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Abstract 
 
Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope 
interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and 
(neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is 
the existence of paratope-epitope interaction motifs that are universally shared among antibody-
antigen structures. In the largest set of non-redundant antibody-antigen structures, we identified 
structural interaction motifs, which together compose a commonly shared structure-based 
vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine 
learnability of antibody-antigen binding on the paratope-epitope level using generative machine 
learning. The vocabulary (i) is compact, less than 104 motifs, (ii) distinct from non-immune protein-
protein interactions, and (iii) mediates specific oligo- and polyreactive interactions between 
paratope-epitope pairs. Our work successfully leveraged combined structure- and sequence-
based learning showing that machine-learning-driven predictive paratope and epitope 
engineering is feasible.  
 

Introduction 
Antibody-antigen binding is mediated by the interaction of amino acids at the paratope-epitope 
interface of an antibody-antigen complex. A long-standing question in the fields of immunology 
and structural biology is whether paratope-epitope interaction is predictable. The predictability of 
paratope-epitope binding is a prerequisite for predicting antibody specificity and in silico antibody 
and vaccine design. So far, however, it remains unclear whether antibody-antigen binding is 
predictable (1–3).  
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The current paradigm is that antibody-antigen interaction is too high-dimensional of an entity to 
permit prediction. This long-standing belief most likely has its roots in the works of Karl 
Landsteiner and colleagues showing that antibodies can recognize a nearly infinite number of 
antigens (4). The complexity paradigm was reinforced over the subsequent decades by 
sequencing and crystallography studies suggesting that not only the interaction space is infinite, 
but also the sequence and structural space (with minor constraints on the antibody side) (2, 5, 6).  
 
Antibody binding to the epitope is mainly formed by the three hypervariable regions termed 
complementarity-determining regions (CDRs) situated in both antibody heavy and light chains (7–
9). The hypervariability of the CDR3 is key to the immunological specificity of antibodies (10) and 
is generated by somatic recombination of the variable (V), diversity (D, only for the heavy chain), 
and joining (J) genes of the B-cell genomic locus (11). Combinatorial diversity from rearranged 
germline gene segments, somatic hypermutation, and antigen-driven selection steps enable 
antibodies to interact specifically with virtually any given antigen (11–13).  
 
The most reliable method for identifying paratope-epitope pairs is by solving the 3D structure of 
antigen-antibody complexes and determining which amino acids in the two partners make contact 
with each other (14). Over the last decades, the increasing amount of antibody-antigen structures 
has enabled quantitative insights into the physicochemical features of antibody-antigen 
interaction (3, 15–25). For example, it has been observed repeatedly that paratopes localize 
mostly, but not exclusively, to CDRs (26), and that certain amino acids are preferentially enriched 
or depleted in the antibody binding regions (3, 27–30). For epitopes, several analyses have shown 
that their amino-acid composition is essentially indistinguishable from that of other surface-
exposed non-epitope residues if the corresponding antibody is not taken into account (31–34).  
 
Recently, computational and machine learning approaches for the sequence-based and structural 
prediction of paratopes (35–37), epitopes (38) or paratope-epitope (antibody-antigen) interaction 
(34, 36, 39–41) are accumulating (for a more complete list of references see here: (1, 2, 42–45)). 
While the accuracy for the prediction of paratopes seems generally higher than that for epitopes, 
to our knowledge, no study has yet conclusively shown that antibody-antigen interaction is a priori 
predictable and if so, based on what theoretical and biological grounds (1, 46).  
 
Recent reports have provided preliminary evidence for the potential predictability of antibody-
antigen interaction: (i) The antibody repertoire field has now established that antibody sequence 
diversity underlies predictable rules (5, 6, 47). (ii) The presence of transferable “specificity units” 
between distinct antibody molecules was recently suggested by showing that tightly binding 
functional antibodies may be conceived by designing and improving seemingly unrelated 
paratopes (48). Previous efforts towards predicting paratope-epitope interaction have been stifled 
by both a one-sided investigation of either exclusively the paratope or the epitope and the failure 
to break down the problem of antibody-antigen interaction into its fundamental units. The 
fundamental units of antibody-antigen interaction are the sequence regions on the antibody and 
the antigen that compose the paratope-epitope interface. The 3D complex structure of an epitope 
typically emerges from different sub-peptides of the protein, folded in the same place. Therefore, 
the binding units go beyond a single linear peptide, hindering the power of sequence-based 
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prediction tools. We conjectured that the comparison of those interaction units across antibody-
antigen complexes may lead to the discovery of a general vocabulary of antibody-antigen 
interaction. If a general compact (finite) vocabulary for antibody-antigen interaction existed that 
unambiguously formed paratope-epitope pairs, then paratope-epitope interaction would be a 
priori predictable. 
 
To investigate the veracity of our conjecture, we devised a domain-specific sequence language 
that encodes the units of paratope and epitope interaction as structural interaction motifs 
(henceforth termed interaction motif or simply motif). These structural interaction motifs (i) 
conserve the link between paratope and epitope and (ii) allow for the comparison of paratope-
epitope structural interactions across antibody-antigen complexes.  
 
Here, we screened the largest available set of curated non-redundant antibody-antigen structures 

for binding patterns and identified a vocabulary of structural interaction motifs (≈400 paratope and 

≈1600 epitope motifs) that govern antibody-antigen interaction. This interaction motif vocabulary 

has the following characteristics: (i) it is compact (finite and restricted) and immunity-specific. 
Indeed, we found that the motif vocabulary – although tens of orders of magnitude less diverse 
than antibody receptors and antigen sequences – covers already 50% of all possible paratope 
and 15% of all possible epitope motifs. We excluded the possibility that the motif vocabulary 
discovered is a trivial subset of the protein-protein binding space. (ii) The paratope motif 
vocabulary shows specific and mutually exclusive (unambiguous) epitope reactivity. Specifically, 
a small number of paratope motifs were found to bind to as many as 50% of all observed epitope 
motifs. These polyreactive paratopes bound to distinct epitope spaces. (iii) The motif vocabulary 
is seemingly universal. Interaction motifs were shared across entirely unrelated antibody-antigen 
complexes (different antibody germline genes, different antigen classes). The existence of a 
vocabulary of antibody-antigen binding that nearly unambiguously links paratope to epitope 
implies that antibody-antigen binding is a priori predictable. To quantify the learnability of 
antibody-antigen binding, we leveraged statistical modeling (shallow learning) and deep learning. 
We showed that paratope-epitope interaction pairing can be learned with multi-class prediction 
accuracies ranging from 58–75% (baseline accuracy of randomly permuted data: 19–47%) at the 
motif level. Superimposing structural interaction motifs onto sequence-based prediction of 
paratope-epitope interaction improved predictability by up to 7 percentage points (with respect to 
sequence-only) suggesting that motifs, with respect to the primary sequence, occupy an 
orthogonal function in the mechanism of antibody-antigen binding.  

Methods 

A dataset of non-redundant and diverse 3D antibody-antigen complexes 
A dataset of antibody-antigen complexes in the format of Protein Data Bank (PDB) (Fig. 1A) was 
obtained from the Antibody Database (AbDb) (49, 50). AbDb routinely crawls PDB to find existing 
antibody-antigen structures and preprocesses them by (i) identifying the antibody (VH-VL, 
variable [V] heavy [H] and light [L] chain domains) and the corresponding ligand, (ii) annotating 
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the antibody variable region (Fv) by consulting the Summary of Antibody Crystal Structure (SACS) 
database (51) and (iii) applying a standardized numbering scheme for the antibody sequences. 
To obtain non-redundant structures, AbDb performs pairwise comparisons across the structures 
(both heavy and light chains). Structures comprising different amino acid residues in the same 
position are considered non-redundant. As of 15 June 2019, AbDb stored 866 complexes. From 
this initial dataset, we removed atoms labeled with PDB record type HETATM (non-protein atoms 
serving as co-factors) and structures with a resolution larger than  4.0Å (44). The final curated 
dataset comprises 825 antibody-antigen (protein antigen only) complexes with a median 
resolution of 2.5Å (Fig. 1A). To gain statistical power, we analyzed mouse and human antibody 
complexes as one entity. Mouse and human antibody-antigen complexes represent 90% of the 
AbDb (Suppl Fig. 11) and we found only minor differences in paratope motif spaces used by 
mouse and humans (Suppl Fig. 4C, 14). In support, it was recently reported that neither CDR/FR 
length nor the distribution of interface residues in human and murine antibodies differs 
substantially (29, 52, 53).  
 
Annotations for 113 broadly neutralizing antibodies were obtained from the database bNAber (54). 
70 of these antibodies were represented as 24 non-redundant complexes in AbDb and were 
included herein (Suppl Fig. S5). The remaining 38 (without antigens) and 5 missing structures 
were excluded.  

Selection of antibody sequence numbering scheme 
AbDb provides datasets with three numbering schemes: Kabat (55), Chothia (56), and Martin 
(57). These numbering schemes partition the antibody heavy and light chains into framework 
(FR1, FR2, FR3, FR4) and CDR (CDR1, CDR2, and CDR3) regions. In the Kabat scheme, gaps 
found within the alignment are based on the variability of the aligned sequences. As more three-
dimensional (3D) structural information became available, Chothia and Lesk created a numbering 
scheme that takes spatial alignment into consideration. In particular, they corrected the 
positioning of the first CDR in both heavy and light chains. Abhinandan and Martin further refined 
the Chothia numbering scheme by making corrections, not only in the CDRs but also in the FRs. 
Here, we used the Martin numbering scheme to annotate the FRs and CDRs of antibodies as it 
was previously determined to be suitable for structural and antibody engineering (58). It is also 
the most recent of the presently available numbering schemes. Supplementary Table S1 
summarizes the position of FR and CDR regions and the position of insertions according to the 
Martin numbering scheme. In the Martin numbering scheme, the CDR-H3 region excludes the V-
gene germline part of the antibody gene (typically identified by the amino acid triplet CAR), as 
well as parts of the J-gene germline part (typically identified by “W”) as shown in Supplementary 
Table S2.     

Identification of interacting residues in antibody-antigen complexes 
To identify interactions between amino acid residues in antibody-antigen complexes, a distance 
cutoff was set. Distance cutoffs between 4–6Å are routinely used when examining interactions 
between proteins or protein-ligand pairs as most noncovalent atomic interactions are short-range 
(e.g., hydrogen bonds and Van der Waals interactions range from 3–4Å (43, 59)). For instance, 
a recent study on contact-based protein structure networks by Viloria and colleagues found that 
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a distance cutoff of <5Å (heavy atoms) is most sensitive to changes in residue interactions and 
variables such as force fields (60). Therefore, we defined interacting paratope-epitope residues 
by a distance cutoff of <5Å between heavy atoms. In other words, amino acid residues are 
considered to be interacting if they have heavy atoms with a distance <5Å from each other (Fig. 
1B). For completeness, we evaluated the variation of the total number of interacting residues, 
their distribution across FR and CDR regions as well as the overlap of interaction motifs (for 
explanation see below) for the three commonly used distance cutoffs <4Å, <5Å and <6Å in Suppl 
Fig. S3 and Fig. S7. We confirmed that the overall trends in per-region residue distribution,  
overlap between paratope and epitope interaction motifs (Suppl Fig. S3), and (dis)continuity 
(Suppl Fig. S7) hold across the three distance cutoffs tested indicating that our definition of 
interacting residues is appropriate and robust.    

Definition of paratope, epitope, and paratope-epitope structural interaction motifs  

(i) A paratope is defined as the set of interacting amino acid residues within a particular FR or 
CDR region of an antibody (e.g., residues colored in salmon in Fig. 1B). (ii) An epitope is defined 
as the set of antigen amino acid residues that interact with a paratope. Epitopes are annotated 
according to the FR or CDR regions of the corresponding paratopes. (iii) The length of a paratope 
or epitope is defined as the number of amino acid residues constituting the paratope or epitope 
(see paratope/epitope length in Fig. 1D). (iv) A gap is defined as the number of non-interacting 
residues separating two paratope or epitope residues (Fig. 1B, 1D, and 2A). (v) A paratope or 
epitope structural interaction motif is composed of interacting paratope and epitope amino acid 
residues as well as non-interacting ones (gap). Interacting residues are encoded with the letter X 
and non-interacting residues are encoded with an integer quantifying gap size (number of non-
interacting residues, Fig. 2A). For example, the string X1X encodes a paratope or epitope 
interaction motif of two interacting amino acid residues (X,X) separated by one non-interacting 
residue (1).  

Definition of interaction motif angle 
The angle of an interaction motif was computed by defining two vectors spanning the midpoint of 
a motif and its start and end positions (see inset in Suppl Fig. S8 for illustration), in a similar 
fashion to AngleBetweenHelices, a Pymol module for calculating the angle between helices 
(61). Larger angles would indicate that the structure of the interaction motif is more extended 
whereas small angles indicate that the interaction motif would tend to form a loop. Protein 3D 
structures were rendered and visualized in Pymol 2.1.0 (61). 

Diversity analysis of interaction motifs 
To estimate the potential (observed + unobserved) paratope or epitope sequence diversity, we 
used the Chao1 estimator (62–64), a non-parametric estimator of the lower bound of species 
richness [number of unique sequence motifs], as implemented in the R package Fossil 0.3.7 
(Chao1). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/759498doi: bioRxiv preprint 

https://doi.org/10.1101/759498
http://creativecommons.org/licenses/by-nc-nd/4.0/


  6 

 

Paratope-epitope amino acid contact map 
Paratope(P)-epitope(E) amino acid contact maps were obtained by computing the log odds ratio, 

, of the observed occurrence of each amino acid pair 
over the corresponding expected frequency as described in (31); where  is the paratope amino 
acid,  is the epitope amino acid, and  is the region (FR/CDR in antibody-antigen complexes). 
Analogously, protein-protein amino acid contact maps were computed for inter- and intradomain 
in non-immune protein-protein complexes (PPI). 

Construction of bipartite paratope-epitope and PPI reactivity networks at motif and 
sequence level  
A paratope-epitope motif interaction network (reactivity network) was constructed by connecting 
each paratope motif to its corresponding epitope motif (undirected edge). The degree distribution, 
the distribution of the number of connections (edges) to a node (degree), of the resulting 
interaction network was tested to fit a power-law distribution by calculating a goodness-of-fit value 
with bootstrapping using the poweRlaw R 0.70.2 package (65) as described by Clauset and 
colleagues (66). Here, a network whose degree distribution fits a power-law distribution (exponent 
between 2 and 3) is defined as scale-free (67). Networks and the corresponding visualizations 
were constructed using the network analysis and visualization suite Cytoscape 3.7.1 (68). 
Reactivity networks for sequence and aggregate encoding, see machine learning use cases 
(encoding) below, as well as PPI reactivity networks, were constructed as above described and 
are shown in Suppl Fig. S12 and Fig. S19, respectively.   

Analysis of sequential dependencies in interaction motifs 

To quantify the sequential dependencies in paratope and epitope interaction motifs, we 
determined for each multi-residue motif, the 2-mer decomposition of each paratope/epitope 
sequence (bidirectional sliding window) of the ensemble of paratope/epitope sequences mapping 
to the respective motif (non-interacting residues were not taken into account). For each motif, 
these sequential dependencies were visualized as Chord diagrams where the 20 amino acids 
form the segments in a track (the outermost ring) and the links indicate the frequency with which 
a 2-mer sequential dependency occurred (sequential dependency). Chord diagrams were 
constructed using Circlize 0.4.8 (69). Hierarchical clustering of the motifs’ sequential 
dependencies was performed using the R package pheatmap 1.0.12 (70), distances between 
motifs were quantified by Euclidean distance or correlation and agglomeration was carried out 
using the complete-linkage method. 

Dataset of protein-protein interaction and definition of protein-protein interaction 
motifs 
A dataset of protein-protein interactions (PPI) was sourced from 3did, a catalog of three-
dimensional structure domain-based interactions (71). The database (i) collects high-resolution 
3D-structures from PDB (version 2019_1) (50) and (ii) annotates the structures according to 
the protein domain definitions provided by Pfam (version 32.0, Table S3 summarizes the top 
10 protein domains in the latest version 3did) (72). Interactions between domains originating from 
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different chains were annotated as interdomain whereas interactions originating from the same 
chain as intradomain. Structures with Pfam domain description (i) immunoglobulin and (ii) Ig-like 
were excluded (as they overlap with structures from AbDb). As of 2 July 2019, 3did comprised a 
total of 18,599,078 contact residue pairs (100,888 protein structures), which is three orders of 
magnitude larger than the number of antibody-antigen contact residues (18,630 residue pairs, 
Fig. 1C). Protein-protein interaction motifs were constructed for each domain pair analogously to 
paratope-epitope interaction motifs (see the previous section). Motifs with gap length larger than 
seven were excluded from the analysis (to match the largest gap size found in paratopes, Fig. 1) 
as well as complexes larger than 300 residues long. The final non-immune PPI dataset comprises 
9621 interdomain and 1043 intradomain complexes for a total of 299,141 contact residues, Suppl 
Fig. S6. 

Quantification of somatic hypermutation on antibody amino acid sequences 
To quantify somatically hypermutated (SHM) amino acid residues in the dataset, we annotated 
the sequences with the corresponding species (here shown only human and mouse) and aligned 
the sequences against germline immunoglobulin V, D, and J genes sourced from IMGT.  
 
The IMGT database (73) includes 570 (578), 34 (39), and 32 (26) human (mouse) germline 
immunoglobulin V, D, and J genes, respectively. We translated the nucleotide sequences of V 
and J genes according to their ORFs (open reading frame). As D genes can be truncated during 
the recombination process, we used amino acid sequences corresponding to all three ORFs 
(excluding non-productive translations). To compute alignments, we used the following scoring 
scheme: match reward = 2, mismatch penalty = –1, gap opening penalty = –5, and gap extension 
penalty = –2. For each sequence, we selected germline V, D (if the sequence corresponds to the 
heavy chain), and J genes with the highest alignment scores. SHMs were defined as differences 
in the alignment between the antibody sequence and the selected germline genes. Exonucleolytic 
removals during V(D)J recombination lead to deterioration of the alignment quality at the end 
(start) of V (J) genes. To reduce their impact on SHM quantification, we discarded SHMs 
corresponding to three amino acid residues at the end (start) positions of V (J) genes in the 
alignment as it was shown previously that three amino acids (up to 9 nt) correspond to the average 
lengths of exonucleolytic removals in V and J genes (74). To reduce the impact of exonucleolytic 
removals in D genes, we considered only SHMs emerging between the first and the last matches 
in the alignments. Suppl Fig. S10 shows inferred SHMs localize around CDR1s and CDR2s and 
thus partially correlate with the paratopes positions centered in all three CDRs. Suppl Fig. S10 
shows only few SHMs in the CDR3s. We note that this may be a reflection of the limitation of our 
SHM quantification approach and not necessarily a biological feature of the immunoglobulin 
sequences here studied.   

Ramachandran plot analysis 
Ramachandran angles (Phi-Psi pairs) were extracted from PDB files using the package PDB in 
Biopython 1.74 (75). The package pdb-tools 2.0.0 was used to preprocess PDB files and 
extract the chains/regions of interest (76). We examined six different groups: (i) residues in the 
CDR regions of the heavy or light chains of antibody structures (CDR); (ii) residues in the 
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framework regions of heavy and light chains of antibody structures (FR); (iii) residues binding to 
the antigen (paratope), from the FR and CDR regions i.e. only the ‘X’ in the motifs (AbDb 
interacting residues); (iv) binding residues from the PPI dataset in inter- and intra-chain 
interactions (PPI interacting residues); (v) residues that belong to a motif (including gaps) in AbDb 
antibody structures, for instance X-X--X leads to 6 angles (ABDB motifs), and (vi) residues that 
belong to a motif in intra- or inter-chain interactions in the PPI dataset (PPI motifs). Finally, 
following Hollingsworth and colleagues (77), we classified the Phi-Psi pairs into groups of 
secondary structure types (also known as Ramachandran regions).  

Machine-learning based prediction of paratope-epitope pairing 
To quantify the extent to which paratope-epitope is learnable with the available dataset, we 
leveraged both deep and shallow learning approaches using several encodings of the input. 
 
Use cases (encoding): Four levels of encoding in both directions, namely paratope to epitope and 
epitope to paratope, were used. (i) Structural motif level: a paratope structural motif XXX 
interacting with an epitope motif X2X yields an input-output pair XXX–X2X. (ii) Position-augmented 
structural motif level: a paratope structural motif XXX interacting with an epitope motif X2X yields 
an input-output pair X1X2X3–X122X3, the positions index each character in the sequence 
consecutively. (iii) Sequence level: a paratope sequence NMA interacting with an epitope 
sequence RA yields an input-output pair NMA–RA. (iv) Finally, an aggregate representation which 
simultaneously takes into account amino acid information and motif by replacing the abstraction 
character ‘X’ with the corresponding residue: a paratope-epitope interaction defined by the 
paratope sequence GR and motif X1X together with the epitope sequence LLW and motif XX1X 
yields an input-output pair G-R–LL-W. The antibody-antigen (PPI) datasets comprise a total of 
5,327 (25,921) input-output pairs. Table 1 summarizes the setup for motif, sequence, and 
aggregate learning.  
 
Deep learning: We leveraged a model based on Neural Machine Translation (78)  to learn an 
epitope from (to) a paratope at motif, sequence and aggregate levels. Specifically, pairs of input-
output sequences were translated via a combination of two components: encoder and decoder 
with gated recurrent units (GRU, see Fig. 5 bottom panel and the workflow graphic below). During 
the decoding phase via an attention layer, a context vector is derived to capture relevant input-
side information necessary for the prediction of an output. Utilizing the context vector, the decoder 
part of our deep model generates each paratope or epitope motif/sequence character by 
character (generative model). For the translation task, we abstracted the gaps within a motif by 
replacing them with dashes, for example, all motifs of the form XiX (where i is any integer) were 
encoded simply as X-X. The dataset was split into 80% training and 20% test set. The numerical 
representation of the input pairs was learned by vector embedding. Pairwise parameter 
combination: (i) embedding dimension (1, 21, 22,..., 210) and (ii) number of units (hidden 
dimension) (1, 21, 22,..., 210) was used to parameterize the models. Here, the embedding 
dimension is the length of the vector representing the input whereas the number of units is the 
number of cells in the GRU otherwise known as the length of the hidden dimension. The training 
procedure was carried out for 20 epochs with Adaptive Moment Estimation (Adam) optimizer (79) 
and was replicated ten times. Each replicate comprises 121 models for a total of 1,210 models 
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(121×10, see workflow). The model from the last epoch of each replicate was used to generate 
predictions on the test dataset.  
 
Shallow learning: The shallow model takes into account the conditional probability of the output 
with respect to the input and a prior corresponding to the output with the highest marginal 
probability (the most frequent class). 
 
Evaluation: Discrepancy (error) between predictions and the true motifs (sequences) was 
determined by the normalized Levenshtein distance, 

, between the predicted motifs 
(sequences) and true motifs (sequences). Baseline prediction accuracies were calculated based 
on label-shuffled data where antibody and antigen-binding partners were randomly shuffled. To 
ensure robustness when evaluating the deep models, instead of showing the error obtained from 
the “best model” in each replicate, we showed the mean of median error across all replicates and 
pairwise parameter combinations. Ratios of training and test datasets, as well as error 
computation for the shallow model were identical to the above-described computation for deep 
models except for input motifs that were not present in the training dataset where the error was 
set to 1 (maximum error). 
 
Deep learning models were constructed in TensorFlow 1.13.1 (80) with Keras 2.2.4-tf 
(81) in Python 3.6.4 (82), while the statistical (shallow) model was constructed using pandas 
0.25.1 (83). Computations for deep models were performed on the high-performance 
computing cluster Fram (Norwegian e-infrastructure for Research and Education 
sigma2.no/fram).  
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Workflow for the machine learning prediction of paratope-
epitope and PPI at interaction motif, sequence and 
aggregate level. At the start of the workflow, a dataset 
comprising 5327 pairs of paratope-epitope motifs (or sequences 
or aggregate pairs) was split into a train (80%) and test (20%) 
datasets (PPI dataset comprises 25,921 pairs). For a deep 
model, a pair of parameter (embedding dimension and GRU 
unit) was selected from a set of 121 pairs. Each pair defines a 
model and each model was trained for 20 epochs on the training 
dataset. Once trained, the model was evaluated on the dataset 
by calculating (i) the correlation between the length of the 
predictions the true outputs (for deep model only) as well as (ii) 
normalized Levenshtein distance (see above) between the 
predictions and the true outputs. The procedure was replicated 
ten times. To accelerate the training process, parallelization was 
carried out in two stages: (i) jobs in the replication step (“repeat 
10 times”) were sent to a set of nodes via jobarray in SLURM (80) 
and (ii) the 121 models were scattered across 121 CPUs via 
mpi4py (81). Baseline prediction accuracies were calculated 
based on label-shuffled data where paratope and epitope-
binding partners were randomly shuffled (random pairing of 
paratope-epitope pairs). Shallow models follow identical train-
test split and evaluation schemes (see Methods above). 
 

 
Table 1. Summary of machine learning use cases (see also Methods text and Figure 5).  

Incorporation of amino acid 
position  

Direction*  Data type 

No Paratope to epitope Motif 
Yes Paratope to epitope Motif 
No Epitope to paratope Motif 
Yes Epitope to paratope Motif 
No Paratope to epitope Sequence 
No Epitope to paratope Sequence 
No Paratope to epitope Aggregate (sequence + motif) 
No Epitope to paratope Aggregate (sequence + motif) 
* Use cases for PPI are organized in a similar fashion.  
 

Graphics 
All non-network graphics were generated using the statistical programming environment R 3.5.2 
(84) with the grammar of graphics R package ggplot2 3.1.0 (85), the R package 
VennDiagram 6.20 (86), and the ggplot2 theme themeakbar 0.1.2 (87). Figures were 
organized and schematics were designed using Adobe Illustrator CC 2019.  
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Dataset and code availability and results reproducibility 
(Preprocessed) datasets, code, and results figures are available at: 
https://github.com/GreiffLab/manuscript_ab_epitope_interaction. 
  

Results 

A diverse structural dataset for antibody-antigen binding 
To gain a representative picture of antibody-antigen 3D interaction, we retrieved a dataset of all 
known 825 non-redundant antibody-antigen complexes (protein antigen only) archived in the 
Antibody Database (AbDb) (49, 50) (Fig. 1A). Antibody sequences, originating from this dataset, 
mapped to a diverse set of 64 (mouse) and 104 (human) V genes (Suppl Fig. S1A) and antigen 
sequences belonged to a diverse set of antigen classes from both humans and mice (Suppl Fig. 
11). Both antibody (Ab) and antigen (Ag) sequences showed a high median sequence distance 
(>4) among either antibody framework (FR) and complementarity determining regions (CDR) 
(Suppl Fig. S1B) or antigen classes (Suppl Fig. S1C, median = 199). Thus, the dataset is diverse 
and not overly biased to one type of antibody or antigen class or to sequences of high similarity. 

The majority of paratope interacting residues are located in the antibody 
complementarity determining regions 

We identified the set of interacting residues at the interface of antibody-antigen structures by using 
a heavy-atom distance cutoff of <5Å (88) (see Methods and see Suppl Fig. S3 and Fig. S7 for an 
examination of the robustness of the distance cutoff). Antibody-antigen amino acid pairs within 
this distance were designated as interacting residues (Fig. 1A–B). Together, the sets of antibody 
and antigen interacting residues form paratope-epitope pairs. In accord with previous reports (20, 
89), paratope residues mapped overwhelmingly to the complementarity-determining regions 
(CDR) 1–3 (VH,CDR1–3: 89.5% and VL,CDR1–3: 89.2%) and, consequently, were only rarely found in 
the framework regions (FR) 1–4 (VH,FR1–4: 10.5% and VL,FR1–4: 10.8 %) (Fig. 1C). While the 
percentage of interacting residues found in the CDR3 was consistent between heavy and light 
chains, only half as many interacting residues mapped to CDR-H1 (14.8%) as compared to CDR-
L1 (32.5%), whereas the reverse was true for CDR-H2 (36.1%) and CDR-L2 (13.9%). We verified 
that the number of interacting residues per FR/CDR is not a function of the underlying FR/CDR 
length (Suppl Fig. S9F). Since we used the Martin numbering scheme for CDR and FR annotation 
(see Methods), which mostly excludes germline gene residues from the CDR3, the above 
numbers demonstrate that germline-gene residues surrounding the CDR3 (FR3, FR4) contribute 
relatively little to antibody-interaction and that CDR3 paratope-epitope interaction is essentially 
non-germline gene residue driven (57, 58).  Finally, we found that the position of paratope 
interacting residues correlates significantly (p<0.05) with the sites of (inferred) somatic 
hypermutation hotspots (SHM), Spearman (Pearson) correlation: 0.31–0.52 (0.44–0.58), Suppl 
Fig. S10) suggesting that interacting residues investigated herein have been subjected to antigen-
driven selection. 
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Figure 1 | Characterization of interacting residues at the paratope-epitope interface.  (A) We characterized 
antibody-antigen interaction using publicly available 3D structures deposited in the Antibody Database (AbDb) (see 
Methods), a total of 825 antibody-antigen complexes (dark/light blue: antibody VH/VL, grey: antigen). Antigens are 

distributed across a wide range of antigen classes (Suppl Fig. 11) and antibodies are ≈90% of human and mouse origin 

(Suppl Fig. 11). (B) Interacting residues were defined as the set of residues at the antibody-antigen interface within a 

radius of <5Å from each other. Here we considered only the distance between heavy atoms (non-hydrogen atoms) of 
residues at the interface. These residues are termed paratope in antibody and epitope in antigen. More specifically, a 
paratope was defined as the set of interacting amino acid residues within a particular FR or CDR region of an antibody. 
An epitope is defined as the set of antigen amino acid residues that interact with a paratope. Epitopes are annotated 
according to the FR or CDR regions of the corresponding paratopes. Gaps are defined as the non-interacting residues 
that lie in between interacting residues. (C) The interacting residues mapped predominantly to the CDRs and less so 
to the framework regions (sequence annotation follows the Martin numbering scheme, see Methods). (D) The number 
of interacting residues ranged between 2–5 (CDR, median) and 1–2 (FR, median) in paratopes and 1–3.5 (CDR, 
median) and 1 (FR, median) in epitopes. Gap lengths (number of non-interacting residues) ranged between 1–2 (CDR, 
median) and 1–20 (FR, median) in paratopes and 3–10 (CDR, median) and 2–89.5 (FR, median) in epitopes.  
_____________________________________________________________________________________________ 
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Paratopes are enriched in aromatic and polar residues whereas epitopes are 
enriched in charged residues 

The residues tyrosine (VH: 18.2% and VL: 20.0%), and serine (VH: 11.2% and VL: 15.7%) were the 
two most frequent interacting residues found in paratopes. For epitopes, lysine (VH: 8.9% and VL: 
9.6%), and arginine (VH: 8.7% and VL: 11.2%) were found to be the most abundant residues at 
the paratope-epitope interface (Suppl Fig. S2A–B). The enrichment of aromatic residues (namely 
tyrosine) in paratope sequences and the abundance of polar and charged residues in epitopes 
(e.g., lysine and arginine) are in accord with published literature (23, 27) validating further the 
robustness of our definition of interacting residues. While overall, the amino acid usage was more 
uniform in epitopes, both in paratope and epitope methionine and cysteine were heavily selected 
against. In gap (non-interacting) residues of paratope and epitope, cysteine was, however, more 
common (Suppl Fig. S2).   
 
In terms of amino acid usage, the correlation between heavy and light chain paratope sites was 
very high (>0.82) as was the Pearson/Spearman correlation between the epitopes that were 
contacted by heavy and light chains (rSpearman/Pearson: >0.87, Suppl Fig. S6E). Paratope versus 
epitope residue usage correlation was far lower (rSpearman/Pearson:0.13–0.49). We also investigated 
the correlation between paratope and epitope residue usage with that of non-immune protein-
protein interaction (PPI) residues and found that PPI and paratope were not correlated 
(rSpearman/Pearson: 0.06–0.29) whereas PPI and epitope were moderately correlated (rSpearman/Pearson: 
0.57–0.71, Suppl Fig. 6D,E).  
 
Finally, we investigated to what extent amino acid contact pairs of paratope and epitopes differed 
across CDR/FR regions and to what extent these amino-acid binding preferences overlap with 
those of non-immune protein-protein interaction (Suppl Fig. S15). We found substantial cross-
type (type: charged, polar, aromatic, hydrophobic/nonpolar) interactions both at a local (CDR/FR 
region wise) and a global level (composite; Suppl Fig. S15A), while in contrast, PPI amino acid 
interaction preferences were much clearer where amino acids predominantly interact within-type 
rather than across types. 

Structural interaction motifs enable a unified comparison of paratope-epitope 
interfaces of unrelated antibody-antigen complexes  
The fundamental units of antibody-antigen interaction are the sequence regions on the antibody 
and the antigen comprising the interacting and non-interaction residues at the binding interface 
termed paratope and epitope respectively. Consequently, paratopes and epitopes may manifest 
in two ways: (i) as a continuous stretch of interacting residues or (ii) discontinuously, separated 
by one or more non-interacting residues (gaps) due to protein folding (8, 89) (Fig. 1B).  
 
The distributions of the number of interacting residues (termed paratope lengths) and the number 
of non-interacting residues (gap lengths) were analyzed within each region (FR or CDR) in (Fig. 
1D). Paratope lengths ranged between 1 and 15 (median: 1–5) in the CDRs and 1–12 (median: 
1–2) residues in the FR regions whereas the length of gaps ranged between 1 and 7 (median: 1–
2) residues in CDRs and 1–28 (median: 1–20) residues in the FR regions (Fig. 1D). Epitopes can 
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span up to 12 residues long with gaps up to 435 residues long (Fig. 1D). Therefore, the paratope-
epitope interface can not be described exclusively by continuous stretches of amino acids. 
 
As of now, it remains challenging to compare paratope-epitope interfaces across unrelated 
antibody-antigen complexes. To resolve this challenge, we devised a structural interaction motif 
notation that accounts simultaneously for gaps and residues in both paratopes and epitopes, to 
describe a structural pattern of binding. A paratope or epitope structural interaction motif is 
composed of interacting paratope and epitope amino acid residues as well as non-interacting 
ones (gap). Specifically, we encoded any interacting residue as capital X and any gaps as 
integers. Here, the integer quantifies the number of non-interacting amino acid residues (Fig. 2A). 
The combination of amino acid and gap encodings is termed structural interaction motif 
(henceforth interaction motif or simply, motif). Therefore, motifs describe the spatial conformation 
of the binding and can be used in addition to residue information to characterize antibody-antigen 
binding. For instance, the paratope DGS (three consecutive interacting residues) is denoted as 
an  interaction motif and the epitope VRAG  (two interacting residues, V and G, separated 
by two non-interacting residues, R and A) is denoted as an  motif. Both motifs (  and 
) have the same length: three. Our motif notation for antibody-antigen interaction places the 
paratope-epitope interface into a unified coordinate system that preserves the link between 
paratope and epitope and enables computational traceability of both continuous and 
discontinuous (structural) antibody-antigen interaction across antibody-antigen complexes. We 
will show that structural interaction motifs, although only defined on structural bases, inherently 
contain biological information on the underlying paratope and epitope amino acid usage, diversity 
and sequential dependency (see next Section and Figures 2E–G, Suppl Figs. 13, 14 ). 

 
Figure 2 | Structural interaction motifs represent a compact vocabulary for the composition of the paratope-
epitope interface. (A) We devised a structural interaction motif notation that accounts simultaneously for gaps and 
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residues in both paratopes and epitopes. A paratope or epitope structural interaction sequence motif is composed of 
interacting paratope and epitope amino acid residues as well as non-interacting ones (gap). Interacting residues are 
encoded with the letter X and non-interacting residues are encoded with an integer quantifying a gap size. For example, 
the string X1X encodes a paratope or epitope motif of two interacting amino acid residues (X,X) separated by one non-
interacting residue (1). (B) Length distribution of motifs by paratope, epitope, and FR/CDR region. (C) Absolute and 
relative overlap of paratope and epitope motifs (Venn diagram). (D) Estimation of the potential (observed + unobserved) 
motif diversity using the Chao1 estimator (see Methods). (E) For each of the four most highly shared (across structures) 
interaction motifs (Suppl Fig. 4), the sequential dependency signature was determined. Briefly, for the ensemble of 
paratope/epitope sequences mapping to a given interaction motif, the 2-mer decomposition of each paratope/epitope 
sequence was determined by a bidirectional sliding window (2-mer frequency distribution). For each motif, these 
sequential dependencies were visualized as Chord diagrams where the 20 amino acids form the segments in a track 
(outermost ring) and the links are the frequency with which a 2-mer occurred (sequential dependency). (F) Hierarchical 
clustering of sequential dependencies (2-mers) that were shared between all four paratope or epitope motifs. (G) Venn 
diagrams: Overlap of sequential dependencies (two-mers) shared across paratope or epitope motifs. Density plots: We 
tested whether the 2-mer distribution (sequential dependencies) observed in (F) for each of the 4 motifs could be due 
to random effects. To this end, we sampled 100 times 2-mers from the number of 2-mers possible (G) according to the 
number of sequences mapping to each motif (E) and calculated the correlation either among all randomly drawn 2-mer 
distributions (grey: epitope, light blue: paratope) or between observed and randomly drawn one (black: epitope, dark 
blue: paratope). The significance in the difference between the distributions was tested using the Kolmogorov-Smirnov 
test.  
____________________________________________________________________________________________ 
 
Paratope and epitope motif lengths varied across FR and CDR regions but remained below a 
length of 10 (median length: 1–7, Fig. 2B). Motifs were generally shorter in FRs (median length: 
1–2) compared to CDRs (median length: 3–7). Interestingly, motifs of CDR-H2 (median length: 7) 
were longer than those in the CDR-H3 (median length: 6). Paratope and epitope motif lengths 
showed consistently positive correlation in CDRs (rPearson,CDR-H1–3 (L1–3)  = 0.73–0.77 (0.5–0.84), 
rSpearman, CDR-H1–3 (L1–3) = 0.7–0.74 (0.48–86), Suppl Fig. 9E). Furthermore, motifs were substantially 
shared across CDR and FR in both paratope and epitope (although in epitopes to a lesser extent 
than in paratopes) and were thus not exclusive to a specific CDR or FR (Suppl Fig. S4A, B lower 
triangle). On average, three to four motifs were found per antibody heavy or light chain (Suppl 
Fig. S9A).  
 
With our motif vocabulary, we can now query key parameters of antibody-antigen recognition: (i) 
motif sequence diversity, (ii) structural diversity (motif angle and (dis)continuity), (iii) co-
occurrence across complexes and (iv) predictability and learnability of paratope-epitope 
interaction. We note that we found no difference between interaction motifs found in HIV broadly 
neutralizing antibodies (bNAb), widely regarded as hallmarks of unusual antibody-binding 
behavior, and non-bNAb (Suppl Fig. S5A). Furthermore, the combined set of paratope and 
epitope motifs were generally distinct from those found in non-immune protein-protein interaction 
(PPI). Specifically, (1) PPI motifs were generally a few characters larger than paratope and 
epitope motifs (median length 1–7 in paratopes (CDR1–3,L/H) vs 7 in PPI (inter- and intradomain), 
Fig. 2B, Suppl Fig. S6B), and (2) while 57% of paratope motifs were found in PPI motifs, only 
12% of epitope motifs were shared with PPI motifs (Suppl Fig. S6A). 
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The diversity of paratope and epitope interaction motifs is restricted (compact)  
We asked to what extent interaction motifs of paratopes and epitopes overlap. Out of 1594 and 
398 unique paratope and epitope motifs, only 80 motifs overlapped (Fig. 2C). Only 5% of the 
shared motifs were continuous and 95% were discontinuous (Fig. 2C). 
 
Next, we asked how much of the potential (observed + unobserved) paratope and epitope motif 
diversity is covered by our dataset of 825 antibody-antigen structures? To answer this question, 
we estimated the potential motif diversity using the Chao1 estimator (Chao, 1984) – a method 
often used in ecology for estimating population sizes (Fig. 2D, see Methods for details). For 
paratopes, the set of unique motifs in our dataset covered about 50% (398) of the potential 
diversity of all paratopes (estimated total: 737), whereas the set of unique epitope motifs in our 

dataset covered 15% (1,594) of the total epitope diversity (10,507, Fig. 2D). The estimated 

potential size of the paratope motif space is one order of magnitude smaller than the theoretical 

size (≈105, see Suppl Text for analytical derivation). Of interest, the size of the potential epitope 

motif space is similar to that of the PPI motif space (SupplFig. S6H).  
 
To summarize, the estimated potential motif space is smaller (<104) than the total number of 
antibody sequences (>1014, (5, 90)) by at least 10 orders of magnitude. Our dataset captures a 
substantial portion of the total motif space indicating the restriction of the paratope-epitope 
interaction motif space. 

Interaction motifs have a unique sequential amino acid signature indicating 
immunological function 
Since structural interaction motifs retain association with their underlying sequence, we were able 
to ask whether structural interaction motifs group paratope and epitope sequences with common 
sequence signatures. If so, it would indicate that structural interaction motifs bear distinct 
immunological and biochemical function. To investigate the sequence dependencies within 
selected multi-residue (length>1) paratope and epitope interaction motifs, we determined the 2-
mer decomposition of the sequences mapping to the four most abundant paratope/epitope  
sequences (see Methods). We visualized thus computed sequential motif dependencies (for 4 
interaction motifs, top shared 3 from both paratope [XXX, XX, X1X] and epitope [XXX, XX, 
X2X]) as Chord diagrams where the 20 amino acids form the segments in a track (the outermost 
ring) and the links indicate the frequency with which a 2-mer sequential dependency occurred 
(Fig. 2E).  
 
Visually, paratope and epitope motif sequential signatures differed from one another (Fig. 2E). To 
quantify this difference, we showed that sequential dependencies were largely non-overlapping 
(Fig. 2G) and if overlapping, were numerically different (Fig. 2F). Numerical differences were 
statistically confirmed for all four tested paratope motifs and three of the four epitope motifs (see 
caption of Fig. 2G for details). 
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Finally, we compared the paratope and epitope sequence signatures to those of non-immune 
protein-protein interaction (PPI) and found that immune and non-immune interaction motifs each 
have distinct sequence dependencies for the same motifs (Suppl. Fig. S13).  
 
In summary, our data suggest that each motif, in paratopes as well as epitopes, has a unique 
sequential amino acid signature, which indicates that structural interaction motifs cluster together 
sequences in a non-random fashion that bears immunological function. Supporting this claim is 
that sequence dependencies discovered in paratope-epitope interaction cannot be derived from 
non-immune protein-protein interaction. 

The structure of paratope and epitope motifs differs across CDR and FR regions  
Next, we asked whether interaction motifs differ structurally. To address this question, we 
measured the “angle” of each motif. The angle of an interaction motif was computed by defining 
two vectors spanning the midpoint of a motif and its start and end positions. Larger angles would 
indicate that the structure of the motif is more extended whereas small angles indicate that the 
motif would manifest as a loop (see more details in the Methods section). In general, median 
epitope motif angles were only maximally as high as paratope motif angles. We found that median 
motif angles in heavy and light chain of CDR3 did not substantially differ between paratopes (VH 

57º and VL 58º) and epitopes (VH 61º and VL 62º), however, the difference is statistically significant 
indicating that epitopes assume a more extended conformation (Suppl Fig. S8A). This observation 
agrees with previous studies that found epitopes prefer to localize on the planar parts of the 
antigen (91) manifesting as flat oblong elliptical shapes (32), at least for the CDR3 region. 
Differences of CDR motif angles among regions were more apparent for example for paratope 
(median): CDR-H1: 130º, CDR-H2: 42.5º, CDR-H3: 57º, reflecting the structural diversity of 
antibody-antigen interaction. Specifically, CDR-H2 and CDR-H3 were “loopier” whereas CDR-H1 
tended to be linear. In contrast to CDRs, median FR paratope angles were mostly larger than 
epitope angles. However, since the data points were much sparser for FR compared to CDR, 
these observations should be viewed with caution. Paratope and epitope angles correlated 
moderately positively in the majority of the regions (max rPearson,CDR-H1–3  = 0.57, max rSpearman, CDR-

H1–3 = 0.55, Suppl Fig. 8B).  
 
To further substantiate our structural analysis of the motifs, we investigated the distribution of 
backbone dihedral angles (using so-called “Ramachandran plots”, Suppl Fig. S21). Specifically, 
we compared Ramachandran plot statistics between paratope and epitope motifs, PPI motifs, 
CDR and FR regions and antibody and PPI interacting residues. In addition to verifying that FR 
and CDR use different angles (Suppl Fig. 8), we found that PPI mostly manifests as alpha-helix 
and antibodies mostly manifest as beta-strand/sheet, PII spiral, and delta turn, thus underlining 
the uniqueness of immune protein interaction.  
 
Taken together, we showed paratope and epitope motifs vary across FR and CDR regions and 
are structurally distinct from PPI motifs and, thus, to a large extent unique to immune recognition.  
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Paratope motifs are shared across antibody-antigen complexes 
Since our structural motif encoding of the paratope and epitope interface discriminates between 
continuous and discontinuous motifs, we asked to what extent paratopes or epitopes are 
continuous or discontinuous. To this end, we quantified both the number of continuous and 
discontinuous motifs for each FR/DDR region (Fig. 3A) and the number of complexes that share 
identical motifs (Fig. 3B). We found that: (i) CDR-H3 is an obligate region for antibody-antigen 
interaction because the CDR-H3 is the only region that had interacting residues in each antibody-
antigen complex investigated whereas all other CDR/FR regions were at least partially 
dispensable for antigen interaction, (ii) paratope motifs are predominantly continuous (except in 
CDR-H2, CDR-L1, and CDR-L3) and (iii) continuous paratope motifs, more so than discontinuous, 
are shared across antibody-antigen complexes; epitope motifs exhibited substantially less sharing 
and were more discontinuous. Specifically, we found only ten paratope motifs (X, XXX, XX, 
X1X, XXXX1X, XXXX, XXXXX, X2X, XXXXXX, XXX1X, Suppl Fig. S4H) and five epitope 
motifs (X, XX, X1X, X2X, X3X, Suppl Fig. S4I) were present in at least 10% (or 82 in absolute 
numbers) or more complexes. Six out of the ten top-shared paratope motifs were continuous, all 
of which are no more than seven residues long (including gaps) indicating that short motifs 
mediate a substantial proportion of antibody-antigen interactions. Indeed, the 20 top shared 
paratope motifs made up 78% out of all encountered motifs and the 20 top shared epitope motifs 
made up 58.5% (Suppl Fig. 4D). Importantly, shared paratope interaction motifs were not specific 
to a given class of antigens (Suppl Fig. S4F), nor to a specific germline gene (Suppl Fig. S4G) 
and 13 of the most shared interaction motifs were also found in HIV-bNAb (Suppl Fig. S5B) 
underlining the generality and diversity restriction of the interaction motifs here investigated.  
 
More generally, 8% of all paratope motifs were shared across at least twenty complexes where 
that was only the case for 1% of the epitopes (Fig. 3C). Epitopes were thus similar in sharing 
behavior to PPI motifs were only 3% were shared across twenty or more complexes (Suppl Fig. 
S18C). 
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Figure 3 | Paratope interaction motifs show a higher extent of continuity and sharing across antibody-antigen 
complexes than epitope interaction motifs. (A) Ratio of continuous (absence of non-interacting residues) and 

discontinuous (presence of at least one non-interacting residue/gap) paratope and epitope interaction motifs across 

antibody-antigen complexes. For example, for paratope CDR-H3, the pie chart signifies that in ≈50% of the complexes, 

CDR-H3 motifs are continuous and in 50% discontinuous. Gaps in pie charts indicate that for a given region not all 

structures showed interacting residues. (B) Absolute number of antibody-antigen structures a given interaction motif is 
found in (by CDR/FR). (C) Absolute and relative number of motifs found across at least 2–20 antibody-antigen 
complexes (x-axis).  
_____________________________________________________________________________________________ 
 

A selected number of paratope motifs shows broad polyreactivity towards mutually 
exclusive epitope motif spaces demonstrating a priori predictability of antibody-
antigen binding 
We next asked whether paratope and epitope motifs have preferred motif partners which would 
indicate a priori predictability of paratope-epitope binding or whether their interaction is mostly 
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random. To answer this question, we constructed a paratope-epitope-motif network (a bipartite 
graph) by connecting each epitope motif to its cognate paratope motif (Fig. 4A, given that paratope 
and epitope motifs may occur more than once across antibody-antigen structures, paratope and 
epitope motifs may have multiple network connection). We term such a network a reactivity 
network. In this network, we found that the top 7 connected motifs were paratope motifs (mostly 
continuous or with one gap) that made up 17% of all connections in the network (Fig. 4A,C). 
Together, these top 7 paratope motifs made 829 connections to predominantly different epitopes 

(Fig. 4E, inset) thereby collectively binding to ≈50% of all unique epitope motifs (Fig. 2D). Thus, 

while these paratope motifs showed broad polyreactivity, they bound to largely entirely different 
epitope motif groups. This finding is in line with the fact that each motif occupies a different 
sequential dependency space (Fig. 2E–G). Apart from highly connected paratope (and very few 
epitope) motifs, paratope and epitope motifs were lowly connected and thus specific with respect 
to their interaction partners. Indeed, we found that the degree distribution of the reactivity graph 

was power law-distributed and scale-free (p-value = 0.6 (≥0.1), alpha = 2) (66). To examine 

whether the connectivity patterns observed were simply due to the fact that there are more epitope 
than paratope motifs, we generated control reactivity networks by randomly sampling 100 times 
1000 paratope and epitope motifs and analyzed the networks’ degree distributions (Fig. 4B). In 
contrast to the observed reactivity network (Fig. 4A), the reactivity network obtained from random 
sampling showed (i) a more even distribution of connectivity for both paratopes and epitopes that 
was not power law (p-value<0.1) and with lower maximal node degrees and (ii) an increased 
overlap in bound partner motifs and thus significantly lower specificity (Fig. 4B,D,E). We also 
excluded the possibility that the observed reactivity network originated from the underlying 
frequency distribution of motifs (Suppl Fig. S4) as motifs that occur most often are not those that 
are mostly connected (Suppl Fig. S19A). 
 
Furthermore, we asked whether the reactivity network observed for antibody-antigen interaction 
was immunity-specific. Therefore, we drew the PPI motif reactivity network for all available non-
immune protein structures (that were of similar size to antibody-antigen structures) (>25,000 motif 
pairs corresponding to >10,000 3D structures, see Methods). We found that PPI reactivity network 
degrees are exponentially distributed with a lower slope (both on the entire network and a network 
subsampled to the size of that of the antibody-antigen dataset), meaning less motif hubs dominate 
interactions (Suppl Fig. 12). Thus, similarly to earlier observations in motif sequential 
dependencies and the amino acid usage, paratope-epitope reactivity characterizes specific 
properties and cannot be derived from generic protein-protein interactions.   
 
To summarize, the top-connected motifs in the reactivity network show polyreactivity towards 
epitope spaces that are non-overlapping (polyreactive specificity). Most motifs, however, are 
oligoreactive (low number of partner interaction motifs) and thus highly specific (oligoreactive 
specificity). The combined high specificity and distinctiveness of paratope-epitope interaction 
indicates that paratope-epitope binding is a priori predictable. The observed reactivity network is 
fundamentally different from networks constructed from randomly sampling the observed 
paratope and epitope degree (connectivity) distributions and networks derived from generic 
protein-protein interaction.   
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Figure 4 | The majority of paratope and epitope motifs are oligoreactive while a small number of paratope 
motifs show broad polyreactivity towards distinct epitope motif spaces. The reactivity network of paratope-
epitope interaction motifs indicates a priori predictability of antibody-antigen binding. (A) A bipartite reactivity 
network capturing paratope-epitope motif interaction was constructed by connecting each paratope motif to its 
corresponding epitope motif (undirected edge) – given that paratope and epitope motifs may occur more than once 
across antibody-antigen structures, paratope and epitope motifs may have multiple network connections. Network 
vertices were scaled by their number of connections (degree). Only the largest connected portion of the network was 
visualized (for full network, see Suppl Fig. 16). The network degree (a node’s degree is the count of its connections 
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from other nodes) distribution was tested to fit a power-law distribution by calculating a goodness-of-fit value with 
bootstrapping using the R package poweRlaw (65) as described by Clauset and colleagues (66). Here, a network 
whose degree distribution fits a power-law distribution with an alpha [exponent] between 2 and 3 is defined as scale-
free (67). A p-value higher than 0.1 means that a power law cannot be ruled out. Inset shows a zoomed-in section of a 
paratope motif (blue) connecting to a diverse set of epitope motifs colored in grey (polyreactivity). (B) To confirm that 
the reactivity network architecture observed in (A) was unlikely to be observed by chance, we randomly sampled 100 
times 1000 motifs from paratope and epitope motif distributions (Suppl Fig. 4D,E). Inset: The Spearman correlation of 
node degree correlation of observed and randomly sampled networks is shown. For both networks, the respective node 
degree distribution is shown (for B, the standard error of the mean is also shown).  The power-law fit was done as 
described in (A). (C, D) Cumulative degree distributions of networks (A) and (B). (E) Distribution of interaction partner 
overlap for networks (A,B). Briefly, for example for all paratopes in (A), the pairwise overlap of bound epitope motifs 
was calculated. The statistical significance of the difference between overlap distributions from (A) and (B) was 
computed using the Kolmogorov-Smirnov (KS) test. Inset: the correlation of node degree and interaction partner overlap 
was determined. 
_____________________________________________________________________________________________ 

Quantification of machine-learnability of paratope-epitope interactions 
The paratope-epitope reactivity map indicates a priori predictability of antibody-antigen binding. 
To quantify the accuracy (learnability) with which one can predict (translate) one paratope 
interaction motif (or sequence) into the cognate epitope interaction motif (or sequence) and vice 
versa, we leveraged both shallow and deep learning. Specifically, in the shallow model, we used 
the probabilities of output motifs (or sequences) and a prior we derive from marginal output 
probability in order to predict the output motif. The deep model leveraged deep learning-based 
Neural Machine Translation trained on pairs of paratope-epitope interaction motif/sequence (Fig. 
5, bottom panel). Unlike the shallow model wherein the probability of a (whole) motif/sequence 
was inferred given its partner, the decoder part of our deep model generates each motif/sequence 
character by character (generative model). We rationalized the use of Neural Machine 
Translation, a deep-learning sequence to sequence model, due to the fact that the prediction of 
one motif (or sequence) from another is inherently a sequence to sequence translation problem 
and due to the fact that we observed sequential amino acid signatures in our dataset. We 
evaluated model performance by comparing (i) the magnitude (length) and (ii) edit distance (error) 
of the predictions and the true motifs or sequences (see Methods).  
 
We separated different prediction tasks (use cases) by encoding: motif, motif and position, 
sequence (residues), and overlay of sequence and motif (aggregate). A total of eight use cases 
were trained depending on the input information (epitope prediction from paratope and vice versa 
on the motif, sequence and aggregate level, see Table 1 and Fig. 5  and Methods Section for 
further details). For each use case, the baseline prediction accuracy was calculated based on 
label-shuffled data where we trained models on randomly permuted paratope-epitope pairs with 
identical parameter combinations to the original translation machine learning tasks (Suppl Fig. 17, 
Fig. 5). The accuracy of each method and use case was evaluated by the average Levenshtein 
distance between the model output and the expected output. Nota bene, this approach for 
quantifying the prediction accuracy is similar to a multi-class prediction scenario and thus more 
challenging that the wide-spread binary binder versus non-binder classification. As a more 
coarse-grained measure for learnability, we also verified whether the output motif length was 
consistent with the expected output (applicable only to deep learning) (Suppl Fig. 17). 
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As the deep models scale with the complexity of the parameters (hidden dimension and 
embedding dimension), we observed an increasingly positive correlation between the predicted 
lengths and the lengths of the true motifs (sequences) (Suppl Fig. 17A–B, rpearson 0.8–0.9). In 
contrast, models trained on randomized paratope-epitope pairs failed to recover the correct length 
indicating that the length for the motif or sequence is predictable. Although the length was 
learnable to a similar extent in both interaction motif and sequence task (Suppl Fig. 17), the 
sequence content (indicated by edit distance/error) is not equally predictable (Fig. 5, top panel).  
 
Specifically, for both shallow and deep learning models, the medians of prediction error of 
interaction motif use cases 0.25–0.42 (accuracy 58–75%) were substantially lower than those of 
sequence 0.78–0.87 (accuracy 13–22%) use cases. The medians of prediction error for the 
control baseline use cases ranged from 0.53–0.81 (accuracy 19–47%) and 0.83–0.95 (accuracy 
5–17%) for interaction motif and sequence use cases respectively. Together, these results 
indicate that the paired paratope-epitope interaction motif space reaches reasonable accuracy 
whereas the sequence space remained challenging to predict. We observed similar trends – 
prediction accuracy at interaction motif level is higher than at sequence and levels – when 
examining protein-protein interaction data (Suppl Fig. S20). 
 
 
Given structural interaction motifs represent one of the layers of antibody-antigen binding, we 
asked whether integrating motif and sequence information improves sequence-based prediction. 
Indeed, when combining structural motifs and sequences to an “aggregate”, the prediction 
accuracy of the deep model, but not shallow models, improved by 2–7 percentage points as 
compared to the sequence-only use case (Fig. 5). Thus, adding structural information improves 
the sequence-based prediction accuracy of antibody-antigen binding as it removes interaction 
ambiguity from the paratope-epitope reactivity space (Suppl Fig. S19B, C). 
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Figure 5 | Quantification of machine-learnability of paratope-epitope interactions at motif and sequence level. 
(Bottom) Schematic of the paratope-to-epitope and epitope-to-paratope prediction task (use cases). To quantify the 
learnability of antibody-antigen interactions at motif and sequence levels, four distinct use cases were used: (1) 
interaction motif, (2) interaction motif with positional index, (3) sequence, and finally (4) motif and sequence aggregate 
(all use cases are explained with examples in the Methods section). We leveraged both deep and shallow machine 
learning approaches. Briefly, the shallow model takes into account the conditional probability of the output with respect 
to the input, but also the prior corresponding to the output with the highest marginal probability. In deep learning, pairs 
of input-output sequences were translated via a combination of two components: encoder and decoder with gated 
recurrent units. Unlike the shallow model wherein the probability of a (whole) motif/sequence was inferred given its 
partner, the decoder part of our deep model generates each motif/sequence character by character (generative model). 
The hyperparameters hidden dimension (1, 21, 22,..., 210) and embedding units (1, 21, 22 ,..., 210) were optimized during 
the 20 epochs-long training. A total of 121 models were trained for each use case with 10 replicates (see Methods for 
details). (Top) The median prediction error was obtained by calculating the median Levenshtein distance between the 
output and the predicted output for each use case across all parameters. The distance ranges from 0 (perfectly 
matching output-predicted-output, high prediction accuracy) to 1 (fully dissonant output-predicted-output pairs, low 
prediction accuracy). Here shown is the mean of the medians from the replicates of each use case. Use cases cover 
the bidirectional prediction tasks (paratope to epitope as well as epitope to paratope) of motif to motif, motif with position 
to motif with position, and finally amino acid sequence to amino acid sequence (see Table 1). Baseline prediction 
accuracies (control) were calculated based on label-shuffled data where antibody and antigen-binding partners were 
randomly shuffled (randomized pairs). Total unique pairs for motif, sequence, and aggregate levels are 2847, 3967, 
and 3986, respectively. Error bar: ± 2×standard error  ( ). 
_____________________________________________________________________________________________ 
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Discussion 

Summary 
We set out to determine whether antibody-antigen binding is predictable. To this end, we 
performed an unbiased search for binding fingerprints in the largest available set of curated 
antibody-antigen structures and discovered a compact vocabulary of antibody-antigen interaction 
in the form of structural interaction motifs. We characterized this vocabulary by combining a (i) 
structural interaction motif language, (ii) network theory, and (iii) shallow and deep learning, we 
found that there exist paratope and epitope interaction motifs that are shared across antibody-
antigen complexes. These motifs are predominantly simple (short and continuous), immunity-
specific and their sequence diversity is restricted. We showed that each motif has unique 
sequential dependencies indicating that our motif definition captures underlying immunological 
principles. While most paratope and epitope motifs showed high specificity, we discovered a 
subset of paratope motifs with broad polyreactivity towards distinct epitope spaces thus 
partitioning the paratope-epitope interaction space. The structure of paratope-epitope reactivity 
network indicated a priori predictability of antibody-antigen binding. We quantified paratope-
epitope interaction predictability at motif, sequence, and motif+sequence aggregate levels using 
shallow and deep learning. Importantly, combining the information of paratope motif and 
sequence improved predictability (albeit only slightly). This shows that the motif vocabulary is a 
valuable feature for the development of paratope-epitope prediction tools. To provide quantitative 
robustness to all of our findings, our study contains, to our knowledge, the most comprehensive 
statistical evaluation of antibody-antigen and non-immune protein-protein binding to date. 
Specifically, our study contains the largest volume of information on (i) the distribution of amino 
acid residues at the binding interface, (ii) the extent of binding interface (dis)continuity, (iii) 
quantification of interaction complex sequence similarity, (iv) a range of structural definitions of 
paratope and epitope interaction and (v) the relationship between somatic hypermutation sites 
and paratope-epitope contact residues. Together, our results demonstrate the existence of 
learnable sequence and structural rules in 3D-antibody-antigen interaction. Below, we discuss the 
implications of our findings for the understanding of antibody specificity and the engineering of 
epitope-specific antibodies.  

Antibody-antigen interaction operates via structural interaction motifs 

In agreement with previous literature, we confirmed that most interacting residues are localized 
in the CDRs – albeit 10% of antibody-antigen contacts were localized outside the CDRs (Fig. 1C). 
Previous reports found that up to 20% of the residues lie outside the CDR region (nota bene: 
these percentages are to a certain degree subject to numbering-scheme dependent variation) 
(26). Epitopes were discontinuous to a larger extent than paratopes (Fig. 3), which is in accord 
with previous literature (8, 32). Furthermore, we confirmed the previously observed enrichment of 
key amino acid residues in paratopes such as tyrosine and serine (Suppl Fig. S2) (92). 
Importantly, the amino acid usage differed most between paratopes and non-immune PPI, 
whereas epitope amino acid usage was as similar to that of paratopes as to that of PPI (Suppl 
Fig. S6E).  
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Building on these confirmatory results, we showed that interaction motifs were shared across 
entirely different antibody-antigen complexes. The search for fingerprints of interaction has also 
been recently reported for protein-protein interaction (93). Thus, antibody-antigen interaction as 
a whole may be regarded as modular. Indeed, we found that only the VH-CDR3 region is an 
obligate region for antibody-antigen interaction. Seemingly, all other CDR and FR regions may be 
modularly added to fine-tune antibody recognition. The immune system is inherently a policing 
system that surveys both self and non-self for possible threats. Thus, it requires highly flexible 
recognition that is difficult to escape from via mutation – simple and small sequence motifs match 
this purpose. Interestingly, in HIV broadly neutralizing antibodies (bNAb, Suppl Fig. S5), the same 
motifs as in non-bNAb were used underlining the generality of the motif vocabulary here 
discovered and characterized (94). 
 
The discovery of interaction motifs crucially depended on the FR/CDR-focused definition of 
paratope and epitope (Fig. 1, see Methods) as these are the locales of the fundamental binding 
units of antibody-antigen binding (In the future, once more antibody-antigen structures become 
available, one may attempt to search for motifs based on the entire antibody and antigen. A given 
antibody VH and VL has a median of 3–4 motifs, Suppl Fig. S9). Relatedly, Kunik and Ofran (31) 

showed the six antibody binding regions [ABR] (≈CDR-H/L1–3) differed significantly in their amino 

acid composition and that each ABR tends to bind different types of amino acids at the surface of 

proteins (14). Van Regenmortel interpreted this as follows “Because the entire accessible surface 
of a protein is a continuum of potential epitopes (16), it could be argued that it would be 
advantageous for Abs to bind any protein surface patch without requiring specialized sites of 
increased stickiness. It seems that antibodies are in fact able to achieve this because they have 
evolved a set of ABRs where each ABR binds different types of amino acids, while the combined 
preference of the entire set is for epitopes that are indistinguishable from the rest of the protein 
surface” (14). While we were able to confirm that paratope-epitope amino-acid level contact maps 
differ across CDR/FR regions (Suppl Fig. 15), we found that paratope interaction motifs were 
shared substantially across CDR/FR regions suggesting that binding spaces of CDR/FR regions 
are not as mutually exclusive as previously thought. Indeed, our reactivity network analysis 
suggested that binding spaces are partitioned at the motif level and not at the amino-acid level 
(Fig. 4, Suppl. Fig. S19). Specifically, structural interaction motifs encode geometric information 
of the local structure and are therefore linked to the angle of folding (Suppl Fig. S8). Thus, linking 
sequence to motifs and motifs to binding in a 2-step process may connect, in the future, local 
folding to global specificity. Indeed we found that merging motif and sequence information 
increased the prediction accuracy of paratope-epitope interaction (Fig. 5). 

Interaction motifs are immunity-specific and not biased to certain germline genes, 
antigen classes, or species 

The 825 antibody-antigen complexes here investigated represent naturally only a mere fraction 
of the potential antibody-antigen interaction space. Although the collection of these complexes is 
biased towards antibody-antigen structures of past and current scientific interest, we verified that 
our dataset, as well as the interaction motifs, were not overly biased towards interaction definition-
dependent or interaction-independent confounding factors. Specifically, we demonstrated that (i) 
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our structural definition [distance cutoff-based] for calling interacting residues is robust, (ii) the 
825 protein antigens belonged to 84 different antigen classes (Suppl Fig. S11), (iii) shared 
paratope interaction motifs did not cluster by antigen class but instead were shared across antigen 
classes (Suppl Fig. S4), (iv) antibody and antigen sequences differed substantially in sequence 
across antibody-antigen complexes (Suppl Fig. S1), and (v) germline V genes  across antibody-
antigen complexes and species (human, mouse, Suppl Fig. S1, S4).  
 
Furthermore, we assembled a dataset of 25,921 protein complexes that had motifs of similar size 
to antibody-antigen data with respect to maximum gap size, to answer the question of whether 
the motifs in antibody-antigen structures are merely a subset of the larger class of protein-protein 
interaction (PPI) motifs. Indeed, it had been reported previously that, for example, protein-protein 
and antibody-antigen interaction do not differ in terms of shape complementarity (95) whereas 
other research suggested that antibody-antigen interaction differs from protein-protein interaction 
(24, 41). Here, we found that paratope and epitope interaction motifs do not represent a subset 
of PPI motifs but are immunity-specific. Specifically, we found that protein-protein and paratope-
epitope interfaces differ in terms of (i) amino acid composition and motif length (Suppl Fig. 6), (ii) 
sequential dependencies (Suppl Fig. 12), (iii) global reactivity (Suppl Figs. 13,16) and structure 
(Suppl Fig. 21). Further, we found that sequence-to-sequence prediction accuracy was higher for 
PPI than for antibody-antigen (Suppl Fig. S20). This finding is consistent with PPI amino acid-
level binding preferences (Suppl Fig. S15B) that are more restricted than those of antibody-
antigen interaction (Suppl Fig. S15A). The higher predictability of PPI may be a product of 
evolutionary optimization of protein interfaces whereas the microevolutionary processes of 
antibody-antigen optimization are occurring on shorter time scales. This hypothesis is supported 
by the larger size of PPI motifs (Suppl Fig. S6B). Indeed, antibody interaction is mediated by non-
structured loops while PPI relies on specific structures encoded in the germline.  Nevertheless, 
this does not mean that antibody-antigen interaction does not underlie evolutionary selection: 
indeed, we saw that mouse and human interaction motifs were remarkably similar despite 
differently composed germline gene sets and antigen environments. 
 
Taken together, we validated in orthogonal controls that the rules of antibody-antigen interaction 
here described are universally shared across antibody-antigen complexes and not merely a 
byproduct of potential confounding factors. Nevertheless, it is important to acknowledge that each 
antibody-antigen structure provides only a snapshot of the continuum of interactions occurring 
between antibody and antigen (86, 101, 102). Thus, future NMR-driven kinetic interaction data 
might reveal that motifs identified for a given antibody-antigen complex are actually part of a 
“quasi-species” motif space. In this vein, an obvious extension of our approach is the addition of 
information on antibody-antigen affinity. While reliable affinity information was unavailable for the 
complexes studied herein, it will be of high interest to augment our interaction motif analysis with 
affinity data.  

Implications for repertoire-scale antibody specificity studies 

Each of the paratope and epitope sequence interaction motifs possessed unique underlying 
amino acid sequence dependencies (Fig. 2E–G) that are distinct from those found in non-immune 
protein-protein interaction indicating that structural interaction motifs bear immunological meaning 
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(Suppl Fig. S6, Fig. S13).  Furthermore, we showed that the polyreactive paratope motifs contact 
mutually exclusive epitope-motif spaces (Fig. 4). These findings support the notion that for the 
prediction of antibody-antigen interaction, both antibody (paratope) and antigen (epitope) 
information is crucial (43). It is important to note, however, that while epitope-motif spaces might 
be mutually exclusive across paratopes, antigen (collection of epitopes) spaces might overlap 
since different epitope motifs may be contacted and located on the same antigen. Once more 
structures become available, we will need to stratify epitope motifs by antigen class to better 
understand to what extent epitope motifs are exclusive to a given class. In fact, here we found 
paratope motifs bound antigens of very diverse antigen classes (Suppl Fig. S4F). These further 
investigations will elucidate the question of whether paratope sequence motifs may be used as in 
silico scanning devices for epitope-specific sequence regions in high-throughput antibody 
repertoire data for at least a subset of medically important antigens. In fact, currently, it is already 
possible to reconstruct the CDR structural landscape of entire antibody repertoires (2, 96, 97). 
Understanding the diversity and structure of antibody specificity on the repertoire level is also of 
importance for enhancing the precision of immune receptor-based immunodiagnostics where one 
of the most pressing current problems is a low signal-to-noise ratio (few antigen-specific 
sequences within a large pool of unrelated sequences) (1, 88, 98, 99). Finally, the combination of 
repertoire-wide phylogenetics approaches (100) with antibody-antigen interaction information 
may enhance our understanding of the microevolutionary processes involved in affinity 
maturation. 

Antibody-antigen recognition is overall oligoreactive with islands of high 
polyreactivity: implications for humoral specificity 

We identified not only predefined dependencies within paratope and epitope interaction motifs 
but also higher-order dependencies among paratope and epitope motifs. Specifically, we found 
that paratope-epitope interaction is power-law distributed (Fig. 4) with polyreactivity of few 
selected paratope motif ‘hubs’, while general oligospecificity of the majority of paratope and 
epitope motifs. The highly polyreactive paratope motifs were more continuous and contacted 
mutually exclusive epitope space indicating an overall high degree of humoral specificity already 
on the motif level and not only on the amino acid level as previously thought. We did not observe 
a power-law reactivity distribution in either randomly sampled antibody-antigen data (Fig. 4) nor 
randomly sampled protein-protein interaction (Suppl Fig. S12). In fact, we found that protein-
protein reactivity networks showed characteristics of exponential networks – lying in between 
power law (antibody-antigen) and randomly sampled networks.  
 
Power-law distributions have been repeatedly shown to occur in immune repertoires. We and 
others previously demonstrated that immune receptor repertoires store information in both the 
frequency as well as the sequence dimension in the form of power-law statistics (6, 101, 102). 
The interaction data here presented now suggest that paratope-epitope interaction may function 
as a third power-law governed layer of adaptive immunity. The great extent of organization in the 
paratope-epitope interaction space may be linked to the substantial antibody sequence bias 
observed in high-throughput antibody sequencing studies (recent high-throughput antibody 
sequencing studies (90, 102–104) have revealed high predictability and predetermination in both 
naive and antigen-specific antibody sequences). In future studies, we plan to investigate how 
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sequence interaction motifs depend on the underlying immune receptor sequence generation 
probability landscape (5, 105). While we do not yet understand the evolutionary selection 
pressures (14, 106, 107) nor the functional significance of these power-law distributions in 
immune repertoires, their existence is a fundamental premise for the predictability of antibody-
antigen interaction as they create a learnable space in which adaptive immunity operates.  
 
Humoral specificity describes the capacity of the antibody immune response to selectively target 
a nearly infinite number of antigens. Given the large number of potential antigens, it is commonly 
thought that antibody-antigen interaction is very challenging to predict. But if one approaches the 
challenge of understanding antibody-antigen interaction from a motif perspective, it breaks down 
the problem into a lower-dimensional task. Indeed, our extrapolation of motif diversity suggests 
that the potential epitope motif space is small (Fig. 2D). It is tempting to speculate as to the 
evolutionary advantage of short motifs in antigen recognition (non-immune protein-protein 
interaction has evolved substantially larger motifs, Suppl Fig. S6B,C). Short motifs decrease the 
potential escape space for antigens but also render self and non-self recognition more difficult. It 
would be interesting to investigate in how far, for example, autoimmunity and infections (bacterial, 
viral) occupy different motif spaces. So far, however, we observed that epitope motifs were shared 
consistently across antigen classes (Suppl Fig. S4F).  
 

Predictability and learnability of the paratope-epitope interface 
The problem of antibody-antigen binding is regarded generally as too high-dimensional. We 
conjectured that if a general vocabulary existed, which links paratope-epitope interaction in an 
unambiguous way, then paratope-epitope interaction would be predictable. The motif-based 
paratope-epitope reactivity network of antibody-antigen interaction shows (Fig. 4A) that motif-
motif interaction is predictable whereas sequence-sequence interaction is inherently difficult to 
predict (Suppl Fig. S19). We found that such a vocabulary existed (Fig. 4, SupplFig. S19), leading 
to the conclusion that paratope-epitope pairing is indeed predictable. 
 
To quantify the prediction accuracy (learnability) of paratope-epitope interactions, we leveraged 
both shallow and deep machine learning. We found that motif-based shallow and deep learning 
predicts paratope-epitope pairing reasonably well. By superimposing structural information on the 
paratope and epitope sequences into aggregate encoding, we were able to improve the prediction 
accuracy of sequence-based antibody-antigen binding since the motif-sequence- aggregates 
deconvolved the reactivity space (Suppl Fig. S19C). These results suggest that motif and 
sequence form two complementary layers in the antibody-antigen recognition space that can be 
leveraged to support sequence-based predictions (34).  
 
More generally, paratope-epitope prediction is seemingly a subset of a more general protein-
protein interaction (PPI) problem. In the structural bioinformatics field, this task is known as 
binding site prediction and is typically formulated as the problem of finding the set of residues (or 
patches) on the protein surface likely to interact (via non-covalent bonds) with other proteins (108–
113). More formally, such a problem can be formalized as a binary classification task in which a 
model is trained to discriminate binders from non-binders typically at residue or sequence level. 
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That is, given a sequence VGRAISPRAS, the model would assign a probability to each amino 
acid signifying its likelihood to bind to a partner residue (Pbind(V) = 0.3, Pbind(G) = 0.05, Pbind(R) 
= 0.7 etc.) or Pbind(VGRAISPRAS) = 0.6. A target-agnostic approach, such as Paratome (37), 
finds a set of regions from a structural alignment of antibody-antigen complexes and use it to 
locate similar regions in new sequences. Antibody i-Patch (41) utilizes contact propensity data to 
score each amino acid while at the same time leveraging information from neighboring residues 
(a patch of resides). To be applicable for antibody-antigen prediction, the original i-Patch (114) 
algorithm, however, had to be adjusted with respect to two central assumptions: (i) multiple 
sequence alignment (MSA) signifying evolutionary (sequence/structural) conservation in protein-
interacting domains and (ii) protein-protein derived amino acid propensity score both of which are 
less pertinent for antibody-antigen complexes as antibodies (as does surviving antigens) 
constantly evolve obscuring many forms of conservations, structural and sequence alike. 
Specifically, CDRs in antibodies manifest as unstructured loops with minimal structural 
conservation across antibodies and amino acid propensity differs between protein-protein and 
antibody-antigen complexes. This combination compounds the complexity in learning the rules 
that govern antibody-antigen interaction and necessitates a unique approach separate from the 
conventional approaches presently applied in the PPI field. The motifs here discovered fill this 
missing gap by capturing structural and sequence information in a single notation across 
antibody-antigen complexes and projecting antibody-antigen interaction on to substantially lower 
dimensions (102 paratope and 103 epitope motifs) which allowed us to observe conservation from 
a motif’s perspective. For instance, we showed in Fig. 3B–C  and Suppl Fig. 4F–I that motifs are 
‘conserved’ (shared) across different antigen classes, V genes, and structures. Tools such as 
Antibody i-Patch may, for instance, leverage a motif-driven alignment in place of the missing 
multiple sequence alignment data due to sequence diversity of antibody-antigen complexes. 
Further, the lower dimension in combination with the resulting reactivity network (at motif level) 
enabled us to probe beyond a binary (binder or non-binder) setting towards a more nuanced multi-
class setting. Specifically, we asked for a given paratope motif the corresponding epitope motif 
instead of whether the motif binds or not (multi-class setting). Multi-class classification although 
a few magnitudes more difficult than the binary one was proven quite successful at least at the 
motif level (Fig. 5). Specifically, we note that transitioning into a higher dimensional multi-class 
setting, such as the transition between the sequence and aggregate encodings, adversely 
impacted our shallow model more so than the deep one suggesting that as the class diversity 
tends to infinity the deep model would increasingly outperform the shallow one.  
 
Beyond target-agnostic approaches, accumulating evidence has demonstrated the utility of 
integrating the information from the interacting partner in improving state-of-the-art performance 
(115). Townshend and colleagues achieved state-of-the-art performance for the prediction of 
protein-protein interaction by training a model that comprises two separate convolutional neural 
networks (one from each interacting partner) and concatenating them to produce the final output 
(116). Similarly, Pittala and Bailey-Kellog used an attention layer on top of two separate 
convolutional layers (one each for antibody and antigen) to produce superior predictions to target 
agnostic approaches such as DiscoTope and Antibody i-Patch (41, 117, 118). Finally, Deac et al. 
eclipsed the performance of the target-agnostic Parapred approach by building a model that 
cross-modally attend antigen residues (35, 119). Although much more sophisticated in terms of 
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model complexity and architecture in addition to ‘target-aware’-ness, these models remain 
anchored to the problem of delineating binders and non-binders (binary prediction) and have yet 
to venture to a multiclass setting. We note as well that antibody-epitope prediction is typically 
treated separately: (i) to predict residues or sequences in antibodies that bind to epitopes 
(paratope prediction) and (ii) to predict residues or sequences in antigens that bind to paratopes 
(epitope prediction). In this dichotomy, paratope prediction typically fares several folds better than 
epitope prediction (for context, a state-of-the-art predictor from Pittala and Bailey-Kellog yielded 
areas under the precision-recall curve AUC-PR of 0.7 and 0.212 for paratope and epitope 
prediction respectively). Au contraire, we observed a notably less dramatic difference at least at 
the motif level where accuracy ranges from 0.63–0.72 and 0.58–0.75 for paratope and epitope 
prediction respectively (Fig. 5). Thus, we speculate that ‘motif-awareness’ may further extend the 
performance of these approaches similar to the added benefit of target-awareness earlier 
described and bridge the dichotomy between paratope and epitope prediction.  
 
Finally, the paratope-epitope reactivity network (Fig. 4, Suppl Fig. S19) allowed us to draw several 
conclusions and future directions with regards to the prediction of paratope-epitope binding. Given 
that there exist a few paratope motifs with broad epitope motif reactivity, the motif-based 
prediction accuracy of paratope-epitope interaction cannot reach, by definition, 100%. However, 
as the epitope reactivity of the polyreactive paratopes was mutually exclusive (distinct), focusing 
prediction efforts on branches of the paratope-epitope reactivity network may improve the 
performance of sequence-based paratope-epitope prediction models – especially since we 
discovered that (i) motifs possess unique and distinct sequential dependency signatures and that 
(ii) motifs aid sequence-based prediction of paratope-epitope pairing (sequence-motifs 
aggregates, Fig. 5). Thus, the motif vocabulary of antibody-antigen interaction helps partition the 
high-dimensional antibody-antigen interaction space into smaller, less daunting prediction tasks 
thereby rendering antibody-antigen interaction learnable. 

Structural interaction motifs provide ground truth for benchmarking of immune 
receptor-based machine learning 

Adaptive immune receptor repertoires represent a major target area for the application of machine 
learning in the hope that it may fast-track the in silico discovery and development of immune-
receptor based immunotherapies and immunodiagnostics (1, 120–123). The complexity of 
sequence dependencies that determine antigen binding (124, 125), immune receptor publicity 
(47) and immune status (immunodiagnostics) (88, 126) represent a perfect application ground for 
machine learning analysis (47, 98, 122, 127–130). As we extensively reviewed recently (1), the 
development of ML approaches for immune receptor datasets was and is still hampered by the 
lack of ground truth datasets. Ground truth datasets are defined by the property that the link 
between the class of a sequence (class = disease/antigen specificity) or repertoire and the 
underlying sequence structure is known a priori. Thus, by definition, ground-truth datasets are 
those that are synthetically generated in silico (131, 132). One of the current bottlenecks for 
generating nature-like synthetic datasets for predicting, for example, antigen-binding from the 
immune receptor sequence alone is the lack of knowledge on the complexity of paratope and 
epitope interaction motifs. Our research resolves this important knowledge gap. Specifically, our 
atlas of structural interaction motifs now allows for the faithful simulation of native-like ground truth 
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immune receptor datasets for the development of immune-receptor based machine learning 
methods (131). For example, paratope and epitope sequence motifs may be implanted into 
synthetic 3D antibody-antigen structures (133) to subsequently perform benchmarking of different 
ML architectures with regard to their capacity to (i) predict paratope-epitope binding and (ii) 
recover the exact sites of antibody-antigen interaction (native-like antigen-specific sequence 
motifs). A similar approach may be taken for repertoire-based disease classification.  
 
Nota bene: While we firmly maintain that for a profound understanding of antibody specificity, 
machine learning is of utmost necessity, machine learning alone will not suffice. Indeed, the 
discovery of general interaction sequence motifs was encoding-dependent and machine-learning-
independent. As previously described at length (1), we believe that machine learning approaches 
adapted to the complexity and intricacies of immune receptor sequence data will have to be 
combined with (ideally learned) sequence encodings that aim to answer specific questions. In 
fact, prediction tasks may be aided or complicated by a given encoding. In this work, for example, 
breaking down antibody-interaction into modular structural interaction motifs has greatly simplified 
machine learning tasks (Figure 5).  

Implications for machine-learning driven antibody, epitope and vaccine 
engineering 

Monoclonal antibodies are of substantial importance in the treatment of cancer and autoimmunity 
(134). Thus, their efficient discovery is of particular interest. Given that our work is unbiased 
towards both paratope and epitope analysis, it demonstrated the feasibility of the reconstruction, 
via generative machine learning, of potential neo-epitopes for neo-epitope design or the discovery 
of neo-epitope specific antibodies. Our analyses suggest that the number of antibody binding 
motifs is relatively restricted (Fig. 1–2). Monoclonal antibody discovery is predominantly 
performed using synthetic antibody libraries. The number of developable hits of such libraries may 
be increased by tuning sequence diversity towards the interaction motifs (and their corresponding 
sequential bias) here discovered. Relatedly, engineering-driven computational optimization of 
antibody-antigen binding, as well as docking algorithms, might benefit from incorporating 
interaction-motif-based heuristics (39, 41, 95, 122, 135, 136). Specifically, if we assume that the 
interaction motif sequential dependencies discovered here were evolutionarily optimized, they 
may be used to substitute for the lack of available multiple sequence alignments that are used to 
calculate high-propensity interacting residues in protein-protein docking (41). Furthermore, it will 
be of interest to investigate whether sequential dependencies are already predictive by 
themselves as to the antigen targeted (more paratope-epitope-paired data is needed for such 
investigations).    
 
In contrast to earlier work (24), we found that contact residues and somatic hypermutation are in 
fact correlated (Suppl Fig. S10). For antibody optimization, this suggests that linking the antigen-
contacting and somatically hypermutated positions (Suppl Fig. S10) in a high-throughput fashion 
and predicting whether the paratope prior to SHM was already binding or not, may enable, in 
theory, the construction of a hierarchy of evolutionary-driving driving SHM sites. Furthermore, it 
would be of interest to investigate in how far somatic hypermutation preserves binding motifs or, 
relatedly in how far, a reversal to germline would change interaction motifs. The latter is a 
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particularly important question as there is likely an overrepresentation of high-affinity antibodies 
in the dataset here investigated. 
 
The here studied antibodies are diverse and can harbor specific structural features such as 
glycans, for binding envelope proteins of HIV or influenza. Further, those antigens may also 
harbor glycans depending on the mode of protein synthesis before crystallization. Our dataset 
therefore inherently already contains the effect of post-translational modifications to antigen-
antibody binding. Interestingly, we did not find substantial differences in the motif usage between 
bNAbs against viral glycoproteins, supporting that the vocabulary of motifs is shared among 
antigens with diverse structural features in the dataset. However, we cannot tell whether this holds 
true for proteins that cannot be crystallized or for unstructured loops of antigens, that are typically 
missing in structural databases. 
 
Finally, in the future, it may also be of interest to correlate interaction motifs with antibody 
developability parameters (122, 137–139). Antibody developability depends on a multitude of 
parameters that are calculated based on the entire antibody complex (139, 140). Thus, all non-
interacting residues also contribute to antibody developability calculations. Therefore, future 
studies will have to delineate to what extent non-interacting residues correlate with specific 
interaction motifs. For example, for our dataset, we did not observe a correlation between motif 
usage and germline gene (one proxy for non-interacting residue) usage (Suppl. Fig. S4). And 
differences in non-interacting residues were less stark compared to interacting residues in terms 
of amino acid frequencies (Suppl Fig. S2). 

Concluding remarks 

Antibodies constitute only half of the adaptive immune system. To our knowledge, a similar work 
on TCR-peptide interaction does not yet exist. Comparing motifs between TCR and antibody-
antigen motifs would shed light on mechanistic similarities and differences in antibody and TCR 
antigen-interaction (88, 124, 125, 141–145, 145–147). Furthermore, it remains to be investigated 
in how far the motif-based rules uncovered here for VH-VL-antigen complexes are transferable to 
scFV, nanobody, and other next-generation antibody constructs (53, 148).  Finally, we wish to 
state that, while one of the main aims of this paper was to advance our quantitative understanding 
of antibody-antibody recognition, the second main aim was to develop computational approaches 
that may help study antibody-antigen interaction in the years to come. Indeed, future studies may 
also investigate other motif definitions (possibly identified by end-to-end machine learning) that 
may unveil further structure in the antibody-antigen interaction space. Our systems-level 
approach of combining orthogonal statistical, network and machine learning approaches for the 
study of antibody-antigen interaction was necessary to reach the conclusions drawn in this work.  
 
  
 

~ ~ ~ Fin ~ ~ ~ 
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Supplementary Material 

 
Supplemental Figure S1 | The AbDb dataset covers a broad antibody and antigen sequence diversity. (A) The 
825 antibody-antigen structures show a large diversity in germline gene usage (human: 64, mouse: 104) covering a 
notable portion of the potential V germline gene diversity. (B) Distribution of pairwise sequence similarity across 
antibodies measured by Levenshtein distance. The median distance by region (CDR, FR) ranges between 2 (HFR4) 
and 14 (HFR1). (C) Distribution of pairwise sequence similarity across antigen sequences (both full and by epitope 
region) measured by Levenshtein distance. The median distance by region (CDR, FR) ranges between 1 (HFR2, HFR3, 
LFR1–4) to 4 (CDR-H3). The median pairwise distance of full length amino acid antigen sequences is 199. 
_____________________________________________________________________________________________ 
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Supplemental Figure S2 | Amino acid residue distributions in paratopes and epitopes as well as gaps (non-
interacting residues). (A) Relative residue distribution in paratopes. Aromatic residues, namely tyrosine and serine, 
are enriched in paratopes. Cysteine and methionine are the least used amino acids. (B) In contrast, gap residues in 
paratopes are more evenly distributed and generally enriched by a different set of residues. (C) In epitopes, polar and 
charged residues such as lysine and arginine are the two most frequently observed residues. In addition, epitope 
interacting residues are more evenly distributed than those in paratopes. (D) Similarly to paratopes (B), epitope gap 
residues are more evenly distributed and enriched by a different set of residues.  
_____________________________________________________________________________________________ 
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Supplemental Figure S3 | Number of interacting residues and paratope and epitope motifs as a function of the 
distance cutoff that defines interacting residues. (A) The three panels (columns) show the total number of 
interacting residues as well as their relative fraction by CDR/FR for the three investigated and commonly used distance 
cutoffs: <4Å, <5Å, and <6Å. For all analyses in this study, we adopted the distance cutoff of <5Å (see explanation in 
Methods). The relative distribution of interacting residues across CDR/FR differed only marginally across distance 
cutoffs. (B) While the number of epitope motifs varied considerably across distance cutoffs, the number of overlapping 
motifs remained nearly constant.  
_____________________________________________________________________________________________ 
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Supplemental Figure S4 | Interaction motifs shared across antibody-antigen structures cover a large antibody 
and antigen sequence space. Extent of motif sharing (overlap) across antibody regions (CDR/FR) in (A) paratopes 
and (B) epitopes. There is considerable overlap across paratope and epitope regions albeit to a slightly lesser extent 
in epitopes compared to paratopes. (C) Overlap of mouse and human paratope and epitope motifs. The cross-species 
relative overlap is higher for paratopes than for epitopes. (D) Cumulative motif distribution of paratopes and (E) epitopes 
ordered by frequency. Motif frequency denotes the number of times a motif has been detected within or across 
structures. (F) Number of antigen classes, (G) V genes (separated by human and mouse), and structures (H) paratope 
and (I) epitope motifs belong to. The top 20 most shared (across structures) motifs are shown for subfigures E–I.  
_____________________________________________________________________________________________ 
 

 
Supplemental Figure S5 | Interaction motifs of broadly neutralizing antibodies (bNAb) do not differ from those 
found in non-nbNAb antibodies. (A) All 38 motifs identified in the 24 HIV-bNAB structures from the bNAber database 
(54) (see Methods) are also found in non-HIV-bNAb structures. Out of the 38 unique interaction motifs identified, 8 are 
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continuous and 30 are discontinuous. (B) Out of the 38 bNAb interaction motifs, 13 motifs were part of the 20 non-
bNAb motifs that were shared most across structures (Suppl Fig. S4).  
_____________________________________________________________________________________________ 
 

 
Supplemental Figure S6 | Characterization and comparison of interaction motifs found in non-immune protein-
protein interaction (PPI) with those found in antibody-antigen complexes. (A) Overlap of paratope, epitope and 
PPI interaction motifs. Whereas paratope motifs partly overlap with motifs found in PPI (57%), most epitope motifs do 
not overlap with those of PPI (12%). The number of total non-unique motifs is also displayed. (B) Distribution of PPI 
interaction motif lengths. (C) Distribution of maximum gap lengths of PPI interaction motifs. (D) Amino acid distribution 
of interacting residues in PPI. (E) Pearson (lower triangular matrix) and Spearman (upper triangular matrix) correlation 
of the amino acid usage in paratope (heavy, light chain), epitope (heavy, light chain) and protein-protein interaction 
(intradomain and interdomain). (F) Inter- and  (G) intradomain (cumulative) frequency distribution of the top 200 inter- 
and intradomain PPI motifs. Motif frequency denotes the number of times a motif has been detected within (intra) or 
across (inter) structures (1,043 and 9,621, respectively). (H) Estimation of the potential motif diversity using the Chao1 
estimator (see Methods). 
_____________________________________________________________________________________________ 
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Supplemental Figure S7| The extent of motif continuity and sharing across antibody-antigen structures is 
robust to the distance cutoff chosen. (A) Relative motif continuity and discontinuity are shown as a function of the 
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distance cutoff (<4,5,6 Å). Ratios of continuous to discontinuous motifs are robust across distance cutoffs. (B) The 
extent of motif sharing across structures as a function of the distance cutoff is shown. The sharing profiles are robust 
across distance cutoffs. 
_____________________________________________________________________________________________ 
 
 
 
 
 
 

 
Supplemental Figure S8 | Angles of structural interaction motifs showcase diverse conformations in antibody-
antigen interaction. (A) Motif angles in paratopes and epitopes (see Methods). For CDR-H2VH,VL and CDR-H3VH,VL,the 
median angles in paratopes and epitopes are smaller than CDR-H1VH,VL indicating that the former are looped and the 
latter are extended. Median motif angles in heavy and light chain of CDR3 did not substantially differ between paratopes 
(VH 57º and VL 58º) and epitopes (VH 61º and VL 62º), however, the difference is statistically significant indicating that 
epitopes assume a more extended conformation. (B) Angles between paratope and epitopes correlate moderately in 
the majority of the regions examined.  
_____________________________________________________________________________________________ 
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Supplemental Figure S9 | Analysis of interaction motifs on full length antibody sequences. (A) Number of 
paratope interaction motifs found in antibody heavy (median: 4) and light chains (median: 3). (B) Extent of ensembles 
of discontinuous (at least one discontinuous interaction motif per antibody heavy or light chain) or continuous (all motifs 
per antibody heavy or light chain are continuous) interaction motifs. (C) Sharing of discontinuous and continuous 
ensembles of interaction motifs across structures (heavy-chain maximum: 12 structures, light-chain maximum: 17 
structures).  Length distribution of paratope and epitope motifs. The length of a motif is defined as the number of 
characters in a motif. For example, motifs X1X and X2X are both of length 3. (C) Pearson (range: 0.5–1.00) and 
Spearman (range: 0.48–1.00) correlation of paratope and epitope lengths. (D) More interacting residues are found in 
antibody heavy chain (median: 14) in comparison to the light chain (median: 8). (E) The lengths of paratope and epitope 
motifs correlate positively in each CDR/FR segment. (F) Interacting residues and interaction motif lengths in general 
do not correlate. 
_____________________________________________________________________________________________ 
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Supplemental Figure S10 | Moderate concordance between somatic hypermutation sites and contact residues. 
Somatic hypermutation was inferred for all human and mouse antibodies (total number of antibody-antigen complexes: 
732, see Suppl Fig. S11, see Methods for details on SHM quantification). Green graphs: for each position in the heavy 
and light chain, the number of structures mutated in that position was quantified. Positional mutability is shown as a 
function of identity to germline (>70%, >80%, >90%) where identity is calculated as:  (length of the sequence – the total 
number of SHMs) / the length of the sequence.  The higher the identity, the more trustworthy the SHM count is. Blue 
graphs: number of structures with antigen-interacting residues in the given residue position. In each green-colored SHM 
graph, the correlation with the number of paratope contact sites per position is shown. Spearman (Pearson) correlation 
ranged between 0.31 (0.52) and 0.52 (0.58) for VH and 0.38 (0.44) – 0.48 (0.48) for VL, indicating moderate concordance 
between mutated and antigen-interacting residues (all correlation values were significant, p<0.05).  
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Supplemental Figure S11 | Abdb statistics: distribution of structures across species and antigen classes. (A,C) 
Distribution of structures (antibodies) and paratopes across species. The classes “human” and “mouse” make up 

together ≈90% of structures here studied. (B,D) Distribution of structures (antigens) and epitopes across antigen 

classes/species. 
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Supplemental Figure S12 | Protein-protein reactivity networks show exponential network architecture (not a 
power-law distribution as observed in antibody-antigen reactivity networks [Fig. 4A], but also no Poisson-distributed 
networks [Fig. 4B]). The figure replicates (with a few modifications explained below) Fig. 4. Only the largest connected 
portion of the network was visualized, for full network see Suppl Fig. 16.  (A) A bipartite network capturing protein-
protein binding from interdomain protein-protein protein interaction (Suppl Fig. S6) was constructed. The PPI 
interdomain reactivity network was constructed by connecting each protein motif to its corresponding partner protein 
motif (total number of edges: 18,434; total number of nodes: 7,623). We here used exclusively interdomain PPI (as 
opposed to intradomain PPI) as interdomain PPI is most similar to antibody-antigen interaction (Suppl Fig. S6E). 
Network vertices were scaled by their number of connections (edges).  (B) To more directly compare PPI reactivity 
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network architecture to antibody-antigen interaction (Fig. 4A), we randomly sampled 100 times 5000 edges (similar to 
the number of edges found in the paratope-epitope reactivity network, Fig. 4A) from the reactivity network in (A). Inset: 
The Spearman correlation of node degree correlation of observed and randomly sampled networks is shown. For both 
networks, the respective node degree distribution is shown (for B, the standard error of the mean is also shown). A 
node’s degree is the count of its connections incoming from other nodes. (C, D) Cumulative degree distributions of 
networks (A) and (B). (E) Distribution of interaction partner overlap for networks (A,B). Briefly, for example for all protein 
binding partners in (A), the pairwise overlap of PPI motifs was calculated. The statistical significance of the difference 
between overlap distributions from (A) and (B) was computed using the Kolmogorov-Smirnov (KS) test. Inset: the 
correlation of node degree and interaction partner overlap was determined. 
_____________________________________________________________________________________________ 
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Supplemental Figure S13 | Sequential dependencies in interaction motifs of protein-protein interaction. (A) For 
each of the four most highly shared (across antibody-antigen structures) motifs (Suppl Fig. 4), the sequential 
dependency signature of PPI motifs was determined. Briefly, for the ensemble of paratope/epitope sequences mapping 
to a given interaction motif, the 2-mer decomposition of each paratope/epitope sequence was determined by a sliding 
window. For each motif, these sequential dependencies were visualized as Chord diagrams where the 20 amino acids 
form the segments in a track (the outermost ring) and the links indicate the frequency with which a 2-mer sequential 
dependency occurred (sequential dependency). In addition, Venn diagrams show the overlap of sequential 
dependencies (2-mers, network edges) between motifs (vertically arranged Venn diagrams) or binding partners 
(horizontal Venn diagrams). (B) Hierarchical clustering of sequential dependencies (the links are shown in (A) and Fig. 
2E). 
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Supplemental Figure S14 | Sequence dependencies of interaction motifs in humans and mice are similar. (A) 
Sequence dependencies of mouse and human paratope and epitope interaction motifs were compared for the 4 most 
highly shared interaction motifs. Briefly, for the ensemble of paratope/epitope sequences mapping to a given interaction 
motif, the  2-mer decomposition of each paratope/epitope sequence was determined by sliding window. For each motif, 
these sequential dependencies were visualized as Chord diagrams where the 20 amino acids form the segments in a 
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track (the outermost ring) and the links indicate the frequency with which a 2-mer sequential dependency occurred 
(sequential dependency). Overlap of two-mer combinations is shown by Venn diagram. (B) Hierarchical clustering of 
mouse and human paratope and epitope sequential dependencies (the links are shown in (A)).  
_____________________________________________________________________________________________ 
 
 
 

 
Supplemental Figure S15 | Paratope-epitope amino acid contact maps. (A) The y-axis denotes epitope residues 
and the x-axis denotes the paratope residues. Left: Each panel represents one CDR/FR. Right: Composite map for VH 
and VL combined. The cells are color-coded according to the preference of the amino acid pairs to interact. A red square 
indicates that the interaction is favored, and a blue square indicates that it occurs less frequently than expected at 
random (log2 odds ratio, see Methods). Amino acids are color-coded by property: charged, polar, aromatic, hydrophobic 
(nonpolar). (B) Identical to (A) except for non-immune protein-protein interaction (PPI). While there exist clear trends 
for PPI, namely off-diagonal amino acid interaction being disfavored and on-diagonal amino acid interaction being 
favored, paratope-epitope amino acid contact preferences (CDR/FR) cover a broader range in the interaction space as 
few amino acid interactions seem to be strictly disfavored (composite). 
_____________________________________________________________________________________________ 
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Supplemental Figure S16 | Full reactivity networks of paratope-epitope and protein-protein interaction. (A) Full 
paratope-epitope reactivity network which includes nodes and edges that are detached from the main network. Here 
shown the total number of edges 4,976 and nodes 1,981. Please refer to Fig. 4A (main network) for a methods 
description. (B) Protein-protein reactivity network (interdomain), similar to (A), the network includes nodes and edges 
that are detached from the main network. Here shown the total number of edges 18,434 and nodes 7,623. Please refer 
to Suppl Fig. S12A (main network) for a methods description.  
_____________________________________________________________________________________________ 
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Supplemental Figure S17 | The lengths of interaction motifs and paratope and epitope sequences are learnable. 
Here shown for paratope-epitope data, PPI data behave similarly (not shown). Above plots is applicable only to our 
deep learning model as the model generates outputs character by character sequentially whereas the shallow model 

selects the most probable output based on the training data. (A) Example plot  for the correlation between the predicted 

and observed length from one of the ten replicates in use case Sequence P→E as a function of embedding dimension 

and hidden units. Here shown are all pairwise combinations of the parameters (a total of 121) in each replicate. 

optimization Increasingly positive Pearson correlation values were recorded as the models approached optimal 
parameter pairs. (B). Maximum predicted-observed length correlation. For the 10 replicates in each use case, the 
maximum correlation was obtained (the cell in (A) with the highest Pearson correlation) resulting in a total of 10 
maximum correlation values. The mean of the maximum correlation values from  each use case was computed and 
visualized as bar chart. The standard error of the mean of maximum correlation ( ) was visualized as error bars. 
Use cases cover the bidirectional prediction tasks (paratope to epitope as well as epitope to paratope) of motif to motif, 
motif with position to motif with position, and finally amino acid sequence to amino acid sequence (see Table 1). 
Baseline prediction accuracies (control) were calculated based on label-shuffled data where antibody-antigen-binding 
partners were randomly shuffled (randomized pairs). 
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_____________________________________________________________________________________________ 
 
 
 

 
Supplemental Figure S18 | PPI interaction motifs tend to be discontinuous. Continuous motifs, however, tend 
to be shared. (A) Extent of discontinuous (at least one non-interacting residue) or continuous PPI interaction motifs 
across PPI complexes (see Fig. 3 for more methodological details). (B) Extent of sharing of discontinuous and 
continuous PPI interaction motifs across structures. (C) Absolute number and percentage of PPI structures a given 
interaction motif is found in. 
_____________________________________________________________________________________________ 
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Supplemental Figure S19 | Reactivity networks according to different encodings. (A) Left: Bipartite reactivity 
network capturing paratope-epitope interaction constructed by connecting each paratope motif to its corresponding 
epitope motif (undirected edge), as in Figure 4A, including all clusters and visualizing the nodes according to their edge-
betweenness (see Methods). This allows us to visually separate nodes by degree. Paratopes and epitope nodes are 
color-coded by specificity (specific: one exclusive binding partner, shared: >1 binding partners). Right: Reactivity 
network as described in (A) and Fig. 4A except that the nodes are scaled by the number of underlying structures instead 
of the number of connections. We performed this analysis to exclude the possibility that the motif frequency distribution 
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has an effect on the reactivity network. (B) Bipartite reactivity network capturing paratope-epitope interaction at the 
sequence level: the sequence of binding amino acids inside motifs on the epitope or paratope are used as nodes. When 
the reactivity network is drawn on the sequence level, the hierarchy of nodes with paratope branches is lost. (C) 
Reactivity network drawn for an encoding where motif and sequence are merged (called “aggregate” in Figure 5). For 
example, the paratope RA2VG (R,A,V,G are interacting residues, and 2 residues are non-interacting) is encoded as 
RA--VG. Here, the network’s structure is pinned down to more independent clusters. All graphs represent the structure 
of datasets used to perform deep learning classifications in Figures 5 and Suppl Fig. 20. 
_____________________________________________________________________________________________ 
 
 
 

 
Supplemental Figure S20 | Predictability of protein-protein interaction mirrors the trends found in paratope-
epitope interaction. Similar to paratope-epitope interaction, the interactions are more predictable at motif level (median 
errors: 32–58%; median baseline errors: 49–94%) compared to sequence (median errors: 0.4–0.79%: median baseline 
errors: 91–93%) and aggregate (median errors: 0.8–0.89%; median baseline errors: 91–94%) levels.   
_____________________________________________________________________________________________ 
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Supplemental Figure S21 | Ramachandran plot analysis: Antibodies are structurally distinct from non-immune 
proteins. Ramachandran angles, Phi (Φ) and Psi (Ψ), were extracted from each amino acid in motifs (both interacting 
residues and non-interacting residues) as compared to the set of interacting residues. These pairs of angles were used 
to group the residues into eight Ramachandran regions (bottom right corner) following Hollingsworth and colleagues 
(77). Here shown PPI (mostly manifests as alpha helix) and antibodies (mostly manifests as beta strand/sheet, PII 
spiral, and delta turn) gravitates towards different angles thereby underlining the distinction between PPI and antibody-
antigen interaction. 
_____________________________________________________________________________________________ 
 
 
Supplemental Table S1. Antibody sequence numbering according to the Martin (57) numbering scheme. 

Segment Residue number Insertion 

LFR1 1–23 10a 

CDR-L1 24–34 30 (a–f) 

LFR2 35–49 40a 

CDR-L2 50–56 52 (a–e) 

LFR3 57–88 68 (a–h) 

CDR-L3 89–97 95 (a–f) 

LFR4 98–110 - 

HFR1 1–30 8 (a–d) 

CDR-H1 31–35 31 (a–b) 
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HFR2 36–49 42 

CDR-H2 50–65 52 (a–c) 

HFR3 66–94 72 (a–c) 

CDR-H3 95–102 100 (a–k) 

HFR4 103–113 - 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/759498doi: bioRxiv preprint 

https://doi.org/10.1101/759498
http://creativecommons.org/licenses/by-nc-nd/4.0/


  57 

 

 
Supplemental Table S2. Examples of antibody chains numbered according to the Martin (57) numbering 
scheme.  
 

2EH8_1_H 2EH8_1_L 2LTQ_1_H 2LTQ_1_L 3JBA_1_H 3JBA_1_L 

Q-GLN-1 D-ASP-1 E-GLU-1 D-ASP-1 S-SER-7 D-ASP-1 
V-VAL-2 I-ILE-2 V-VAL-2 I-ILE-2 G-GLY-8 I-ILE-2 
Q-GLN-3 Q-GLN-3 Q-GLN-3 V-VAL-3 G-GLY-9 V-VAL-3 
L-LEU-4 M-MET-4 L-LEU-4 M-MET-4 G-GLY-10 M-MET-4 
V-VAL-5 T-THR-5 V-VAL-5 S-SER-5 L-LEU-11 S-SER-5 
Q-GLN-6 Q-GLN-6 E-GLU-6 Q-GLN-6 V-VAL-12 Q-GLN-6 
S-SER-7 T-THR-7 S-SER-7 S-SER-7 K-LYS-13 S-SER-7 
G-GLY-8 P-PRO-8 G-GLY-8 P-PRO-8 P-PRO-14 P-PRO-8 
A-ALA-9 L-LEU-9 G-GLY-9 S-SER-9 G-GLY-15 S-SER-9 
E-GLU-10 S-SER-10 G-GLY-10 S-SER-10 G-GLY-16 S-SER-10 
V-VAL-11 L-LEU-11 L-LEU-11 L-LEU-11 S-SER-17 L-LEU-11 
V-VAL-12 S-SER-12 V-VAL-12 A-ALA-12 L-LEU-18 A-ALA-12 
K-LYS-13 V-VAL-13 K-LYS-13 V-VAL-13 K-LYS-19 V-VAL-13 
P-PRO-14 T-THR-14 P-PRO-14 S-SER-14 L-LEU-20 S-SER-14 
G-GLY-15 P-PRO-15 G-GLY-15 A-ALA-15 S-SER-21 V-VAL-15 
A-ALA-16 G-GLY-16 G-GLY-16 G-GLY-16 C-CYS-22 G-GLY-16 
S-SER-17 Q-GLN-17 S-SER-17 E-GLU-17 E-GLU-23 E-GLU-17 
V-VAL-18 P-PRO-18 L-LEU-18 K-LYS-18 A-ALA-24 K-LYS-18 
K-LYS-19 A-ALA-19 K-LYS-19 V-VAL-19 S-SER-25 V-VAL-19 
V-VAL-20 S-SER-20 L-LEU-20 T-THR-20 G-GLY-26 T-THR-20 
S-SER-21 I-ILE-21 S-SER-21 M-MET-21 F-PHE-27 M-MET-21 
C-CYS-22 S-SER-22 C-CYS-22 S-SER-22 T-THR-28 S-SER-22 
K-LYS-23 C-CYS-23 A-ALA-23 C-CYS-23 F-PHE-29 C-CYS-23 
A-ALA-24 K-LYS-24 A-ALA-24 K-LYS-24 S-SER-30 K-LYS-24 
S-SER-25 S-SER-25 S-SER-25 S-SER-25 S-SER-31 S-SER-25 
G-GLY-26 S-SER-26 G-GLY-26 S-SER-26 Y-TYR-32 S-SER-26 
Y-TYR-27 Q-GLN-27 F-PHE-27 Q-GLN-27 A-ALA-33 Q-GLN-27 
A-ALA-28 S-SER-28 A-ALA-28 S-SER-28 M-MET-34 S-SER-28 
F-PHE-29 L-LEU-29 F-PHE-29 L-LEU-29 S-SER-35 L-LEU-29 
S-SER-30 L-LEU-30 S-SER-30 L-LEU-30 W-TRP-36 L-LEU-30 
S-SER-31 Y-TYR-30 S-SER-31 N-ASN-30 V-VAL-37 Y-TYR-30 
S-SER-32 S-SER-30 Y-TYR-32 S-SER-30 R-ARG-38 S-SER-30 
W-TRP-33 N-ASN-30 D-ASP-33 R-ARG-30 Q-GLN-39 N-ASN-30 
M-MET-34 G-GLY-30 M-MET-34 T-THR-30 T-THR-40 T-THR-30 
N-ASN-35 K-LYS-30 S-SER-35 R-ARG-30 P-PRO-41 Q-GLN-30 
W-TRP-36 T-THR-31 W-TRP-36 K-LYS-30 E-GLU-42 K-LYS-30 
V-VAL-37 Y-TYR-32 V-VAL-37 N-ASN-31 K-LYS-43 N-ASN-31 
R-ARG-38 L-LEU-33 R-ARG-38 Y-TYR-32 R-ARG-44 Y-TYR-32 
Q-GLN-39 N-ASN-34 Q-GLN-39 L-LEU-33 L-LEU-45 L-LEU-33 
A-ALA-40 W-TRP-35 T-THR-40 A-ALA-34 E-GLU-46 A-ALA-34 
P-PRO-41 L-LEU-36 P-PRO-41 W-TRP-35 W-TRP-47 W-TRP-35 
G-GLY-42 L-LEU-37 E-GLU-42 Y-TYR-36 V-VAL-48 Y-TYR-36 
Q-GLN-43 Q-GLN-38 K-LYS-43 Q-GLN-37 A-ALA-49 Q-GLN-37 
G-GLY-44 K-LYS-39 R-ARG-44 Q-GLN-38 S-SER-50 Q-GLN-38 
L-LEU-45 P-PRO-40 L-LEU-45 K-LYS-39 I-ILE-51 K-LYS-39 
E-GLU-46 G-GLY-41 E-GLU-46 P-PRO-40 S-SER-52 P-PRO-40 
W-TRP-47 Q-GLN-42 W-TRP-47 G-GLY-41 S-SER-53 G-GLY-41 
I-ILE-48 S-SER-43 V-VAL-48 Q-GLN-42 G-GLY-54 Q-GLN-42 
G-GLY-49 P-PRO-44 A-ALA-49 S-SER-43 G-GLY-55 S-SER-43 
R-ARG-50 K-LYS-45 Y-TYR-50 P-PRO-44 N-ASN-56 P-PRO-44 
I-ILE-51 R-ARG-46 I-ILE-51 K-LYS-45 T-THR-57 K-LYS-45 
Y-TYR-52 L-LEU-47 S-SER-52 L-LEU-46 H-HIS-58 L-LEU-46 
P-PRO-52 I-ILE-48 S-SER-52 L-LEU-47 Y-TYR-59 L-LEU-47 
G-GLY-53 Y-TYR-49 G-GLY-53 I-ILE-48 P-PRO-60 I-ILE-48 
D-ASP-54 L-LEU-50 G-GLY-54 Y-TYR-49 D-ASP-61 Y-TYR-49 
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G-GLY-55 V-VAL-51 G-GLY-55 W-TRP-50 S-SER-62 W-TRP-50 
D-ASP-56 S-SER-52 S-SER-56 A-ALA-51 V-VAL-63 A-ALA-51 
T-THR-57 K-LYS-53 T-THR-57 S-SER-52 K-LYS-64 S-SER-52 
N-ASN-58 L-LEU-54 Y-TYR-58 T-THR-53 G-GLY-65 T-THR-53 
Y-TYR-59 D-ASP-55 Y-TYR-59 R-ARG-54 R-ARG-66 R-ARG-54 
A-ALA-60 S-SER-56 P-PRO-60 E-GLU-55 F-PHE-67 E-GLU-55 
Q-GLN-61 G-GLY-57 D-ASP-61 S-SER-56 T-THR-68 S-SER-56 
K-LYS-62 V-VAL-58 T-THR-62 G-GLY-57 I-ILE-69 G-GLY-57 
F-PHE-63 P-PRO-59 V-VAL-63 V-VAL-58 S-SER-70 V-VAL-58 
Q-GLN-64 D-ASP-60 K-LYS-64 P-PRO-59 R-ARG-71 P-PRO-59 
G-GLY-65 R-ARG-61 G-GLY-65 D-ASP-60 D-ASP-72 D-ASP-60 
K-LYS-66 F-PHE-62 R-ARG-66 R-ARG-61 N-ASN-72 R-ARG-61 
A-ALA-67 S-SER-63 F-PHE-67 F-PHE-62 A-ALA-72 F-PHE-62 
T-THR-68 G-GLY-64 T-THR-68 T-THR-63 R-ARG-72 T-THR-63 
L-LEU-69 S-SER-65 I-ILE-69 G-GLY-64 N-ASN-73 G-GLY-64 
T-THR-70 G-GLY-66 S-SER-70 S-SER-65 I-ILE-74 S-SER-65 
A-ALA-71 S-SER-67 R-ARG-71 G-GLY-66 L-LEU-75 G-GLY-66 
D-ASP-72 G-GLY-68 D-ASP-72 S-SER-67 Y-TYR-76 S-SER-67 
K-LYS-72 T-THR-69 N-ASN-72 G-GLY-68 L-LEU-77 G-GLY-68 
S-SER-72 D-ASP-70 A-ALA-72 T-THR-69 Q-GLN-78 T-THR-69 
T-THR-72 F-PHE-71 K-LYS-72 D-ASP-70 M-MET-79 D-ASP-70 
S-SER-73 T-THR-72 N-ASN-73 F-PHE-71 S-SER-80 F-PHE-71 
T-THR-74 L-LEU-73 T-THR-74 T-THR-72 S-SER-81 T-THR-72 
A-ALA-75 K-LYS-74 L-LEU-75 L-LEU-73 L-LEU-82 L-LEU-73 
Y-TYR-76 I-ILE-75 Y-TYR-76 T-THR-74 R-ARG-83 T-THR-74 
M-MET-77 S-SER-76 L-LEU-77 I-ILE-75 S-SER-84 I-ILE-75 
E-GLU-78 R-ARG-77 Q-GLN-78 S-SER-76 E-GLU-85 S-SER-76 
L-LEU-79 V-VAL-78 M-MET-79 S-SER-77 D-ASP-86 S-SER-77 
S-SER-80 E-GLU-79 S-SER-80 V-VAL-78 T-THR-87 V-VAL-78 
S-SER-81 A-ALA-80 S-SER-81 Q-GLN-79 A-ALA-88 K-LYS-79 
L-LEU-82 E-GLU-81 L-LEU-82 A-ALA-80 M-MET-89 A-ALA-80 
R-ARG-83 D-ASP-82 K-LYS-83 E-GLU-81 Y-TYR-90 E-GLU-81 
S-SER-84 V-VAL-83 S-SER-84 D-ASP-82 Y-TYR-91 D-ASP-82 
E-GLU-85 G-GLY-84 E-GLU-85 L-LEU-83 C-CYS-92 L-LEU-83 
D-ASP-86 V-VAL-85 D-ASP-86 A-ALA-84 A-ALA-93 A-ALA-84 
T-THR-87 Y-TYR-86 T-THR-87 V-VAL-85 R-ARG-94 V-VAL-85 
A-ALA-88 Y-TYR-87 A-ALA-88 Y-TYR-86 G-GLY-95 Y-TYR-86 
V-VAL-89 C-CYS-88 M-MET-89 Y-TYR-87 L-LEU-96 Y-TYR-87 
Y-TYR-90 V-VAL-89 Y-TYR-90 C-CYS-88 Y-TYR-97 C-CYS-88 
F-PHE-91 Q-GLN-90 Y-TYR-91 K-LYS-89 Y-TYR-98 Q-GLN-89 
C-CYS-92 G-GLY-91 C-CYS-92 Q-GLN-90 G-GLY-99 Q-GLN-90 
A-ALA-93 T-THR-92 A-ALA-93 S-SER-91 Y-TYR-100 Y-TYR-91 
R-ARG-94 H-HIS-93 R-ARG-94 Y-TYR-92 D-ASP-100 Y-TYR-92 
E-GLU-95 F-PHE-94 P-PRO-95 N-ASN-93 E-GLU-100 S-SER-93 
Y-TYR-96 P-PRO-95 D-ASP-96 L-LEU-94 G-GLY-100 Y-TYR-94 
D-ASP-97 Q-GLN-96 A-ALA-97 Y-TYR-96 S-SER-100 P-PRO-95 
E-GLU-98 T-THR-97 M-MET-98 T-THR-97 D-ASP-100 L-LEU-96 
A-ALA-101 F-PHE-98 D-ASP-101 F-PHE-98 F-PHE-100 T-THR-97 
Y-TYR-102 G-GLY-99 Y-TYR-102 G-GLY-99 D-ASP-101 F-PHE-98 
W-TRP-103 G-GLY-100 W-TRP-103 G-GLY-100 Y-TYR-102 G-GLY-99 
G-GLY-104 G-GLY-101 G-GLY-104 G-GLY-101 W-TRP-103 A-ALA-100 
Q-GLN-105 T-THR-102 Q-GLN-105 T-THR-102 G-GLY-104 G-GLY-101 
G-GLY-106 K-LYS-103 G-GLY-106 K-LYS-103 Q-GLN-105 T-THR-102 
T-THR-107 V-VAL-104 T-THR-107 L-LEU-104 G-GLY-106 K-LYS-103 
L-LEU-108 E-GLU-105 S-SER-108 E-GLU-105 T-THR-107 L-LEU-104 
V-VAL-109 I-ILE-106 V-VAL-109 I-ILE-106 T-THR-108 E-GLU-105 
T-THR-110 K-LYS-107 T-THR-110 K-LYS-107 L-LEU-109 L-LEU-106 
V-VAL-111 R-ARG-108 V-VAL-111 A-ALA-108 T-THR-110 K-LYS-107 
S-SER-112 T-THR-109 S-SER-112 D-ASP-109 V-VAL-111 R-ARG-108 
S-SER-113 V-VAL-110 S-SER-113 A-ALA-110 S-SER-112 A-ALA-109 
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Supplemental Table S3. Top 10 protein domains and typical size sourced from Pfam (72) and 3did (71). 

Domain name  Pfam ID* Typical number of 
amino acids** 

Description 

Proteasome PF00227 190 Protein degradation 

C1-set PF07654 80 Ig-like constant 

Hemagglutinin PF00509 300 Glycoprotein 
(Influenza) 

V-set PF07686 100 Ig-like variable 

WD40 PF00400 40 Structural motif 

adh_short_c2 PF13561 220 Reductase 

lectin_legB PF00139 220 Lectin proteins 

EF-hand_7 PF13378 220 Enolase C-terminal 
domain-like 

Ferritin PF00210 140 Ferritin-like domain 

Catalase PF00199 380 Catalyzes the 
decomposition of 
hydrogen peroxide 

*Pfam ID is a unique identifier to access an entry in the database of protein families (Pfam) (72).   
**The typical number of amino acids was obtained by mapping the Pfam domain to structures in 
Protein Data Bank (50) and sequences in UniProt (149). 
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Our aim is to determine the number of possible structural interaction motifs for any motif length.
A given sequence motif is defined as follows:

• An amino acid is encoded as X.

• A gap is encoded as integer n where n quantifies the length of the gap.

• Each motif starts and ends with an amino acid X.

• There can be > 1 amino acids in sequential positions but not > 1 gaps.

Let us give two different definitions of motif length. By simply “motif length” we mean the
number of Xs in it plus the number of gaps, we note this lengths L. By “amino acid length”, we
mean the number of amino acids included in the sequence, i.e. the number of Xs plus the sum of
all gap lengths. Please, refer to the section 1.2 for a few examples.

As the interaction sequence cannot exceed the size of the CDR/FR it is located in, we need to
add one more constraint:

• The amino acid length of the motif is not bigger then a predefined number.

Let us denote the number of unique motifs of lengths L and amino acid length A as NL,A and
the number of unique motifs of length L with amino acid length not exceeding A as N̄L,A =
ÂA

A1=L NL,A1

To derive a formula for NL,A, we inspect a few examples first for intuition purposes.

L = 1,A = 1 ! X ! N1,1 = 1
L = 2,A = 2 ! XX ! N2,2 = 1
L = 3,A = 3 ! XXX,X1X ! N3,3 = 2
L = 3,A = n > 3 ! XkX, (k = n�2) ! N3,n = 1
L = 4,A = 4 ! XXXX,X1XX,XX1X ! N4,4 = 3
L = 4,A = n > 4 ! XkXX,XXkX (k = n�3) ! N4,n = 2
L = 5,A = 5 ! XXXXX,X1XXX,XX1XX,XXX1X,X1X1X ! N5,5 = 5
L = 5,A = n > 5 ! XkXXX,XXkXX,XXXkX,Xk1Xk2X ! N5,n = n�1

1
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In the last line, k = n� 4 and k1 + k2 = n� 3. Let us clarify this last line: there are only 3
motifs with a single gap, but if there are two gaps, their lengths can vary: k1 = 1,k2 = n�4;
k1 = 2,k2 = n�5, . . . , so that we have n�4 double-gapped motifs in total.

Now we can proceed to derive a general formula for NL,A. Let us note the number of Xs in a
motif as nx and the number of gaps as ng. We can count the motifs for fixed nx and ng and then
we will just have to sum the results over all nx +ng = L. Thus, we have nx Xs and nx �1 slots for
gaps – between any two neighbouring Xs there can be a gap. First, we have to choose ng slots:
the number of ways to do this is ✓

nx �1
ng

◆

Now we have ng gaps of total amino acid length A�nx, and we need to distribute the lengths
between the gaps. In other words, we need to split the number A�nx into a sum of ng nonzero
terms. The number of ways to do this is the number of ng-compositions of A�nx, which equals

✓
A�nx �1

ng �1

◆

Now we can write down the formula for NL,A as

NL,A = Â
ng+nx=L,ngnx�1

✓
nx �1

ng

◆✓
A�nx �1

ng �1

◆

We did not take into account the all-X case, so for A = L we should have

NL,L = 1+ Â
ng+nx=L,ngnx�1

✓
nx �1

ng

◆✓
A�nx �1

ng �1

◆

Similarly, the formula for N̄L,A is

N̄L,A =
A

Â
A1=L

NL,A1 = 1+
A

Â
A1=L

Â
ng+nx=L,ngnx�1

✓
nx �1

ng

◆✓
A1 �nx �1

ng �1

◆

Figures 1 and 2 show the growth of N̄L,A for L in 1, ...,10. We set 10 as maximum motif length
based on our observations (Fig. 2B).

2
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Figure 1: The number of unique motifs (Y axis) for a given motif length (X axis) that could be
located in a certain FR/CDR (see possible FR/CDR lengths in Supplementary Table S1). The
amino acid length of the motifs is bounded by the minimum and maximum possible region length
(Supplementary Table S1).

Figure 2: The total number of unique motifs (Y axis) for a given length (X axis) across all
CDR-Ls and CDR-Hs (a), across all LFRs and HFRs (b), across all regions (c).
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