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Abstract 25 

Background: Multiple epidemiological studies identify Dolosigranulum pigrum as a 26 

candidate beneficial bacterium based on its positive association with health, including 27 

negative associations with nasal/nasopharyngeal colonization by the pathogenic 28 

species Staphylococcus aureus and Streptococcus pneumoniae.  29 

Results: Using a multipronged approach to gain new insights into D. pigrum function, 30 

we observed phenotypic interactions and predictions of genomic capacity that support a 31 

role for microbe-microbe interactions involving D. pigrum in shaping the composition of 32 

human nasal microbiota. We identified in vivo community-level and in vitro phenotypic 33 

cooperation by specific nasal Corynebacterium species. Also, D. pigrum inhibited S. 34 

aureus growth in vitro. Whereas, robust inhibition of S. pneumoniae required both D. 35 

pigrum and a nasal Corynebacterium together, and not either alone. D. pigrum L-lactic-36 

acid production was insufficient to account for these inhibitions. Genomic analysis of 11 37 

strains revealed that D. pigrum has a small genome (average 1.86 Mb) and multiple 38 

predicted auxotrophies consistent with D. pigrum relying on its human host and 39 

cocolonizing bacteria for key nutrients. Further, the accessory genome of D. pigrum 40 
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encoded a diverse repertoire of biosynthetic gene clusters, some of which may have a 41 

role in microbe-microbe interactions.  42 

Conclusions: These new insights into D. pigrum’s functions advance the field from 43 

compositional analysis to genomic and phenotypic experimentation on a potentially 44 

beneficial bacterial resident of the human upper respiratory tract and lay the foundation 45 

for future animal and clinical experiments.  46 

 47 

 48 
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Background 52 

Colonization of the human nasal passages by Staphylococcus aureus or Streptococcus 53 

pneumoniae is a major risk factor for infection by the colonizing bacterium at a distant 54 

body site [1-5]. Interventions that reduce the prevalence of colonization also reduce the 55 

risk of infection and transmission, e.g., as in [6, 7]. S. aureus and S. pneumoniae are 56 

major human pathogens that cause significant morbidity and mortality worldwide [8-11]. 57 

There are also concerns regarding rising rates of antimicrobial resistance [12] and the 58 

potential for long-term effects of antibiotics early in life [13]. Thus, efforts have recently 59 

focused on the identification of candidate bacteria that confer colonization resistance 60 

against S. aureus [14-21] and S. pneumoniae [22-25], with particular urgency for S. 61 

aureus in the absence of an effective vaccine. 62 

Dolosigranulum pigrum has emerged in multiple studies of the human upper respiratory 63 

tract microbiota, colonizing with or without Corynebacterium species, as potentially 64 

beneficial and/or protective against colonization by S. aureus and S. pneumoniae [26-65 

50] (reviewed in [14, 51-54]). Little is known about this Gram-positive, catalase-66 

negative, Firmicute bacterium, first described in 1993 [55]. Microbiota studies sampling 67 

either nostrils or nasopharynx show very similar results; therefore, for simplicity, we use 68 

nasal or nasal passages to denote the area inclusive of the nostrils through the 69 

nasopharynx. D. pigrum and S. aureus are inversely correlated in adult nasal microbiota 70 

[31, 41, 56]. Whereas, in pediatric nasal microbiota, D. pigrum and members of the 71 

genus Corynebacterium are overrepresented when S. pneumoniae is absent [26, 33, 72 

40]. Moreover, children with D. pigrum colonization of the nasal passages are less likely 73 

to have acute otitis media [27, 40] and it has been speculated that D. pigrum-dominated 74 
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microbiota profiles might be more resistant to invasive pneumococcal disease [45]. 75 

Furthermore, D. pigrum abundance in the nasal passages is inversely associated with 76 

wheezing and respiratory tract infections in infants [28] and abundance of D. pigrum 77 

with Corynebacterium in adults provides greater community stability in the face of 78 

pneumococcal exposure [50]. The intriguing inference from these studies that D. pigrum 79 

plays a beneficial role in human nasal microbiota deserves further investigation.  80 

In contrast to the above, there are very few reports of D. pigrum in association with 81 

human disease [57-61]. Its frequent identification in human nasal microbiota [26, 30-32, 82 

34-37, 39-45, 47, 48, 62-73] coupled with its rare association with infection are 83 

consistent with D. pigrum functioning as a commensal, and possibly as a mutualist, of 84 

humans––characteristics that support its potential for future use as a therapeutic. 85 

However, its metabolism and its interplay with other nasal bacteria remain uncharted 86 

territory. Using a multipronged approach, we have made significant advances in these 87 

areas. First, we identified specific species of candidate bacterial interactors with D. 88 

pigrum by analyzing nasal microbiota datasets from adults and children. Second, we 89 

used in vitro phenotypic assays to show that D. pigrum exhibits distinct interaction 90 

phenotypes with nasal Corynebacterium species, S. aureus and S. pneumoniae. Third, 91 

based on the genomes of 11 distinct D. pigrum strains, we identify key predicted 92 

functions and auxotrophies in its core genome plus a diversity of predicted biosynthetic 93 

gene clusters in its accessory genome. This critical shift to phenotypic and genomic 94 

experimentation marks a significant advance in understanding D. pigrum, a potential 95 

beneficially member of human nasal microbiota.  96 

 97 
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Results 98 

Individual bacterial species are associated with D. pigrum in the nasal microbiota 99 

of both adults and children. D. pigrum is the only member of its genus and multiple 100 

genus-level 16S rRNA gene-based nasal microbiota studies have identified associations 101 

between Dolosigranulum and other nasal-associated genera, such as Corynebacterium, 102 

e.g., [28, 29, 36, 38, 40, 43, 73, 74]. In most cases, the taxonomic resolution in the 103 

aforementioned studies was limited to the genus or higher taxonomic levels. Thus, we 104 

sought to achieve finer taxonomic resolution and to determine what species are 105 

associated with D. pigrum. We identified two nostril datasets with V1-V2/V1-V3 16S 106 

rRNA gene sequences. These regions contain sufficient information for species-level 107 

taxonomic assignment to short-read 16S rRNA gene sequences from most nasal-108 

associated bacteria [26, 41]. After parsing sequences into species-level phylotypes, we 109 

interrogated each dataset using Analysis of Composition of Microbiomes (ANCOM) [75] 110 

to identify bacterial species that display differential relative abundance in the absence or 111 

presence of D. pigrum sequences (Figure 1 and Table S1). ANCOM is a commonly 112 

used approach for identifying associations that accounts for the compositional nature of 113 

sequencing data [75]. In the nostrils of 99 children ages 6 and 78 months [26], 114 

Corynebacterium pseudodiphtheriticum exhibited increased differential relative 115 

abundance in the presence of D. pigrum, i.e., was positively associated with the 116 

presence of D. pigrum, as was Moraxella nonliquefaciens (Figure 1A). In the nostrils of 117 

210 adults from the Human Microbiome Project (HMP), three Corynebacterium 118 

species––C. accolens, C. propinquum, C. pseudodiphtheriticum––and an unresolved 119 

supraspecies of C. accolens-macginleyi-tuberculostearicum were positively associated 120 
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with D. pigrum (Figure 1B, panels ii-v). Whereas, S. aureus was negatively associated 121 

with D. pigrum (Figure 1B, panel vi). Our previous analysis of these adult data show 122 

these Corynebacterium species are the most common Corynebacterium species in 123 

adult nostrils [41]. Also, all of these Corynebacterium species and D. pigrum are 124 

negatively associated with S. aureus in this cohort [41]. Such associations in 125 

compositional microbiota data lead to testable hypotheses about possible direct 126 

microbe-microbe interactions.  127 

We chose to focus on testing hypotheses about direct interactions between D. pigrum 128 

and the specific nasal Corynebacterium species, as well as between D. pigrum and S. 129 

aureus, for several reasons. First, results from both children and adults identified a 130 

positive relationship between D. pigrum and individual species of Corynebacterium in 131 

human nasal microbiota, with a positive association of D. pigrum and C. 132 

pseudodiphtheriticum across age groups (Figure 1 and Table S1). Second, 133 

associations between D. pigrum and the genus Corynebacterium are reported in 134 

multiple other human nasal microbiota data sets [28, 29, 36, 38, 40, 43, 73, 74] and, 135 

therefore, are more likely to be generalizable and of greater impact for the field. Finally, 136 

with respect to possible interactions between D. pigrum and S. aureus, there is a need 137 

to identify potential mechanisms of colonization resistance to S. aureus given the lack of 138 

an effective vaccine. We then used in vitro phenotypic assays to test our hypotheses 139 

about direct microbe-microbe interactions. 140 

Nasal Corynebacterium species can enhance the growth of D. pigrum in vitro. We 141 

hypothesized that the strong positive association between D. pigrum and the nasal-142 

associated Corynebacterium species might be due to these Corynebacterium species 143 
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releasing metabolites that enhance the growth of D. pigrum. As a crude test of this, we 144 

quantified D. pigrum growth yields on unconditioned agar medium compared to on cell-145 

free agar medium conditioned by growth of C. pseudodiphtheriticum, C. propinquum or 146 

C. accolens (Figure 2). Conditioning agar medium by prior growth of any of these three 147 

nasal Corynebacterium species increased the yield (measured as colony forming units, 148 

CFUs) of two D. pigrum strains (CDC 4709-98 and KPL1914) by one to two orders of 149 

magnitude compared to growth on unconditioned agar medium (Figures 2A and 2B). 150 

Additionally, one strain of C. pseudodiphtheriticum (Figure 2A) and the C. accolens 151 

strain (Figure 2B) increased the growth yield of D. pigrum CDC 2949-98, a strain with a 152 

higher baseline growth yield. The increases in D. pigrum growth yield on the 153 

Corynebacterium cell-free conditioned agar medium could result from either increased 154 

growth rate and/or increased viability, and could be consistent with the nasal 155 

Corynebacterium species either removing a toxin from the medium or releasing a 156 

metabolite that enhances growth and/or survival of D. pigrum. 157 

In contrast to the increase in D. pigrum growth yield on C. pseudodiphtheriticum cell-158 

free conditioned agar medium (Figure 2A), there was no increase in C. 159 

pseudodiphtheriticum strain KPL1989 growth yield on D. pigrum cell-free conditioned 160 

agar medium (Figure 2C). Thus, this growth enhancement goes in one direction from 161 

nasal Corynebacterium species to D. pigrum. This is consistent with unilateral 162 

cooperation of nasal Corynebacterium species––C. pseudodiphtheriticum, C. 163 

propinquum or C. accolens––with D. pigrum in the nostril microbiota and support the 164 

observed positive in vivo community-level relationships. 165 
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The positive association between C. accolens and D. pigrum in adult nostril microbiota 166 

datasets indicates that in vivo positive interactions between C. accolens and D. pigrum 167 

prevail (Figure 1B, panel ii). However, in vitro, we observed either a positive or a 168 

negative interaction between C. accolens and D. pigrum depending on the assay 169 

conditions. Unlike C. propinquum and C. pseudodiphtheriticum, C. accolens is a fatty-170 

acid auxotroph and triolein, a model host epithelial-surface triacylglycerol, serves as a 171 

source of needed oleic acid in our assays. We observed increased D. pigrum growth 172 

yield on a semi-permeable membrane atop C. accolens cell-free conditioned agar 173 

medium (CFCAM) of Brain Heart Infusion (BHI) supplemented with triolein (BHIT) 174 

(Figure 2B). In contrast, D. pigrum was inhibited when inoculated directly onto this 175 

same C. accolens cell-free conditioned agar medium (Table 1). This inhibition is 176 

reminiscent of our previous finding that in vitro the C. accolens’ triacylglycerol lipase, 177 

LipS1, hydrolyzes triacylglycerols releasing free fatty acids that inhibit S. pneumoniae 178 

[33]. Both D. pigrum and S. pneumoniae belong to the order Lactobacillales and, based 179 

on the closeness of their phylogenetic relationship, we hypothesized that D. pigrum 180 

might be similarly susceptible to free fatty acids such as the oleic acid that C. accolens 181 

releases from triolein. Indeed, we observed that oleic acid inhibited D. pigrum when we 182 

challenged D. pigrum with oleic acid using a disk diffusion assay (Table 2). We also 183 

challenged D. pigrum with varying concentrations of oleic acid spread onto plates of BHI 184 

agar medium. Similar to the membrane-mediated effect in the C. accolens CFCAM 185 

experiment above, we observed D. pigrum growth at higher concentrations of oleic acid 186 

when inoculated onto a semi-permeable membrane atop the oleic-acid-coated medium 187 

versus inoculated directly onto the oleic-acid-coated medium (Table 3). This indicates 188 
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the membrane provides some protection from inhibition by oleic acid. Overall, these in 189 

vitro data indicate that C. accolens can both inhibit the growth of D. pigrum by releasing 190 

antibacterial free fatty acids from host triacylglycerols, such as oleic acid from triolein, 191 

(Tables 1 and 2) and enhance the growth of D. pigrum by releasing an as-yet 192 

unidentified factor(s) (Figure 2B). Collectively, these results point to a complex set of 193 

the molecular interactions between these two species. 194 

D. pigrum inhibits S. aureus growth. In the absence of a vaccine against S. aureus, 195 

there are multiple ongoing efforts to identify commensal bacteria that provide 196 

colonization resistance to S. aureus [15-21, 56] (reviewed in [14]). The ANCOM analysis 197 

of the adult nostril microbiota dataset revealed a negative association between S. 198 

aureus and D. pigrum (Figure 1B, panel vi), consistent with previous work [31, 41, 56]. 199 

Direct antagonism would be the simplest mechanism underpinning this observation. 200 

Therefore, we assayed for the effect of 10 different strains of D. pigrum on S. aureus. 201 

We gave D. pigrum a head-start to compensate for its slower growth rate in vitro. S. 202 

aureus growth was inhibited when it was inoculated adjacent to a pregrown inoculum of 203 

each of these 10 D. pigrum strains on agar medium (Figure 3).  204 

D. pigrum production of lactic acid is unlikely to be the primary mechanism for 205 

negative associations with S. pneumoniae or S. aureus. D. pigrum lactic acid 206 

production has been proposed as a mechanism to explain epidemiologic observations 207 

of negative associations between D. pigrum and S. pneumoniae [74]. Under nutrient 208 

rich conditions in vitro, three tested strains of D. pigrum produced from 5.7 to 8.2 mM of 209 

L-lactic acid with strain KPL1914 producing the highest concentration (Figure 4A). 210 

Therefore, we assayed for growth of S. pneumoniae in D. pigrum KPL1914 cell-free 211 
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conditioned medium (CFCM) and in BHI broth supplemented with varying 212 

concentrations of L-lactic acid. Three of the four S. pneumoniae strains tested showed 213 

some growth in 22 mM lactic acid (Figure 4B), and all strains displayed more growth in 214 

BHI supplemented with 11 mM L-lactic acid than in the D. pigrum KPL1914 CFCM, 215 

which had 7.5 mM of D. pigrum-produced L-lactic acid (Figure 4B). Thus, the restriction 216 

of S. pneumoniae growth in D. pigrum CFCM is unlikely to be due to D. pigrum 217 

production of lactic acid. More likely, it reflects competition for nutrients since fresh 218 

medium was not added to the CFCM, which, therefore, would have a lower 219 

concentration of sugars than BHI broth. However, D. pigrum production of a toxin and/or 220 

an antipneumococcal compound in BHI broth cannot be excluded. These results 221 

indicate that D. pigrum production of lactic acid in human nasal passages is unlikely to 222 

be the primary molecular mechanism underlying the decreased relative abundance of S. 223 

pneumoniae in children’s nasal passages when D. pigrum is present.  224 

D. pigrum is negatively associated with S. aureus in adult nostrils [31, 41, 56] and D. 225 

pigrum excreted a diffusible activity that inhibited S. aureus growth on BHI agar (Figure 226 

3). Therefore, we also tested the in vitro effect of L-lactic acid on two strains of S. 227 

aureus. Both showed some growth in 33 mM lactic acid (Figure 4C). Thus, under the 228 

tested conditions D. pigrum does not produce enough L-lactic acid to restrict S. aureus 229 

growth. In contrast to S. pneumoniae, we would not expect depletion of sugars to have 230 

a large effect on S. aureus growth in D. pigrum CFCM given its broader repertoire of 231 

energy source utilization options, e.g., amino acids, and indeed both S. aureus strains 232 

showed little decrease in growth in D. pigrum CFCM. This also revealed to a difference 233 

in D. pigrum production of the anti-S. aureus activity during growth on BHI agar medium 234 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/678698doi: bioRxiv preprint 

https://doi.org/10.1101/678698
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

(Figure 3) versus in BHI broth (Figure 4C). Excretion of metabolites may vary during 235 

growth in liquid versus on agar medium and the mechanism of the D. pigrum anti-S. 236 

aureus activity is yet-to-be identified.  237 

D. pigrum and C. pseudodiphtheriticum inhibit S. pneumoniae growth together 238 

and not alone. Since C. pseudodiphtheriticum was positively associated with the 239 

presence of D. pigrum in both children and adults (Figure 1), we investigated the effect 240 

of a mixed in vitro population of D. pigrum and C. pseudodiphtheriticum on S. 241 

pneumoniae growth. Agar medium conditioned with a coculture of C. 242 

pseudodiphtheriticum strain KPL1989 and D. pigrum strain CDC4709-98 inhibited S. 243 

pneumoniae growth, whereas agar medium conditioned with a monoculture of either C. 244 

pseudodiphtheriticum or D. pigrum alone did not (Figures 5 and S1). This could be due 245 

to cocultivation resulting in either a greater level of nutrient competition than 246 

monoculture of either commensal alone or in the production of diffusible compound(s) 247 

toxic/inhibitory to S. pneumoniae by either, or both, D. pigrum and/or C. 248 

pseudodiphtheriticum when grown together. Along with the Corynebacterium species 249 

enhancement of D. pigrum growth yield (Figure 2) and the D. pigrum inhibition of S. 250 

aureus growth (Figure 3), these data indicate that the negative associations of D. 251 

pigrum with S. aureus and S. pneumoniae are likely mediated by different molecular 252 

mechanisms. 253 

Collectively, these phenotypic data (Figures 2, 3 and 5) support a role for microbe-254 

microbe interactions in shaping the composition of human nasal microbiota. These also 255 

strengthen the case for D. pigrum being a beneficial bacterium that can provide 256 

colonization resistance against pathobionts. To learn more about the functional capacity 257 
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and genomic structure of D. pigrum, we next turned to genomic analysis, which 258 

provided insights into some of the epidemiologic and phenotypic observations 259 

presented above.  260 

The genomes of 11 D. pigrum strains reveal a small genome consistent with a 261 

highly host-adapted bacterium. We analyzed one publicly available genome of D. 262 

pigrum (ATCC51524) and sequenced 10 additional strains (Table S2), which were 263 

selected to ensure representation of distinct strains (see Methods). To start, we focused 264 

on basic genomic characteristics. The 11 D. pigrum strain genomes had an average 265 

size of 1.86 Mb (median 1.88 Mb) with 1693 predicted coding sequences (CDS; Tables 266 

S2 and S3). Approximately 1200 CDS were core (Figures S2 and S3; Table S4) and 267 

exhibited a high degree of nucleotide and amino acid sequence conservation (Figure 268 

S4). In Supplemental Text (section I), we further analyzed synteny of two closed 269 

genomes (Figure S5), did BLAST ring comparisons (Figure S6) and constructed a 270 

core-gene-based phylogeny (Figure S7). The 1.86 Mb genome size is consistent with 271 

D. pigrum being a highly host-adapted bacterium with reduced biosynthetic capacities, 272 

which are detailed below and in the Supplemental Text (section II) [76].  273 

D. pigrum is a predicted auxotroph for amino acids, polyamines and enzymatic 274 

cofactors. The nasal environment is low and/or lacking in key nutrients such as 275 

methionine [77] and D. pigrum’s small genome size is consistent with reduced 276 

biosynthetic capacity. To gain insight into how D. pigrum functions in the nasal 277 

environment, we examined all 11 genomes finding evidence of auxotrophy for some 278 

amino acids (e.g., methionine), polyamines (e.g., putrescine and spermidine) and 279 

enzymatic cofactors (e.g., biotin) across all strains. In turn, we identified putative 280 
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degradation pathways (e.g., methionine), transporters (e.g., polyamines and biotin) and 281 

salvage pathways (e.g., folate) suggesting D. pigrum acquires some required nutrients 282 

exogenously. The Supplemental Text (section II) contains additional details plus 283 

predictions on acquisition of metal cofactors. The auxotrophy predictions may be 284 

incomplete, since we were unable to grow D. pigrum in a chemically defined medium 285 

with all 20 amino acids that was putatively replete based on these predictions. Apparent 286 

auxotrophy for a number of required nutrients indicates these must be available either 287 

from the host or from neighboring microbes in human nasal passages, e.g., possibly 288 

from nasal Corynebacterium species.  289 

Whole genome sequencing indicates that D. pigrum metabolizes carbohydrates 290 

via homofermentation to lactic acid. D. pigrum produced lactate during in vitro 291 

cultivation (Figure 4A). Lactic acid bacteria mainly perform either homo- or 292 

heterofermentation of carbohydrates [78]. Therefore, we examined the genomic 293 

capacity of D. pigrum for carbohydrate metabolism (see also Supplemental Text, 294 

section III). D. pigrum genomes lacked genes required for a complete tricarboxylic acid 295 

cycle, which is consistent with fermentation. Moreover, we identified genes encoding a 296 

complete glycolytic pathway in all 11 strains that are consistent with homofermentation. 297 

All 11 strains harbored a predicted L-lactate-dehydrogenase (EC 1.1.1.27), which 298 

catalyzes the reduction of pyruvate to lactate regenerating NAD+ for glycolysis (GAPDH 299 

step), consistent with homofermentation to L-lactate as the main product of glycolysis.  300 

The accessory genome of 11 D. pigrum strains contains a diversity of 301 

biosynthetic gene clusters predicted to encode antibiotics. Lactic acid production 302 

alone appears insufficient to account for the negative in vitro associations of D. pigrum 303 
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with S. aureus and with S. pneumoniae (Figure 4). To delve further into the genetic 304 

capacity of D. pigrum for possible mechanisms of inhibition, we explored the accessory 305 

genome of the 11 sequenced strains. Consistent with a prior report [57], D. pigrum 306 

appears to be broadly susceptible to antibiotics (Supplement Text, section IV). What 307 

emerged in our analysis was a diversity of biosynthetic gene clusters (BGCs) (Table S5 308 

and Figure S8), including a diversity of BGCs predicted to encode candidate antibiotics. 309 

Strikingly, although 10 of 10 strains tested displayed inhibition of S. aureus growth in 310 

vitro (Figure 3), there was no single BGC common to all 10 strains that might encode a 311 

compound with antibiotic activity. Based on this, we hypothesize that D. pigrum uses a 312 

diverse repertoire of BGCs to produce bioactive molecules that play key roles in 313 

interspecies interactions with its microbial neighbors, e.g., for niche competition, and 314 

potentially with its host. This points to a new direction for future research on the 315 

functions that underlie the positive associations of D. pigrum in human nasal microbiota 316 

with health and highlights the need to develop a system for genetic engineering of D. 317 

pigrum.  318 

 319 

Discussion 320 

D. pigrum is associated with health in multiple genus-level compositional studies of 321 

human URT/nasal passage microbiota. The above species-level genomic and 322 

phenotypic experimental data mark a significant advance in the study of D. pigrum and 323 

set the stage for future research on molecular mechanisms. Further, these phenotypic 324 

interactions are consistent with a role for microbe-microbe interactions in shaping the 325 
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human nasal microbiota. In nasal passage microbiota datasets, we identified positive 326 

associations of D. pigrum with specific species of Corynebacterium in adults and 327 

children and a negative association of D. pigrum with S. aureus in adults (Figure 1). We 328 

observed phenotypic support for these associations during in vitro growth. First, 329 

unilateral cooperation from three common nasal Corynebacterium species enhanced D. 330 

pigrum growth yields (Figure 2). Second, D. pigrum inhibited S. aureus (Figure 3). Our 331 

genomic analysis revealed auxotrophies consistent with D. pigrum reliance on 332 

cocolonizing microbes and/or the human host for key nutrients. Genomic analysis also 333 

showed an aerotolerant anaerobe that performs homofermentation to lactate. However, 334 

D. pigrum lactate production (Figure 4A) was insufficient to inhibit either S. aureus 335 

(Figure 4B) or S. pneumoniae (Figure 4C), and is, therefore, not the sole contributor to 336 

negative associations with S. pneumoniae and S. aureus in vivo. Consistent with the 337 

multiple reports of a negative association between D. pigrum, usually in conjunction with 338 

the genus Corynebacterium, and S. pneumoniae, we observed that cocultivation of D. 339 

pigrum and C. pseudodiphtheriticum produced a diffusible activity that robustly inhibited 340 

S. pneumoniae (Figures 5 and S1) whereas monoculture of either did not. Finally, we 341 

uncovered a surprisingly diverse repertoire of BGCs in 11 D. pigrum strains, revealing 342 

potential mechanisms for niche competition that were previously unrecognized and 343 

opening up a new line of investigation in the field.  344 

The in vitro interactions of D. pigrum with S. aureus and with S. pneumoniae support 345 

inferences from composition-level microbiota data of competition between D. pigrum 346 

and each pathobiont. However, these interactions differed in vitro. D. pigrum alone 347 

inhibited S. aureus but D. pigrum plus C. pseudodiphtheriticum, together, robustly 348 
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inhibited S. pneumoniae. This points to a more complex set of interactions among these 349 

specific bacterial members of the human nasal microbiota, which likely exists in the 350 

context of a network of both microbe-microbe and microbe-host interactions. To date, 351 

mechanisms for only a few such interactions are described. For example, a C. accolens 352 

triacylglycerol lipase (LipS1) releases antipneumococcal free fatty acids from model 353 

host surface triacyclglycerols in vitro pointing to habitat modification as a possible 354 

contributor to S. pneumoniae colonization resistance [33].  355 

Multiple mechanisms could result in D. pigrum inhibition of S. aureus in vitro including 356 

nutrient competition, excretion of a toxic primary metabolite or of an anti-S. aureus 357 

secondary metabolite (i.e., an antibiotic). Initial bioassay-guided fractionation 358 

approaches failed to identify a mechanism. However, the diverse repertoire of BGCs 359 

among the 11 D. pigrum strains is intriguing because it includes predicted lanthipeptides 360 

and bacteriocins. For example, 4 of the 11 strains harbored putative type II lanthipeptide 361 

biosynthetic gene clusters. These clusters are characterized by the presence of the 362 

LanM enzyme, containing both dehydration and cyclization domains needed for 363 

lanthipeptide biosynthesis [79]. Alignment of these enzymes with the enterococcal 364 

cytolysin LanM revealed conserved catalytic residues in both domains [80]. Cleavage of 365 

the leader portion of the lanthipeptide is necessary to produce an active compound and 366 

the presence of peptidases and transporters within these BGCs suggests these D. 367 

pigrum strains might secrete an active lanthipeptide, which could play a role in niche 368 

competition with other microbes. Additionally, 8 of the 11 D. pigrum genomes examined 369 

contain putative bacteriocins, or bactericidal proteins and peptides. Intriguingly, the D. 370 

pigrum strains (CDC4709-98, CDC39-95, KPL1914) exhibiting the strongest inhibition of 371 
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S. aureus (Figure 3), were the only strains that contained both a lanthipeptide BGC and 372 

a bacteriocin, further indicating that D. pigrum may employ multiple mechanisms to 373 

inhibit S. aureus growth, and if both are required for the in vitro inhibition might explain 374 

the negative results from bioassay guided fractionation.  375 

Mechanisms are coming to light for how other nasal bacteria interact with S. aureus. For 376 

example, commensal Corynebacterium species excrete a to-be-identified substance 377 

that inhibits S. aureus autoinducing peptides blocking agr quorum sensing (QS) and 378 

shifting S. aureus shifts towards a commensal phenotype [81]. Also, the to-be-identified 379 

mechanism of C. pseudodiphtheriticum contact-dependent inhibition of S. aureus is 380 

mediated through phenol soluble modulins (PSM), the expression of which increases 381 

during activation of agr QS [82]. Within broader Staphylococcus-Corynebacterium 382 

interactions, C. propinquum outcompetes coagulase-negative Staphylococcus (CoNS), 383 

but not S. aureus, for iron in vitro using the siderophore dehydroxynocardamine, the 384 

genes for which are transcribed in vivo in human nostrils [83]. Interphylum 385 

Actinobacteria-Firmicutes interactions also occur between Cutibacterium acnes and 386 

Staphylococcus species (reviewed in [14]). For example, some strains of C. acnes 387 

produce an anti-staphylococcal thiopeptide, cutimycin, in vivo and the presence of the 388 

cutimycin BGC is correlated with microbiota composition at the level of the individual 389 

human hair follicle [84]. Of note, Actinobacteria competition with coagulase-negative 390 

Staphylococcus species could also have network-mediated (indirect) effects on S. 391 

aureus via the well-known competition among Staphylococcus species (reviewed in 392 

[85]), which can be mediated by antibiotic production, e.g., [15-17, 19], interference with 393 

S. aureus agr QS [18, 20, 86, 87] or extracellular protease activity [88], among other 394 
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means [14]. Further rounding out the emerging complexity of microbe-microbe 395 

interactions in nasal microbiota, multiple strains of Staphylococcus, particularly S. 396 

epidermidis, inhibit the in vitro growth of other nasal and skin bacteria, including D. 397 

pigrum, via to-be-identified mechanisms [16]. The above points to a wealth of 398 

opportunity to use human nasal microbiota as a model system to learn how bacteria use 399 

competition to shape their community.  400 

Direct cooperation could contribute to the observed positive associations between 401 

bacterial species in epidemiological microbiome studies. Conditioning medium with any 402 

of the three nasal Corynebacterium species positively associated with D. pigrum in vivo 403 

in human nasal microbiota (Figure 1) enhanced the growth yield of some D. pigrum 404 

strains (Figure 2). This is possibly by excretion of a limiting nutrient or by removal of a 405 

toxic medium component. The genomic predictions of auxotrophy (above and 406 

supplemental text) might favor nasal Corynebacterium species providing cooperation to 407 

D. pigrum by excretion of a limiting nutrient. Indeed, mass spectrometry indicates a 408 

number of nutrients are limiting in the nose [77]. 409 

There were several limitations of our study. First, we analyzed the genomes of 11 410 

strains that were primarily isolated in the setting of disease. It is unclear whether these 411 

strains were contaminants or pathogenic contributors [57]. However, D. pigrum strains 412 

are infrequently associated with disease [58-61, 89-92]. These 11 D. pigrum strains 413 

encoded only a few potential virulence factors, which is consistent with D. pigrum acting 414 

primarily as a mutualistic species of humans. Second, the ongoing search for a fully 415 

defined chemical medium permissive for D. pigrum growth precluded experimental 416 

verification of predicted auxotrophies and further investigation of how nasal 417 
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Corynebacterium enhance D. pigrum growth yields. Third, the D. pigrum anti-S. aureus 418 

factor has eluded purification and identification efforts with standard chemistry 419 

approaches and D. pigrum is not yet genetically tractable, limiting genetic approaches to 420 

identify it. Fourth, to date, there is no animal model for nasal colonization with D. pigrum 421 

and Corynebacterium species, which stymies directly in vivo testing the hypothesis of 422 

pathobiont inhibition and points to another area of need within the nasal microbiome 423 

field. 424 

 425 

Conclusions 426 

In summary, we validated in vivo associations from human bacterial microbiota studies 427 

with functional assays that support the hypothesis that D. pigrum is a mutualist with 428 

respect to its human host, rather than a purely commensal bacterium. Further, these 429 

phenotypic interactions support a role for microbe-microbe interactions in shaping the 430 

composition of human nasal microbiota, and, thus, the possibility of developing microbe-431 

targeted interventions to reshape community composition. The next step will be to 432 

identify the molecular mechanisms of those interactions and to assess their role in the 433 

human host. Such work could establish the premise for future studies to investigate the 434 

therapeutic potential of D. pigrum as a topical nasal probiotic for use in patients with 435 

recurrent infections with S. pneumoniae, possibly in conjunction with a nasal 436 

Corynebacterium species, or S. aureus, in conjunction with established S. aureus 437 

decolonization techniques [93]. 438 

 439 
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Methods 440 

Species-level reanalysis of a pediatric nostril microbiota dataset. Laufer et al. 441 

analyzed nostril swabs collected from 108 children ages 6 to 78 months [26]. Of these, 442 

44% were culture positive for S. pneumoniae and 23% were diagnosed with otitis 443 

media. 16S rRNA gene V1-V2 sequences were generated using Roche/454 with 444 

primers 27F and 338R. We obtained 184,685 sequences from the authors, of which 445 

94% included sequence matching primer 338R and 1% included sequence matching 446 

primer 27F. We performed demultiplexing in QIIME [94] (split_libraries.py) filtering reads 447 

for those ≥250 bp in length, quality score ≥30 and with barcode type hamming_8. Then, 448 

we eliminated sequences from samples for which there was no metadata (n=108 for 449 

metadata) leaving 120,963 sequences on which we performed de novo chimera 450 

removal in QIIME (USEARCH 6.1) [95, 96], yielding 120,274 16S rRNA V1-V2 451 

sequences. We then aligned the 120,274 chimera-cleaned reads in QIIIME (PyNAST) 452 

[97], using eHOMDv15.04 [41] as a reference database, and trimmed the reads using 453 

“o-trim-uninformative-columns-from-alignment” and “o-smart-trim” scripts [98]. 116,620 454 

reads (97% of the chimera-cleaned) were recovered after the alignment and trimming 455 

steps. After these initial cleaning steps, we retained only the 99 samples with more than 456 

250 reads. We analyzed this dataset of 99 samples with a total of 114,909 reads using 457 

MED [98] with minimum substantive abundance of an oligotype (-M) equal to 4 and 458 

maximum variation allowed in each node (-V) equal to 6 nt, which equals 1.6% of the 459 

379-nucleotide length of the trimmed alignment. Of the 114,909 sequences, 82.8% 460 

(95,164) passed the -M and -V filtering and are represented in the MED output. 461 

Oligotypes were assigned taxonomy in R with the dada2::assignTaxonomy() function 462 
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(an implementation of the naïve Bayesian RDP classifier algorithm with a kmer size of 8 463 

and a bootstrap of 100) [99, 100] using the eHOMDv15.1 V1-V3 Training Set (version 1) 464 

[41] and a bootstrap of 70. We then collapsed oligotypes within the same 465 

species/supraspecies yielding the data shown in Table S6.  466 

Microbiota community comparison (Figure 1). The pediatric 16S rRNA gene V1-V2 467 

dataset analyzed at species level here (Table S6), as well as the HMP adult 16S rRNA 468 

gene V1-V3 dataset previously analyzed at species level (Table S7 in [41]) were used 469 

as input for the ANCOM analysis, including all identified taxa (i.e., we did not remove 470 

taxa with low relative abundance). ANCOM (version 1.1.3) was performed using the 471 

presence or absence of D. pigrum, based on the 16S rRNA gene sequencing data, as 472 

group definer. ANCOM default parameters were used (sig = 0.05, tau = 0.02, theta = 473 

0.1, repeated = FALSE (i.e., Kruskal-Wallis test)) except that we performed a correction 474 

for multiple comparisons (multcorr = 2), instead of using the default no correction 475 

(multcorr = 3) [75]. The Log relative abundance values for the taxa identified as 476 

statistically significant (sig = 0.05) are represented in Figure 1 and also available in 477 

Table S1. 478 

Cultivation from frozen stocks. Bacterial strains (Tables S2 and S7) were cultivated 479 

as described here unless stated otherwise. Across the various methods, strains were 480 

grown at 37°C with 5% CO2 unless otherwise noted. D. pigrum strains were cultivated 481 

from frozen stocks on BBL Columbia Colistin-Nalidixic Acid (CNA) agar with 5% sheep 482 

blood (BD Diagnostics) for 2 days. Corynebacterium species were cultivated from 483 

frozen stocks on BHI agar (C. pseudodiphtheriticum and C. propinquum) or BHI agar 484 

supplemented with 1% Tween80 (C. accolens) for 1 day. Resuspensions described 485 
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below were made by harvesting colonies from agar medium and resuspending in 1X 486 

phosphate buffered saline (PBS). Of note, we primarily use agar medium because in 487 

our experience D. pigrum exhibits more consistent growth on agar medium than in liquid 488 

medium. Likewise, growth on a semi-solid surface is likely to better represent growth on 489 

nasal surfaces than would growth under the well-mixed conditions of shaking liquid 490 

medium. 491 

Preconditioning growth yield assays (Figure 2). To assess the growth yield of D. 492 

pigrum on a polycarbonate membrane atop media conditioned by Corynebacterium spp. 493 

each. Corynebacterium strain was resuspended from growth on agar medium to an 494 

optical density at 600 nm (OD600) of 0.50 in 1x PBS. Then 100 μL of each resuspension 495 

was individually spread onto a 0.2-μm, 47-mm polycarbonate membrane (EMD 496 

Millipore, Billerica, MA) atop 20 mL of either BHI agar for C. pseudodiphtheriticum and 497 

C. propinquum or BHI agar supplemented with Triolein (BHIT) (CAS # 122-32-7, Acros) 498 

spread atop the agar medium, as previously described [33], for C. accolens. After 2 499 

days of growth, membranes with Corynebacterium cells were removed, leaving 500 

CFCAM. On each plate of CFCAM, we placed a new membrane onto which we spread 501 

100 μL of D. pigrum cells that had been resuspended to an OD600 of 0.50 in 1x PBS. 502 

After 2 days, membranes with D. pigrum were removed, placed in 3 mL 1x PBS, and 503 

vortexed for 1 min. to resuspend cells. Resuspensions were diluted 1:10 six times, 504 

dilutions were inoculated onto BBL CNA agar with 5% sheep blood and colony forming 505 

units (CFUs) were enumerated after 2-3 days of growth. To assess the growth yield of 506 

Corynebacterium pseudodiphtheriticum on a polycarbonate membrane atop media 507 

conditioned by D. pigrum  strains KPL1914 and CDC 4709-98 were grown for 2 days as 508 
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described above. C. pseudodiphtheriticum KPL1989 growth yield was then measured 509 

as described above. 510 

Growth of D. pigrum directly on BHI agar medium supplemented with triolein and 511 

conditioned by growth of nasal Corynebacterium species (Table 1). Onto BHI agar 512 

supplemented with 200 U/mL of bovine liver catalase (C40-500MG, Sigma) (BHIC), we 513 

spread 50 μL of 100 mg/mL of Triolein (BHICT). We then spread 50 μL of a 514 

resuspension (OD600 of 0.50) of each Corynebacterium strain onto a 0.2-μm, 47-mm 515 

polycarbonate membrane placed atop 10 mL of BHICT agar in a 100-mm-by-15-mm 516 

petri dish. After 2 days, we removed each membrane with Corynebacterium cells 517 

leaving CFCAM. Using a sterile cotton swab, we then spread either a lawn of D. pigrum 518 

(from cells resuspended to an OD600 of 0.50 in 1x PBS) or S. pneumoniae (taken 519 

directly from agar medium) onto the CFCAM. Each lawn then grew for 1-2 days before 520 

documenting growth or inhibition of growth with digital photography. 521 

Oleic acid disc diffusion assay (Table 2). A lawn of D. pigrum or S. pneumoniae was 522 

spread onto 10 mL of BHIC agar using a sterile cotton swab as described above. Oleic 523 

acid (Sigma-Aldrich) was dissolved to a final concentration of 2 mg/mL, 5 mg/mL and 10 524 

mg/mL in ethanol and then we added 10 μl of each to separate, sterile 0.2-μm, 6-mm 525 

filter discs (Whatman), with 10 μL of ethanol alone added to a disc as a control. After 526 

allowing the solvent to evaporate, filter discs were placed onto the bacterial lawns which 527 

were then allowed to grow for 1 day before measuring zones of inhibition and 528 

photographing. 529 
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Growth of D. pigrum directly on versus atop a membrane on oleic-acid-coated 530 

agar medium (Table 3). Oleic was dissolved in 100% ethanol to a concentration of 5 531 

mg/ml and then further diluted 10-fold 5 times in ethanol. For each dilution, 100 μL was 532 

spread on top of a separate plate of BHI agar medium. Next, 10 μL of D. pigrum 533 

KPL1914 and CDC4709-98 each resuspended to OD600 = 0.3 was inoculated both 534 

directly on the oleic-acid-coated agar medium and atop of a 0.2-µm, 47-mm 535 

polycarbonate membrane (EMD Millipore, Billerica, MA) on the same plate. After 2 days 536 

at 37°C, we assessed and photographed the growth. In addition, for each dilution and 537 

strain one spot on the membrane was resuspended in PBS to assess CFU counts after 538 

serial dilutions and plating on blood agar plates (see above).  539 

D. pigrum–S. aureus side-by-side coculture assay (Figure 3). D. pigrum cells were 540 

harvested with sterile cotton swabs and resuspended in sterile 1x PBS to a minimal 541 

OD600 of 0.3 then 5 µl drops were individually inoculated on BHI agar medium and 542 

incubated for 2 days. S. aureus JE2 was grown overnight on BBL Columbia CNA agar 543 

with 5% sheep blood and resuspended in PBS to an OD600 of 0.1. Then 5 µl drops of S. 544 

aureus were inoculated at different distances from the pregrown D. pigrum. Inhibition 545 

was assessed daily and photographically documented. 546 

Measurement of L-Lactic Acid Concentration (Figure 4A). D. pigrum cells were 547 

grown from frozen stocks as above. Cells were then harvested with a sterile cotton 548 

swab, resuspended to an OD600 of 0.50 in 1x PBS and inoculated at 1:25 in BHI broth 549 

for overnight growth gently shaking (~50-60 rpm) at 37°C under atmospheric conditions. 550 

The overnight culture was then inoculated at 1:25 into fresh BHI broth and grown for 24 551 

hrs at 37°C prior to measuring the lactic acid concentration (mmol/L) using a D-lactic 552 
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acid/L-lactic acid kit per the manufacturer’s instructions (Cat. no. 11112821035, R-553 

Biopharm AG). 554 

Growth of S. aureus and S. pneumoniae in D. pigrum cell-free conditioned liquid 555 

medium. (CFCM in Figures 4B and 4C) After growth in BHI, as described for L-lactic 556 

acid measurement, D. pigrum KPL1914 cells were removed with a 0.22-μM sterile filter 557 

yielding cell-free conditioned medium (CFCM). S. aureus strains Newman and JE2 and 558 

S. pneumoniae strains TIGR4, DBL5, 603, WU2 were each grown on BBL Columbia 559 

CNA agar with 5% sheep blood for 1 day, harvested with a sterile cotton swab, 560 

resuspended to an OD600 of 0.30 in 1x PBS, inoculated at 1:100 into both D. pigrum 561 

CFCM and BHI broth and grown for 19-20 hrs at 37°C in shaking (S. aureus; 50 rpm) or 562 

static (S. pneumoniae) culture under atmospheric conditions. Growth yield was 563 

quantified as OD600 absorbance. 564 

Growth of S. aureus and S. pneumoniae in BHI broth supplemented with L-lactic 565 

acid. (Lactic Acid in Figures 4B and 4C) Strains of S. aureus and S. pneumoniae were 566 

grown and harvested as described above for inoculation. BHI broth, supplemented with 567 

L-lactic acid (CAS no. 79-33-4; Fisher BioReagents) at varying concentrations from 568 

11mM – 55 mM, was sterilized through a 0.22-μM filter. After inoculating each strain 569 

separately into BHI broth with L-lactic acid, cultures were grown as described above for 570 

growth in CFCM. Growth yield was quantified as OD600 absorbance. 571 

Growth assay for S. pneumoniae on BHI agar medium conditioned by mono- vs. 572 

coculture of D. pigrum and/or C. pseudodiphtheriticum (Figures 5 and S1). D. 573 

pigrum and C. pseudodiphtheriticum strains were grown from freezer stocks as 574 
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described above. Cells were harvested with sterile cotton swabs and resuspended in 575 

sterile PBS to an OD600nm of 0.5. We then spotted 100 µl of 1:1 mixed resuspension on 576 

a polycarbonate membrane (see above) on BHI agar medium containing 400U/mL 577 

bovine liver catalase. After 2 days of growth, the polycarbonate membrane with D. 578 

pigrum and/or C. pseudodiphtheriticum was removed from each plate leaving CFCAM. 579 

S. pneumoniae 603 [101] was grown overnight on BBL Columbia CNA agar with 5% 580 

sheep blood as described above and, using a sterile cotton swab, a lawn was streaked 581 

onto the CFCAM and allowed to grow for 24 hours. Growth/inhibition was assessed 582 

daily and photographically recorded. Imaging was difficult due to the transparency of S. 583 

pneumoniae lawns. 584 

Selection of strains and preparation of DNA for whole genome sequencing. D. 585 

pigrum KPL1914 was isolated from the nostril of a healthy adult (above). In addition, we 586 

selected 9 of 27 D. pigrum strains from a CDC collection [57] using an rpoB-based 587 

typing system with a preference for strains isolated from the nasal passages and/or 588 

from children (Table S2). Primers Strepto F MOD (AAACTTGGACCAGAAGAAAT) and 589 

R MOD (TGTAGCTTATCATCAACCATGTG) were generated in silico by mapping 590 

primers Strepto F and R [102] to the rpoB sequence of D. pigrum ATCC 51524 (genome 591 

obtained from NCBI; RefSeq: NZ_AGEF00000000.1) with BLAST [103] and manually 592 

correcting misalignments in SnapGene viewer 2.8.2 (GSL Biotech, Chicago, IL). PCR 593 

were performed using extracted genomic DNA of D. pigrum. PCR conditions were as 594 

follows: initial denaturation 95°C for 2 minutes, then 30 cycles of denaturation for 30 595 

seconds at 98°C, annealing at 50°C for 30 seconds, elongation 72°C for minutes and a 596 

final extension step at 72°C for 10 minutes. PCR products were cleaned using QIAquick 597 
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PCR purification kit (Qiagen, Germantown, MD) and sequence determined by Sanger 598 

sequencing (Macrogen USA, Boston, MA, USA). In the genomic analysis, we also 599 

included the publicly available genome for D. pigrum ATCC 51524, which was 600 

sequenced by the BROAD institute as part of the HMP (RefSeq NZ_AGEF00000000.1). 601 

D. pigrum strains were grown atop membranes for 48 hrs as described above. Cells 602 

were harvested with a sterile tip, resuspended in 50 µl of sterile PBS and frozen at -603 

80°C. Genomic DNA was extracted using the Epicentre MasterPure nucleic acid 604 

extraction kit (Epicentre, Madison, WI) per the manufacturer’s instructions. We 605 

assessed DNA purity using a Nanodrop spectrophotometer (Nanodrop, Wilmington, 606 

DE), concentration using Qubit fluorometer (Invitrogen, Carlsbad, CA) and fragment 607 

size/quality via agarose gel electrophoresis. 608 

Whole genome sequencing, read assembly, and annotation (Table S3). Genomic 609 

DNA was sequenced at the Yale Center for Genome Analysis (YCGA), New Haven, CT, 610 

on an Illumina MiSeq platform using mated paired-end (2 x 250 bp) technology, 611 

assembled using de Bruijn graph algorithms with Velvet [104] with a kmer size of 139 bp 612 

and annotated with RAST with FIGfam release 70 [105] and Prokka [106]. In addition, 613 

D. pigrum strains KPL1914 and CDC#4709-98 [57] were sequenced on a PacBio RS II 614 

(Pacific Biosystems, Menlo Park, CA) and sequences were assembled using HGAP 615 

version 3.0 [107]. We used an iterative procedure to error correct the PacBio genomes, 616 

which involved mapping Illumina reads to the PacBio genomes until there were no 617 

differences detected between the Illumina reads and the PacBio assembly [108]. To 618 

estimate the degree of assembly errors and missing content that might contribute to the 619 

variation in gene content, we compared the Illumina assembly of KPL1914 with the 620 
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Illumina-corrected PacBio assembly of KPL1914 to estimate the possible divergence 621 

[109]. Within Illumina assemblies, we identified 139 (1566 vs. 1705) predicted coding 622 

sequences as determined by RAST annotation absent in the assembly received by 623 

PacBio sequencing. Genomes were deposited at NCBI (GenBank: NAJJ00000000, 624 

NAQW00000000, NAQX00000000, NAQV00000000, NAQU00000000, 625 

NAQT00000000, NAQS00000000, NAQR00000000, NAQQ00000000 and 626 

NAQP00000000 in BioProjects PRJNA379818 and PRJNA379966). 627 

Identification of the D. pigrum core, shell and cloud genome based on Illumina-628 

sequenced genomes from 11 strains (Figures S2 and S3 and Table S4). Core 629 

proteins from RAST-annotated GenBank-files were determined using the intersection of 630 

bidirectional best-hits (BDBH), cluster of orthologous (COG) triangles and Markov 631 

Cluster Algorithm (OrthoMCL) clustering algorithms using GET_HOMOLOGUES 632 

package version 02012019 on Ubuntu-Linux [110] excluding proteins with more than 633 

one copy in an input species (as single-copy proteins are safer orthologues, i.e., using 634 

flag t-11). GenBank files derived from RAST annotation (see above) were renamed with 635 

KPL strain names except for strain ATCC51524. As an initial control, amino acid fasta 636 

files (*.faa) were used for the determination of core proteins. We determined the cloud, 637 

shell and core genome of each of the 11 sequenced D. pigrum strains using the 638 

parse_pangenome_matrix.pl script (./parse_pangenome_matrix.pl -m 639 

sample_intersection/pangenome_matrix_t0.tab -s) of the GET_HOMOLOGUES 640 

package version 30062017 [110]. Definition of cloud, shell and core genome were 641 

based on [111]. In brief, cloud is defined as genes only present in a 1 or 2 genomes 642 

(cut-off is defined as the class next to the most populated non-core cluster class). The 643 
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core genome is composed of clusters present in all 11 strains, soft core contains 644 

clusters present in 10 genomes and shell includes clusters present in 3 to 9 genomes. 645 

Synteny analysis (Figure S5) on BDBH core (with flag t11) was performed using the 646 

compare_clusters script (-s) and synteny visualization was done in MAUVE using 647 

standard settings [112] after the KPL1914 genome was reverse complemented and 648 

both genomes had the origin set at the beginning of dnaA. 649 

Phylogenetic reconstruction, sequence and protein similarities. A monophyletic 650 

(clade) core genome phylogenic tree was constructed by including A. otitis (closest 651 

neighbor based on the Living Tree Project [113]) an outgroup (Figure S7B). A 652 

phylogenic tree without an outgroup was also constructed similarly (Figure S7A). A. 653 

otitis ATCC 51267 contigs were downloaded from NCBI (NZ_AGXA00000000.1) and 654 

annotated using RAST (see above). Predicted core proteins common to A. otitis and D. 655 

pigrum genomes were identified as described above using GET_HOMOLOGUES 656 

package. Alignments were done using a loop with Clustal Omega V. 1.2.4 ($ for 657 

filename in *.faa; do clustalo -i "$filename" -o clustalo_out/${filename%coral} -v; done) 658 

and resulting alignments were concatenated using catfasta2phyml perl script 659 

(https://github.com/nylander/catfasta2phyml) $./catfasta2phyml.pl *.faa --verbose > 660 

outv.phy. PhyML 3.0 [114] with smart model selection [115] using Akaike information 661 

criterion was used for phylogenetic analysis (maximum-likelihood) with 100 regular 662 

bootstrap replicates and FigTree (http://tree.bio.ed.ac.uk/software/figtree/) for tree 663 

visualization.  664 

BLAST Ring Image Generator (BRIG) was used for visualization of the other sequenced 665 

genomes compared to the closed CDC 4709-98 genome (Figure S6) [116]. Average 666 
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amino acid and nucleic acid identity (Figure S4) was calculated using 667 

GET_HOMOLOGUES package version 30062017 [110]. In brief, a pangenome matrix 668 

was generated using the OMCL algorithm (./get_homologues.pl -d dpig_folder -t 0 -M 669 

(OMCL)) for homologues identification. Both, ANI and AAI were calculated with all 670 

available clusters (t 0). Commands used: Generation of an AA identity matrix: $ 671 

./get_homologues.pl -d “gbk-files” -A -t 0 -M and CDS identity matrix with the command 672 

$./get_homologues.pl -d “gbk files” -a 'CDS' -A -t 0 -M.  673 

Biosynthetic gene clusters and antibiotic resistance genes (Table S5 and Figure 674 

S8). AntiSMASH (antibiotics & Secondary Metabolite Analysis SHell) and ClusterFinder 675 

[117, 118] were accessed at https://antismash.secondarymetabolites.org/ using default 676 

setpoints. Putative antibiotic resistance genes or mutations in genes conferring 677 

antibiotic resistance were predicted using Resistance Gene Identifier (RGI) on the 678 

Comprehensive Antibiotic Resistance Database (CARD) [119]. Assembly contigs were 679 

submitted at RGI (https://card.mcmaster.ca/analyze/rgi) and only perfect and strict hits 680 

were allowed. ResFinder version 2.1. (https://cge.cbs.dtu.dk/services/ResFinder/) with 681 

90% threshold for %ID and 60% minimum length [120]. 682 

Statistical analyses. R version 3.6.2 was used for statistical analysis and data 683 

visualization. The Wilcoxon rank sum test (equivalent to the Mann-Whitney test) was 684 

performed using wilcox.test() with paired = FALSE, alternative = "two.sided”. 685 

List of abbreviations. Analysis of Composition of Microbiomes (ANCOM), Colony 686 

Forming Units (CFUs), Cell-Free Conditioned Agar Medium (CFCAM), Cell-Free 687 
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Conditioned Medium (CFCM), Brain Heart Infusion (BHI), Brain Heart Infusion 688 

supplemented with Triolein (BHIT), Biosynthetic Gene Cluster (BGC). 689 
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Table 1. In contrast to when grown on a semi-permeable membrane, D. pigrum is inhibited when grown directly 721 

on cell-free C. accolens-conditioned BHI agar supplemented with triolein as a source of oleic acid.  722 

 Growth of Target Strainsa 
Conditioning Strain S. pneumoniae 

603 (6B) 
D. pigrum 

CDC 4709-98 
D. pigrum 
KPL1914 

C. accolens 
KPL1818 

0 0 0 

C. propinquumT 
DSM44285 

0 + + 

C. pseudodiphtheriticum 
KPL1989 

+ + + 

a0, no growth; +, growth detected, n≥3 723 
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Table 2. Oleic acid inhibits D. pigrum growth.  725 

 726 

aMean ZOI ± SD produced in a disc-diffusion assay. ZOIs were measured as the smallest diameter of inhibited growth 727 
and measurements include disc diameter (6 mm). Biological replicates (n=4 for S. pneumoniae, n=5 for D. pigrum) were 728 
averaged. 729 

  730 

 ZOI (mm)a 

Oleic Acid 
(μg/disc) 

S. pneumoniae 
603 (6B) 

D. pigrum 
CDC 4709-98 

D. pigrum 
KPL1914 

20  10.3 ± 4.7 12.0 ± 2.9 17.0 ± 2.1 
50  22.0 ± 5.4 26.8 ± 4.4 28.4 ± 7.0 
100  26.3 ± 6.7 35.8 ± 4.5 39.4 ± 5.0 
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Table 3. A 0.2-µm, 47-mm polycarbonate membrane provides D. pigrum with some protection against inhibition 731 

by oleic acid in vitro. 732 

Oleic acid (µg plated) 

Growth directly on agara Growth on membrane 

D. pigrum strain 

KPL1914 CDC 4709-98 KPL1914 CDC 4709-98 

500 0 0 0 + 
50 0 0 + + 
5 + + + + 

0.5 + + + + 
0.05 + + + + 

0 (BHI) + + + + 
0 (CSBA) + + + + 

a0, no growth, +, growth detected, n=3  733 
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Figure Legends. 1117 

Figure 1. Individual nasal Corynebacterium species exhibit increased differential 1118 

relative abundance in the presence of D. pigrum in human nostril microbiota. We 1119 

used ANCOM to compare species/supraspecies-level composition of 16S rRNA gene 1120 

nostril datasets from (A) 99 children ages 6 and 78 months and (B) 210 adults when D. 1121 

pigrum was either absent (Dpi-) or present (Dpi+) based on 16S rRNA gene sequencing 1122 

data. Plots show only the taxa identified as statistically significant (sig = 0.05) after 1123 

correction for multiple testing within ANCOM. The dark bar represents the median; 1124 

lower and upper hinges correspond to the first and third quartiles. Each grey dot 1125 

represents the value for a sample, and multiple overlapping dots appear black. Dpi = 1126 

Dolosigranulum pigrum, Cac = Corynebacterium accolens, Caa/Cma/Ctu= supraspecies 1127 

Corynebacterium accolens_macginleyi_tuberculostearicum, Cpr = Corynebacterium 1128 

propinquum, Cps = Corynebacterium pseudodiphtheriticum, Mno = Moraxella 1129 

nonliquefaciens. Only three species and one supraspecies of Corynebacterium out of 1130 

the larger number of Corynebacterium supraspecies/species present in each dataset 1131 

met the significance threshold. Specifically, in the adult nostril dataset, there were 21 1132 

species and 5 supraspecies groupings of Corynebacterium in addition to reads of 1133 

Corynebacterium that were non-assigned (NA) at species level. These data are 1134 

previously published and visible in Table S7 of reference 42. In the pediatric dataset, 1135 

there were 16 species of Corynebacterium in addition to the (NA) at species level 1136 

Corynebacterium reads (see Table S7 of this manuscript). The Log relative abundance 1137 

numerical data represented in this figure are available in Table S1. 1138 
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Figure 2. D. pigrum growth yields increase on cell-free conditioned agar medium 1139 

(CFCAM) from nasal Corynebacterium species and not vice versa. Growth yield of 1140 

D. pigrum strains CDC 2949-98, CDC 4709-98 and KPL1914 was quantified as the 1141 

number of CFUs grown on a polycarbonate membrane placed onto (A) cell-free 1142 

conditioned BHI agar from C. propinquum (aqua green) or C. pseudodiphtheriticum 1143 

(dark and light green) or (B) cell-free conditioned BHI-Triolein (BHIT) agar from C. 1144 

accolens (blue) and compared to growth on unconditioned BHI agar (dark grey) or 1145 

unconditioned BHIT agar (light grey), respectively. Growth yield of C. 1146 

pseudodiphtheriticum KPL1989 on CFCAM from D. pigrum strains (orange) compared 1147 

to unconditioned medium (white) was assessed similarly (C). BHIT was used for growth 1148 

of C. accolens since it is a fatty-acid auxotroph and releases needed oleic acid from 1149 

triolein. Preconditioning strains were grown on a 0.2-μm, 47-mm polycarbonate 1150 

membrane for two days to generate CFCAM. After removal, we then placed a new 1151 

membrane on the CFCAM onto which we spread 100 μL of  target bacterial cells that 1152 

had been resuspended to an OD600 of 0.50 in 1x PBS. After 2 days of growth, CFU were 1153 

enumerated as described in Methods. CFU counts were compared independently for 1154 

each individual strain (A and B, n=5) or medium (C, n=4) using a Wilcoxon rank sum 1155 

test with Bonferroni correction for multiple comparisons to the unconditioned medium. 1156 

Dark bars represent medians, lower and upper hinges correspond to the first and third 1157 

quartiles and outlier points are displayed individually. *, p < 0.05; **, p < 0.001 1158 

Figure 3. Ten different strains of D. pigrum inhibit methicillin-resistant S. aureus 1159 

USA300 strain JE2. Ten pregrown D. pigrum isolates produced a diffusible activity that 1160 

inhibited the growth of S. aureus strain JE2 on BHI agar (n≥3 independent 1161 
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experiments). Representative images are shown for each strain. D. pigrum was 1162 

resuspended in PBS then a 5 µl drop was placed onto BHI agar and pregrown for 48 1163 

hrs. After that, S. aureus JE2 was inoculated adjacent to the D. pigrum. Inhibition was 1164 

assessed after 24 and 48 hrs (48 hrs shown here).  1165 

Figure 4. Lactate production by D. pigrum is insufficient to inhibit pathobiont 1166 

growth. Strains of S. pneumoniae and S. aureus grew in the presence of higher levels 1167 

of L-lactic acid than those produced by D. pigrum in vitro. (A) The concentration of L-1168 

lactic acid (mM) produced by three D. pigrum strains was measured after 24 hrs of 1169 

gentle shaken aerobic growth in BHI broth at 37°C (n=5) as compared to the basal 1170 

concentration of L-lactic acid in BHI alone (none). (B) The average growth (OD600) of 4 1171 

S. pneumoniae strains in D. pigrum KPL1914 CFCM or in unconditioned BHI broth 1172 

supplemented with different concentrations of L-lactic acid measured after 19–20 hrs of 1173 

static aerobic growth at 37°C (n=4). (C) The average growth (OD600) of 2 S. aureus 1174 

strains in D. pigrum KPL1914 CFCM or in unconditioned BHI broth supplemented with 1175 

different concentrations of L-lactic acid measured after 19–20 hrs of shaken aerobic 1176 

growth at 37°C (n=4). Average growth of S. pneumoniae in CFCM and 11 mM L-lactic 1177 

acid were analyzed independently for each individual strain using a Wilcoxon rank sum 1178 

test. Dark bars represent medians, lower and upper hinges correspond to the first and 1179 

third quartiles and outlier points are displayed individually except in panel A where dots 1180 

for all individual sample values are represented. *None of the S. pneumoniae or S. 1181 

aureus strains displayed growth in 55 mM L-lactate.  1182 

Figure 5. D. pigrum and C. pseudodiphtheriticum grown together but not D. 1183 

pigrum alone inhibit S. pneumoniae in an in vitro agar medium-based assay. 1184 
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Representative images of S. pneumoniae 603 growth on (A) BHI alone or on CFCAM 1185 

from (B) C. pseudodiphtheriticum KPL1989, (C) D. pigrum KPL1914 or (D) both D. 1186 

pigrum and C. pseudodiphtheriticum grown in a mixed inoculum (n=4). To condition the 1187 

medium, we cultivated D. pigrum and/or C. pseudodiphtheriticum on a membrane, 1188 

which was then removed prior to spreading a lawn of S. pneumoniae. For monoculture, 1189 

100 μL of either D. pigrum or C. pseudodiphtheriticum, resuspended to an OD600=0.50, 1190 

were inoculated onto the membrane. For mixed coculture, 50 μL of D. pigrum 1191 

(OD600=0.50) were mixed with 50 μL of C. pseudodiphtheriticum (OD600=0.50) to yield a 1192 

final volume of 100 μL for the inoculum, such that each bacterial species is present in 1193 

the coculture inoculum at half the amount used for the respective monoculture 1194 

inoculum. Images were cropped. Black marks indicate edges of where the membrane 1195 

had been. 1196 

 1197 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/678698doi: bioRxiv preprint 

https://doi.org/10.1101/678698
http://creativecommons.org/licenses/by-nc-nd/4.0/


iviii viviii

iii iii

●

●

●●

●

●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●
●

●

●●●

●

Dpi Cac Caa/Cma/Ctu Cpr Cps Sau

Dpi− Dpi+ Dpi− Dpi+ Dpi− Dpi+ Dpi− Dpi+ Dpi− Dpi+ Dpi− Dpi+
0.0

2.5

5.0

7.5

10.0

L
o

g
 R

e
la

tiv
e

 A
b

u
n

d
a

n
c
e

B

●●

●●●●

Dpi Cps Mno

Dpi− Dpi+ Dpi− Dpi+ Dpi− Dpi+
0.00

2.00

4.00

6.00

A
L

o
g

 R
e

la
tiv

e
 A

b
u

n
d

a
n

c
e

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/678698doi: bioRxiv preprint 

https://doi.org/10.1101/678698
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/678698doi: bioRxiv preprint 

https://doi.org/10.1101/678698
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/678698doi: bioRxiv preprint 

https://doi.org/10.1101/678698
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/678698doi: bioRxiv preprint 

https://doi.org/10.1101/678698
http://creativecommons.org/licenses/by-nc-nd/4.0/


BHI

Dpi CFCAM

Cps CFCAM

Cps + Dpi CFCAM

S. pneumoniae growth

A B

C D

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/678698doi: bioRxiv preprint 

https://doi.org/10.1101/678698
http://creativecommons.org/licenses/by-nc-nd/4.0/

