
Storing and analyzing a genome on a
blockchain
Gamze Gursoy1,2, Charlotte Brannon1,2, *, Sarah Wagner3, *, and Mark Gerstein1,2,3

1Computational Biology and Bioinformatics Program, Yale University
2Molecular Biophysics and Biochemistry Department, Yale University
3Department of Computer Science, Yale University
*These authors contributed equally

ABSTRACT

The genomic characterization of individuals promises to be immensely useful for medical
research. Moreover, sequencing, analysis, and interpretation of patients’ genomes is projected
to be a staple of healthcare in the future. A critical barrier to expanding personal genome
sequencing is the ability to store genomic data securely and with high integrity. While cloud
storage offers solutions to access such data from any place and device, the security, data
integrity, and robustness vulnerabilities such as single-point-of failure losses have not yet been
addressed. Here, we developed novel tools for decentralized storage, access, and analysis of
genome sequencing data on private blockchain networks. Storing and analyzing large-scale
data on a blockchain can be challenging because of the slow transaction speed and limitations
on querying data stored on-chain. Hence, current genomic blockchain applications only log links
to the data. We overcome this challenge by implementing data compression techniques and
nested database indexing. Our tools provide open-source blockchain-based storage and access
tools for advanced genomic analyses such as variant calling.

Keywords: blockchain, multichain, personal genome, blockchain database

MAIN TEXT

Modern advances in personalized medicine have resulted in an increasing number of individuals
willing to sequence their own genome for disease-risk predictions and ancestry analysis, which
has brought us closer to an era of genomic data-driven health care and biomedical research (1).
Furthermore, understanding the human genomic landscape of millions of diverse individuals is
essential for characterizing and investigating rare diseases and genotype-phenotype associations.
Given the widespread interest in understanding one’s own genomic data, and the promise of
these data for advancing biomedical research, it is almost inevitable that genome sequencing
will become part of routine clinical care in the future and that the number of sequenced human
genomes will continue to grow (2).

Growth of personal genomic data has been limited by bottlenecks in computational require-
ments and server capacity (3). The NIH and several other institutions are moving toward
cloud-computing-based services in order to overcome these bottlenecks (4). However, cloud-
based storage and data analysis tools present security concerns, as they are based on a centralized
architecture and are therefore vulnerable to single-point-of-failure losses (5; 6). These are
critical problems; as genomic data becomes increasingly integral to our understanding of human
health and disease, its integrity and security must be a priority when providing solutions to
storage and analysis. Corruption, change, or loss of personal genomes could create problems in

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975334


patient care and research integrity in the future.
An ideal implementation of genomic data storage and access would protect from both loss

and manipulation. Blockchain technology could be an ideal solution due to three key properties:
decentralization, immutability, and security (5). Decentralization prevents a single entity from
controlling the data; immutability guarantees that data cannot be altered; and security is ensured
by protecting accounts with enhanced cryptographic methods (5). Already today, there are
multiple personalized medicine start-ups that aim to store individuals’ genomes in blockchains.

A recent review by Ozercan et al (5) outlines the current status of commercial and academic
proposals to share genomic data using blockchain platforms. Among these newly emerged
platforms are gene-chain and Zenome, which provide solutions for genomic data distribution
for commercial use. Another platform, Nebula genomics, creates tokens as an incentive for
individuals to share their genomes with entities using blockchain technology. CrypDist enables
synchronized data-sharing among researchers with protection against accidental or intentional
data removal. This technology allows for sharing large genomic data files, such as reference
aligned genomes (BAM files). However, due to the inefficiency of inserting large datasets to a
blockchain, they instead share links to the data rather than the data itself. Additionally, although
all of these platforms permit secure storage and sharing of genomic data, none of them offers a
solution to perform computation on the data stored in the blockchain. This is a critical gap in the
technology; not only do physicians and scientists need secure access to raw genomic data, but
they also require secure tools for analyzing the data.

A central caveat to blockchain technology is the inefficiency of storing and querying data
due to the potential for chains to reach large sizes. The storage space and computational power
required by blockchain is greater than a centralized database application due to the redundancy of
storage and network verification protocols. The decentralized system also creates a higher latency
(delay in data communication) during storage and retrieval of data. Additionally, transactions in
the blockchain network require a cryptographic consensus verification, which makes them slow
to publish data to the chain (7).

To overcome these challenges, we developed novel data structures based on nested database
indexing, file-format modifications and compression techniques with the open-source blockchain
API MultiChain (8). MultiChain is a platform specifically designed for building and deploying
private blockchain applications. Moreover, it is well-suited for database applications; it has a
‘data stream’ feature, which allows users to create multiple key-value, time-series, or identity
databases that can be used for data-sharing, time-stamping, and encrypted archiving (8) (see
Supplemental Information).

Raw genomics data from sequencers are often stored as compressed binary file types called
binary alignment maps (BAM) and/or compressive alignment map s(CRAM) that are derived
from sequence alignment map (SAM) files in text format (9). These are the genomics data
standard as determined by GA4GH (10). In this paper, we focused on efficient storage and
analysis of such files using blockchain technology. We introduce the first open-source, proof-of-
concept application for storing and analyzing BAM files in a Blockchain. We provide two tools:
the first is SAMChain, which allows users to store sequence alignment maps in a blockchain
efficiently, and the second is SCtools, which provides functions such as (a) querying, (c) depth
analysis, (d) pile-ups for variant calling, and (e) re-creating BAM files.

MultiChain data streams make it possible for a blockchain to be used as a general purpose
database. The data published in every stream is stored by all nodes in the network. Each data
stream on a MultiChain blockchain consists of a list of items. Each item in the stream contains
the following information, as a JSON object (8): A publisher (string), key:value pairs (between
1-256 ASCII character, excluding whitespace and single/double quotes) (string), data (hex string),
a transaction ID (string), blocktime (integer) and Confirmations (integer). When data needs to

2/7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975334


be queried or streamed, it can be retrieved by searches using the key:value pairs. Publishing a
stream item to a data stream constitutes a transaction. When a transaction happens, it is held
in the memory pool. After mining of the transaction is complete, the transaction is added to a
block. Each block has a maximum transaction size, i.e after a block reaches its maximum size or
the time to create a block reaches its limit, the block is sealed and appended to the chain. This
means a data stream in MultiChain can span multiple blocks based on the time of the transaction
(i.e time of the publishing the data to the blockchain).

Implementation: Our implementation can be found at https://github.com/gersteinlab/SAMChain.
We took an approach to maximize the efficiency of storing and querying data. Our goal was to
store minimal data while indexing it in a creative way to allow rapid retrieval, thereby reducing
the time and memory cost of analysis and increasing the utility of the stored data (Figure 1a). To
achieve this goal, we manipulated a) data structures in data streams, and b) data to be stored in
BAM files. For (a), we first separated mapped and unmapped reads from a BAM file. First, we
created a data stream called AllReadData, in which the key values are the read names and the
data values are the modified versions of the BAM features. We then created N number of streams
(called chr{i}bin{j}). Each of these N streams represents a bin of genomic coordinates. Based
on the location of a read mapped on the human reference genome, we log the read names as keys
in chr{i}bin{j} stream. Some reads will span multiple bins. In that case, we store the read in
the bin that the beginning of the read maps to and the bin that the end of the read maps to. We
then add a boolean key to the chr{i}bin{j} stream that we call FLANK. A FLANK value of 0
indicates that the entire read is in that bin. A FLANK value of 1 indicates that the read is stored
in two consecutive streams. The FLANK value tells our retrieval algorithm to search for the
particular read in multiple chr{i}bin{j} streams. Our query algorithm can retrieve the keys in the
chr{i}bin{j} stream based on the queried location, and use these keys to access the AllReadData
stream and retrieve the rest of the features corresponding to that particular read. Our code base
allows developers to bin the data according to a desired feature that might be queried by users
such as read names, mapping qualities, or alignment scores; these are the features stored as
keys in the binned streams. Our implementation uses binning by genomic location, as it is the
most commonly queried property for depth analysis or variant calling. Unmapped reads are
stored in AllReadData but not in the chr{i}bin{j} streams, and can be queried directly from the
AllReadData stream. Binning is done for the purpose of efficient access to keys during analysis.
For (b), we were inspired by the data compression techniques in CRAM files, and stored the
difference between the read and the reference sequence in the chain instead of the sequences
themselves to reduce the size of the data stored on-chain (SI Figure 6). With this approach, our
implementation is able to regenerate the sequence of a read by using the reference genome and
other features stored in the chain.

We developed SCtools to extract information from SAMchain for downstream analysis. We
provide a code base that has the ability to query on a blockchain. The key:value property of the
data streams in MultiChain2.0 together with the ability to query on multiple keys provides an
opportunity to extract data from the blockchain without the need for costly calculations. Our
query module can retrieve data from a chain based on the position in the reference genome.
Given our query algorithm, it would be simple to build upon SCtools and add querying by the
other keys stored in the binned streams, which we call indexable keys (Figure 1c). Moreover, any
user could do this; it would only require writing a python script (no changes would be needed to
the underlying blockchain data structure).

If a user queries the chain for reads mapped to a genomic region, our query module first
finds the correct streams/bins containing that region. From the bins, it extracts the read name(s)
that correspond to the correct position(s), and uses the read name(s) to key into the allReadData

3/7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975334


stream and return the data. This approach reduces the query time significantly due to the
following reasons: (a) Data streams do not allow range searches. If the data were kept in a single
stream, then the query would have to iterate over the location range for every single stream
item. With binned streams, the query is only done on the streams containing the relevant data.
(b) Genomic location is not unique. There are multiple reads that map to the same location.
However, the read names are always unique for all mapped reads. Therefore, query uses the
binned streams to retrieve the read names and then quickly searches the unique read names in
the allReadata stream.

Here we summarize the key functionalities of SCtools. Detailed explanations and flowcharts
can be found in the Supplemental Information.

Depth Analysis: This module can be used to query sequencing depth for a given position or a
range of positions in the genome. For example, when a user specifies a location in the genome
to query sequencing depth, this module first finds the stream containing the reads from that
genomic location. It then checks whether the location flanks any other streams (SI Figure 1).
After finding the relevant streams, it lists all the stream items and searches for the reads that
span the queried locations. After checking each read’s CIGAR for clippings or deletions in the
queried location, it returns the resulting number of reads as the depth of the queried location
(See SI Figure 4 for the flowchart).

Pile-ups for variant calling: SAMtools provides a useful function to determine the pile-ups
for a queried location or all of the locations in the genome. Pile-up files contain the number
of reads that mapped to a location, the reference allele for that location, and the sequenced
nucleotide in each read for that location. This allows users to visualize the genetic variation and
calculate allele frequencies for the variants. We developed this functionality to create pile-up
files from the blockchain (See SI Figure 4 for the flowchart).

Re-construction of alignment maps: This functionality is for the users to have a copy of an
alignment map. This module combines the data from allReadData with unaligned reads and the
header tore-construct an alignment file in BAM format, which can be further manipulated using
SAMtools (See SI Figure 5 for the flowchart).

The accuracy of our SCtools modules are demonstrated with an example in Figure 2c. We
also calculated the time requirement of read streaming, depth analysis and pile-ups empirically.
Figure 2d shows how the performance of the querying changes with the increasing amount of
the reads.

We envision a real-world scenario in which individuals create private blockchains to store their
personal genomes to share with their healthcare providers. Simply with ssh access, healthcare
providers and associated genetics researchers can stream or query patients’ genomes without
needing to download or transfer data. This reduces not only the risk of data corruption, but also
non-permissioned access to private data by adversaries. Blockchain provides immutability such
that the data cannot be altered, whether intentionally or accidentally.

Our framework is the first open-source application to allow querying and streaming of
genomic data from blockchain to the best of our knowledge. This is a substantial improvement
over the current biomedical applications of blockchains. With previous implementations, the
security of the data is provided by blockchain but the computation on the genomic data is
done on plain text. To address privacy concerns, our framework may be extended to store
homomorphically encrypted data in the data streams. However, this will add storage and
computation overhead to the solution.

While the main benefit of using blockchain for data storage is data security and integrity,
blockchain also makes it easy to append data to large data files. For example, in the cases of

4/7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975334


BAM files, if a user wishes to add to the data, one could create data streams for these additions
(since it is a private chain, only the owner of the chain would have permission to make these
changes). Thus, the data owner does not have to deal with opening large-data files, modifying
them, and re-indexing them, which creates costly network traffic. Searches by genomic location
could also check the new data streams, to determine if the owner has appended any changes to
the data.

Our blockchain solution can be generalized to other large-scale data storage and querying
problems beyond BAM files. Data including but not limited to electronic health records, vcf files
from multiple or single individuals, and somatic mutation datasets from cancer patients can be
stored in blockchain using our indexing schemes, allowing for rapid and partial retrieval of the
data.

Availability: SAMChain and SCTools can be found at https://github.com/gersteinlab/SAMChain

REFERENCES
[1] Mackey, Tim K and Kuo, Tsung-Ting and Gummadi, Basker and Clauson, Kevin A and

Church, George and Grishin, Dennis and Obbad, Kamal and Barkovich, Robert and Palom-
bini, Maria. ’Fit-for-purpose?’ - challenges and opportunities for applications of blockchain
technology in the future of healthcare. BMC Med., 2019;17(1):68.

[2] Khan, Razib and Mittelman, David. Consumer genomics will change your life, whether you
get tested or not. Genome Biol., 2018;19(1):120.

[3] O’Driscoll, Aisling and Daugelaite, Jurate and Sleator, Roy D. ’Big data’, Hadoop and
cloud computing in genomics. J. Biomed. Inform., 2013;46(5):774–781.

[4] governmentCIO: Transforming government IT. NIH prioritizes cloud migration 2020 it
ecosystem plan. https://governmentciomedia.com/nih-prioritizes-cloud-migration-2020-it-
ecosystem-plan

[5] Ozercan, Halil Ibrahim and Ileri, Atalay Mert and Ayday, Erman and Alkan, Can. Realizing
the potential of blockchain technologies in genomics. Genome Res., 2018;28(9):1255–1263.

[6] Kuo, Tsung-Ting and Kim, Hyeon-Eui and Ohno-Machado, Lucila. Blockchain distributed
ledger technologies for biomedical and health care applications. J. Am. Med. Inform. Assoc.,
2017;24(6):1211–1220.

[7] Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System. bitcoin.org/bitcoin.pdf,
2008.

[8] Greenspan, Gideon. MultiChain Private Blockchain - White Paper.
https://www.multichain.com/download/MultiChain-White-Paper.pdf, 2015.

[9] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin
R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009;25(16):2078-
2079.

[10] GA4GH Global Alliance for Genomics and Health https://www.ga4gh.org/

5/7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975334


Figure 1. SAMchain design and implementation. (a) An overview of the SAMchain approach.
Given a BAM file, we bin the read data into several “streams.” MultiChain datastreams permit
the use of a blockchain as a database. (b) Overview of the query process. Upon querying a
genomic location, our algorithm searches through the binned streams to obtain the read names
corresponding to the specified location. It then uses the read name to key into the allReadData
stream and retrieve the data. This data, in combination with a reference genome, yields a
complete BAM read. (c) Details of data storage in SAMchain. A read is typically stored in a
BAM file containing several features. Our data structure makes use of five indexable features. A
single stream, named allReadData, contains all of the data for each read in the input BAM,
except for the sequence information. Many other streams serve as bins by genomic location, and
hold only the indexable features. Stream items correspond to a single read.

6/7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975334


Figure 2. Performance and Accuracy of SAMchain and SCtools. (a) Time and memory
required to build the chain with an increasing number of reads in the initial BAM file. (b)
Storage usage of a BAM file (left) and SAMchain (right) with increasing number of reads stored.
(c) Accuracy and speed evaluation of SCtools by comparison with SAMtools output for queries,
depth analysis (one-read match) and pileup analysis (two-read match, to demonstrate multiple
allele output) of a particular genomic region.

7/7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 4, 2020. ; https://doi.org/10.1101/2020.03.03.975334doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975334

