replicability of clusters across datasets by applying a modified version of unsupervised
MetaNeighbor [22]. MetaNeighbor requires as input a set of unnormalized datasets, a set of cluster labels,
and a set of highly variable genes. It uses a cross-dataset validation scheme to quantify how well clusters
match across datasets. Given any two datasets, MetaNeighbor builds a cell-cell similarity network based
on the Spearman correlation over the set of highly variable genes. One of the datasets is treated as a test
dataset, where all cluster labels are hidden, the other dataset is treated as a training dataset, whose labels
are propagated to the test dataset through the cell-cell similarity network. Each pair of clusters (one in
the training dataset, the other in the test dataset) receives a score based on how well the training cluster
predicts the labels from the test cluster. This score is the area under the receiver operator characteristic
curve (one-vs-one AUROC). We define the best matching cluster as the test cluster which dominates all
other test clusters (one-vs-one AUROC > 0.5). Finally, we reduce the test set to the two best matching
clusters, recompute an AUROC, which we call one-vs-best AUROC, and record this as the pair’s final
score. Then the role of the test and training datasets are reversed. A cluster is considered replicable if
there is a cluster in the other dataset such that the clusters are reciprocal best hits with a high AUROC
score (one-vs-best AUROC > 0.6 both ways). See Crow et al. [22] for details.

The replicability score of a cluster is defined as the fraction of cells contained in replicable clusters.
More specifically, for a comparison of two datasets, we enumerate replicable clusters in each dataset, then
deduce the number of cells that are in replicable clusters, sum this number across datasets, and divide
by the total number of cells.

We used MetaNeighbor’s variableGenes procedure to select genes that were detected as highly
variable across all datasets. For performance reasons, the variableGenes procedure was applied to a
random subset of 50,000 cells for datasets exceeding that size. However, the full datasets were use for
the rest of the analysis. In the end, we obtained a set of 541 highly variable genes for the Allen brain
datasets and 2, 147 genes for the pancreas datasets.

Case studies

AIBS Smart mouse brain datasets

We used the two AIBS Smart dataset Yao et al. [11], one is single-cell and the other is single-nuclei.
We use the subclass labels as gold-standard cluster labels for these datasets. Those datasets can be
downloaded from the Neuroscience Multi-omics Archive (nemoarchive.org). More details on data access
can be found in [11].
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Human pancreas datasets

We focus on two datasets from [18] (8, 568 cells) and [19] (3, 514 cells) which we name Baron and
Segerstople, respectively. Both datasets were downloaded from the https://hemberg-lab.github.io/scRNA.seq.datasets/
on October 1st, 2018. We use the clusters from the original publications as gold-standard cluster labels.

Data analysis

Except when otherwise specified, all methods and algorithms were run with default parameters or, if no
available default, with the parameters recommended in the vignette or tutorial.

Pre-processing: Count matrices were filtered to remove lowly-expressed genes with fewer than i reads
in j cells. See Table S1 for values of i and j for each dataset.

As indicated below, we follow different normalization strategies before running Seurat and Monocle
in order to obtain more diverse clustering results. This is appropriate, as the goal of the manuscript is
not to compare different clustering methods, but rather different merging methods for given clustering
results. The merging methods that Dune is compared to rely on only one clustering input; we therefore
seek to benchmark merging methods using a variety of clustering inputs.

Seurat: Following the tutorial, we run FindVariableFeatures and ScaleData to normalize the data.
Counts are log-transformed (adding 1 to avoid taking the log of zero) and normalized by sequencing depth.
For the two pancreas datasets, batches are also normalized using the scaleData function. Following
principal component analysis, FindNeighbors and FindClusters are run for a number of neighbors k in
{30, 50, 70} and resolution θ from 0.3 to 2.5 in increments of 0.1

SC3: The algorithm is run on a dataset normalized as above with the Seurat pipeline. The optimal
value of k, k0, is computed using the sc3 estimate k function. The parameter θ is transformed to be
θSC3 = k − k0. SC3 is then run for values of θ ranging from −15 to +15.

Monocle: zinbwave [7] is first used for normalization and dimensionality reduction on the filtered count
data. For the two pancreas datasets, batches are included as model covariates. We select K, the number
of reduced dimensions, based on a visual representation for each dataset, see Table S1. This first step
of dimensionality reduction is followed by another using UMAP [35] with two dimensions. The resulting
two-dimensional representation is then used to build the k-NN graph, with k ranging from 10 to 150 in
increments of 10.

Dune: For a given set of values for Θ = {θSC3, θSeurat, θMonocle}, we get three sets of cluster labels that
we can use as input to Dune.

Building the hierarchical tree: The output of each clustering method is used as input to RSEC’s
makeDendogram function. Then, we either cut the tree using R’s cutree function or RSEC’s mergeClusters
function.

Producing “bad” clusters: For each value of the tuning parameters Θ, on the pancreas datasets, we
add fully random inputs to Dune. That is, we create “bad” clusterings by randomly assigning each cell a
number (or cluster label) between 1 and (kSC3 + kMonocle + kSeurat)/3, where k denotes the number of
clusters for a particular clustering algorithm. Since cells are assigned randomly, the size of the clusters
will vary, but all clusters have the same expected size. To account for the stochastic nature of this
procedure, we repeat this 10 times.

Downsampling: Downsampling the number of cells at the beginning of the analysis pipeline would
affect both the quality of the clustering results and the quality of the merging with Dune. As such, to test
only the stability of Dune to the number of cells, we downsample the cells just before running Dune, that
is, the clustering algorithms are run on the full dataset but only a subset of the dataset is used to decide
which clusters to merge and in which order. Afterwards, cells that are not in the subsample are assigned
to the merged clusters based on their original cluster labels. That is, if Cluster 1 and 2 are merged, all
cells that were originally in Cluster 1 and 2, even those not selected in the downsampling and used as
input to Dune, are assigned to the merged cluster.
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Most of the code was run using xsede [38].
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Supplementary Material

Supplementary methods

Table S1: Parameters for processing the datasets. Each dataset is filtered such that we keep all genes
with a least i reads in j samples. Then, zinbwave is run with K dimensions.

Dataset i j K
AIBS scRNA-Smart 50 50 30
AIBS snRNA-Smart 50 50 14

Baron 5 5 10
Segerstople 5 5 20

Figure S1: Impact of Seurat’s two main tuning parameters on the number of clusters. The Seurat algorithm
is run on the two AIBS snRNA-Smart datasets, for a grid of tuning parameter values. The average number
of clusters found in both datasets is then computed. For increasing values of the resolution parameter
and fixed values of the k parameter, the number of clusters is always increasing. On the other hand, for
increasing values of the k parameter and fixed values of the resolution parameter, the number of clusters
can either increase or decrease. This can be seen in the fact that the curves are all increasing but intersect
multiple times.
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Table S2: Ranking of merging methods over all 36 comparisons for improving ARI with gold standard.
See Figure 3

1 2 3
DE 2 21 13
Dist 5 10 21
Dune 29 5 2

Figure S2: Resolution-replicability trade-off on the Pancreas datasets. Seurat, SC3, and Monocle are run
on the two Pancreas datasets, as described in Methods, for a wide range of tuning parameter values.
Then, the MetaNeighbor method is used to compute replicability scores for the resulting clusters between
these two datasets. An apparent trade-off between replicability and resolution is visible.
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Figure S3: Dune robustness analysis. Panel a. Fully merging SC3 with Dune produces meaningful high-
level biological clusters, as can be seen by the overlap between the clustering and the Allen subclass labels.
Panel b. Adding an increasing number of random clustering inputs to Dune impacts only slightly the
resolution-replicability area under the curve when merging the other correct clusters. Panel c. Likewise,
Dune is stable to decreasing the number of input cells, as low as 10% of the original sample size.
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