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Pharmacogenomics is a key component of personalized medicine. It promises a safer and 

more effective drug treatment by individualizing the choice of drug and dose based on an 

individual’s genetic profile1,2. The majority of commonly prescribed drugs are metabolized by a 

small set of Cytochrome P450 (CYP) enzymes3. In clinical practice, genetic biomarkers are being 

used to categorize patients into predefined *-alleles to predict CYP450 enzyme activity and adjust 

drug dosages accordingly. Yet, this approach has important limitations as it leaves a large part 

of variability in drug response unexplained4,5. Here, we present a novel approach and introduce 

a continuous scale (instead of categorical) assignments to predict metabolic enzyme activity. The 

proposed strategy uses full gene sequencing data, a neural network model and CYP2D6 mediated 

tamoxifen metabolism from a prospective study of 561 breast cancer patients. The model explains 

79% of the interindividual variability in CYP2D6 activity compared to 54% with the conventional 

approach. It is capable of assigning accurate enzyme activity to alleles containing previously 

uncharacterized combinations of variants and were replicated in an independent cohort of 

tamoxifen treated patients, a cohort of Venlafaxine users as well as in vitro functional assays using 

HEK cells. These results demonstrate the advantage of a continuous scale and a completely 

phased genotype for prediction of CYP450 enzyme activity and thereby enables more accurate 

prediction of individual drug response.  

 

The cytochrome P450 isoenzyme 2D6, encoded by the polymorphic CYP2D66,  is involved in 

the metabolism of 25-30% of commonly prescribed drugs7. Genetic variants in the CYP2D6 gene, such 

as SNVs (single nucleotide variants), CNVs (copy-number variants) and structural rearrangements6,8,9, 

may lead to differential CYP2D6 activity and thereby to altered drug response 10,11.  

To translate CYP2D6 variants into clinically actionable guidelines, they are assigned to standard 

haplotypes and predicted phenotypes. Haplotype assignment is performed based on *-allele 

nomenclature, catalogued by the Pharmacogene Variation Consortium (PharmVar), where each *-allele 

describes a predefined combination of variants12,13. Subsequently, the gene activity score (GAS) system 

assigns a score to each allele, with 0 for no activity, 0.5 for decreased, 1 for normal and 2 for increased 

activity14. Predicted phenotypes are assigned based on the combination of the two inferred allele 

activities and are summarized into 4 different CYP2D6 metabolizer categories13,15: poor metabolizer 

(PM), intermediate metabolizer (IM), normal metabolizer (NM) and ultra-rapid metabolizer (UM).  

However, 6 to 22-fold unexplained intra-category variability in enzyme activity and considerable 

overlap in activity between phenotypes remains5. Moreover, a recent twin study has shown that while 

91% of CYP2D6 metabolism is hereditary, GAS based inferred phenotypes only explained 39% of 

variability in CYP2D6 enzyme activity4. Similar trends in missing heritability have been shown for 

other genes involved in CYP450 mediated drug metabolism16,17. This is partly due to rare genetic 

variants that are not catalogued in the current *-allele nomenclature18. A major limitation of the current 
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methodology is the loss of a considerable amount of information in the categorization. Therefore, a 

continuous phenotype prediction rather than a categorical model is likely to improve the prediction of 

CYP2D6 enzyme activity. A convolutional neural network is highly suitable for this type of phenotype 

prediction from genetic data19,20. While previous approaches of deep learning in pharmacogenomics 

were aimed at automated *-allele assignment or to predicting the residual activity of conventional *-

alleles21,22, we propose a novel methodology to predict CYP2D6 enzyme function on a continuous scale 

using full gene sequencing data and a neural network, omitting *-alleles completely.  

 

Conventional categorical phenotype predictions  

To study the explained variability of conventional phenotype assignment, we included 561 

subjects from the prospective CYPTAM study, which investigated the relationship between CYP2D6 

genotype and outcome of breast cancer treatment with tamoxifen (Supplementary data Fig.1)23. 

CYP2D6 enzyme activity can be inferred from the tamoxifen metabolism by using the ratio between 

the metabolites endoxifen and desmethyltamoxifen (Metabolic ratio (MR))24. To fully resolve the 

CYP2D6 paternal and maternal alleles, we applied long-read sequencing8, yielding comparable 

predicted phenotype results to orthogonal testing (Supplementary data Fig.2 and Table 1).  

Classification of patients into conventional metabolizer categories resulted in 54.4% (R2=0.54) 

explained variability in CYP2D6 enzyme activity, (Fig. 1A, Supplementary data Table 2).  

While the GAS system performs better than the 4 metabolizer categories (R2= 0.66), still a 

considerable amount of variability in enzyme activity within each predicted phenotype category remains 

unexplained (Fig.1B, Supplementary data Table 2). Stratifying the phenotype categories into diplotypes 

shows that the CYP2D6 activity varied substantially within identical diplotypes (Fig.1C). This suggests 

that a large proportion of the variability in enzyme activity within metabolizer phenotypes is already 

introduced when assigning haplotypes, with individuals carrying the same diplotype displaying 

phenotypes ranging from normal metabolizers to poor metabolizers.  

 

A continuous scale improves phenotype predictions 

In order to increase the explained variability in CYP2D6 enzyme activity, we developed and 

trained a neural network consisting of two parts (Supplementary data Fig.3). The first level assigns 

contribution scores to individual alleles and variants while the second level combines paternal and 

maternal allelic scores into a predicted MR. Both parts were trained simultaneously on data generated 

from the CYPTAM cohort. By including all observed variants independent of predefined haplotypes, 

the explained variability increased to 79% (R2-adjusted = 0.79 (Fig.2A, Supplementary Table 2)). Inter 

individual variability is reflected by the range of observed MR in individuals with the same genetic 

make-up (equal predicted MR).The error rate (|observed MR – predicted MR|) was consistent over the 

range of the measured phenotype, with the exception of several (16 (2.9%) outside of confidence 

interval) subjects with a lower observed CYP2D6 activity than predicted (Fig.2A). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.02.967554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.967554
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

 

Figure 1 CYP2D6 activity based on conventional CYP2D6 metabolizer categories, gene-activity scores and 

diplotypes Explained variability of CYP2D6 activity in the CYPTAM-cohort, based on (a) conventional phenotype categories 

and (b) gene activity scores (n=561). (c) range in enzyme activity within common (>1% occurrence) diplotypes. Metabolic 

ratio (ln(Endoxifen (nM)/Desmethyltamoxifen (nM)) serves as proxy for CYP2D6 enzyme activity. Gene activity scores and 

phenotype predictions are based on *-allele nomenclature and Dutch Pharmacogenetic Working Group translations using 

PacBio long-read sequencing data. R2: R2adjusted based on linear regression. Violin plots display observation density, lines 

represent the median and inter quartile range in (a). in (b and c): black lines represent median, grey area represents 

95%Confidence interval.  PM: Poor Metabolizer, IM: Intermediate Metabolizer, NM: Normal Metabolizer, UM: Ultra-rapid 

metabolizer 

 

 

Allele contribution scores generated in the first part of the model were scaled to be comparable 

to the conventional GAS system (ranging 0-2).  Interestingly, allele contribution scores predicted by the 

model showed a deviation from the conventional GAS assignments for multiple *-alleles (Fig.2C).  

For example, the *2A allele has a conventional GAS of 1.0 representing a fully active allele. However, 

the predicted allele contributions ranged from 0.60 to 0.90, accounting for variants which are not 

included in the reference *2A haplotype. Similarly, the predicted average contribution for *41 is 0.34 

(95% CI: 0.33-0.36), while the conventional assignment for the *41 allele is 0.5 12.  The same holds for 

the relatively rare *59 allele, currently regarded as decreased activity assuming a GAS of 0.5 whereas 

the activity is predicted to be 0.20 (95%CI: 0.19-0.22). The use of allele contribution scores on a 

continuous scale in an additive model improves the prediction of enzyme activity to 73% (Fig.2B). 

However, simply applying an additive model to individual allele contribution scores may be an 

oversimplification of human physiology. The second part of the neural network can accommodate non-

additive combinations and therefore identify more complex relations between 2 alleles. Indeed, when 

the sum of allele contributions remains the same, a higher overall activity was observed when one of 

the alleles was fully active and one was fully inactive compared to two alleles with decreased activity 

(Fig.2D), which is in concordance with previous reports on IM phenotype variability25. These results 
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can either be explained by a genetic component (e.g. up regulation, non-CYP2D6 variants) or by a non-

linear relation between CYP2D6 enzyme activity and the metabolic ratio. There is, however, no 

indication to assume a non-linear relation in CYP2D6 enzyme activity and tamoxifen metabolism26,27.  

 

 

Figure 2: Neural network predictions for the CYPTAM-cohort. (a) The model predicts the metabolic ratio 

(ln(Endoxifen(nM)/Desmethyltamoxifen(nM)) as a proxy for CYP2D6 enzyme activity on a continuous scale, with a 

consistent error rate over the entire range (N=561).  (b) the explained variability in enzyme activity using an additive model 

for the predicted allele contributions (N=561), e.g. predicted gene activity score = predicted contribution allele 1 + predicted 

contribution allele 2. (c) Predicted contributions per allele grouped in conventional *-allele assignments, (d) comparison of the 

neural network predicted gene activity score in an additive model with the neural network predicted metabolic ratio. Where 

the predicted gene activity score additive = predicted contribution allele 1 + predicted contribution allele 2, the predicted 

metabolic ratio is the final outcome of the neural network and the colours represent the activity of the most active allele. The 

neural network output suggest that the predicted metabolic ratio is not represented by the predicted gene activity scores in an 

additive model, but is better described by a neural network based non-additive relation. R2: R2adjusted based on linear 

regression. Rmse: root mean square deviation. In (a) and (b): blacklines represent median, grey area represents 95% Confidence 

interval MR: Metabolic Ratio (of ln(Endoxifen(nM)/ desmethyltamoxifen(nM))), PM: poor metabolizer, IM: Intermediate 

Metabolizer, NM: Normal Metabolizer, UM: Ultra-rapid Metabolizer 
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Increased explained variability in independent samples and CYP2D6 substrates 

To validate the model, 167 subjects receiving tamoxifen who participated in the CYPTAM-

BRUT study28, were sequenced using long reads and analysed with our neural network (Supplementary 

data Fig.1 and Table 1). In this cohort, patients are divided in two groups based on the use of CYP2D6 

inhibitors that could influence the measured metabolic ratio of tamoxifen. Conventional phenotype 

predictions explained only 34.9% (R2-adjusted = 0.35 of the variability in CYP2D6 enzyme activity 

(Fig.3A and Supplementary data Table 2) in subjects without concomitant CYP2D6 inhibiting drugs 

(N=127). The deviation from the CYPTAM cohort can be explained by the significantly lower sample 

size. Neural network-based phenotype prediction on a continuous scale resulted in an almost doubling 

of the explained variability (R2-adjusted = 0.66) (Fig.3B and Supplementary data Table 2). For subjects 

using concomitant CYP2D6 inhibitors (N=24), 7.7% and 16.3% could be explained by conventional 

and continuous phenotype prediction respectively (Supplementary data Table 2). Moreover, there is a 

substantial overlap between subjects with a negative deviation from the predicted enzyme activity in 

the CYPTAM cohort and patients from the CYPTAM-BRUT cohort receiving concomitant treatment 

with a CYP2D6 inhibitor. This observation suggests that the concomitant use of CYP2D6 inhibitors 

may explain the overestimated enzyme activity for several subjects in the CYPTAM cohort. Stratifying 

the error between the predicted and observed enzyme activity per CYP2D6 inhibiting drug provides an 

estimate of the potency of the inhibitor (Fig.3B). In our data, paroxetine is identified as most potent 

CYP2D6 inhibitor, a finding which is supported by literature29. 

CYP2D6 enzyme activity is substrate specific and the effect on metabolism of a given variant 

varies per drug30,31. To assess substrate specificity of the neural network, we tested the performance on 

patients treated with a different CYP2D6 specific substrate, the antidepressant venlafaxine32 

(Supplementary data Fig 1, Table 1 and Table 2). In venlafaxine treated patients, the explained 

variability of CYP2D6 activity increased from 54.6% (R2-adjusted = 0.55) for conventional phenotype 

prediction to 63.9% (R2-adjusted = 0.64) for phenotype predictions on a continuous scale (Fig.3C-3D). 

While the explained variability improves with the continuous prediction compared to conventional 

categorization, the increase is limited. Both substrate specificity30,31 as well as the limited sample size 

(N=69) in the venlafaxine can contribute to this limited increase in explained variability. Due to the 

limited sample size the majority of samples are from the intermediate and normal metabolizer 

phenotype, limiting the genetic diversity and thereby the R2. 
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Figure 3 Conventional and continuous predictions in replication cohorts. The explained variability of CYP2D6 

enzyme activity based on conventional phenotype categories for (a) CYPTAM-BRUT (Tamoxifen metabolism, N=167) and 

the (c) Venlafaxine-cohort (venlafaxine metabolism, N=69) and based on a neural network trained with data from the 

CYPTAM-cohort (b, d).  (b) The influence of CYP2D6 inhibiting drugs on the overall enzyme activity shows overlap with 

CYPTAM samples with an negative deviation from the predicted enzyme activity. Error rates per CYP2D6 inhibiting drug 

give an indication of inhibitor potency (b, N=24 total). R2: R2adjusted based on linear regression.  In (b) and (d): blacklines 

represent median, grey area represents 95% Confidence interval Violin plots display observation density, lines represent the 

median and inter quartile range. PM: poor metabolizer, IM: Intermediate Metabolizer, NM: Normal Metabolizer, UM: Ultra-

rapid Metabolizer. 

 

In vitro validation of predicted variant contributions 

Furthermore, the trained neural network is queried to assess the contribution of individual 

variants to the overall enzyme activity (Supplementary data Table 3). These contributions show a wide 

range of effects in a pattern indicative of a continuous scale as opposed to an on/off effect (Fig.4A). To 

confirm the contributions predicted by the model, 4 variants and the *2 allele are expressed in HEK293 

cells and incubated with bufuralol (Supplementary data Table 4). The direction of the predictions 

(decrease or increase) match the in vitro results, with an increased accuracy as the variant frequency 

increases. The predicted activity for *2 perfectly matched the observed activity in HEKcells (Fig.4B). 

Interestingly, for CYP2D6*2 it is known that the normal activity of the allele is generally caused by the 

presence of an enhancer mutation causing an increase in expression which is almost in full linkage 

disequilibrium with the *2A allele33,34. In in vitro testing this enhancer mutation is not included resulting 

in a lower activity compared to wildtype. The presence of the enhancer mutation was not included in 
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the neural network model, but was present in the population35. Nonetheless, in this study we observed 

a decreased CYP2D6*2A activity in vivo, suggesting that *2A activity might be substrate dependent.  

For the gain of function variant Phe120Ile, the difference was 8-fold, which might be explained 

by both the low frequency in the training cohort (n=3) and the substrate specificity of this variant31,36,37. 

The Phe120Ile amino substitution has previously been seen in CYP2D6*49 where the allele has lower 

activity due to the presence of the Pro34Ser mutation12 and in CYP2D6*53 where the Phe120Ile 

mutation is accompanied by an Ala122Ser. These alleles were not present in our study population, as 

none of the subjects carried the other mutations in combination with the Phe120Ile mutation31. These 

results indicate that the model was able to detect the biological effect of variants with improved 

accuracy as the number of observations increase (Fig.4B). 

 

 

Figure 4: Contributions of individual variants. (a) Predicted contributions per variant included in the training of 

the Neural Network, with the absence of the variant set to 0.0 and a gene deletion set to -1.0 (n=78 variants). (b) in vitro 

validation of variants in HEK cells using bufuralol metabolism. Rate of bufuralol metabolism was normalized using the 

metabolic rate of the cells transfected with CYP2D6*1 cDNA as reference point of 1.0, similar to the neural network 

contributions results were further scaled to have the absence of a variant (normal activity a) set to 0.0 and the full absence of 

metabolism to -1.0. Incubations were performed in quadruple. 
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Here we have shown that the use of a continuous phenotype prediction based on a neural 

network and full gene sequencing data significantly decreases the missing heritability in CYP2D6 

mediated metabolism. Our neural network is agnostic of the conventional GAS and *-alleles and does 

not assume an additive model for allele contributions to CYP2D6 enzyme activity as is the current 

standard. While the model shows generalizability to other CYP2D6 substrates, the venlafaxine data as 

well as the in vitro data also indicate the importance of substrate specificity, potentially requiring the 

development of gene-drug specific neural network prediction models.  

More accurate predictions may improve the clinical impact of currently applied 

pharmacogenomic tests and help to optimize treatment of individual patients. A similar approach to 

what was used in this study could be implemented for improved phenotype prediction for other drug 

metabolizing enzymes of the CYP450 family. The impact of concomitant use of CYP2D6 inhibitors is 

highlighted by the low explained variability in patients using these drugs, reflecting the model’s ability 

to identify biological processes by identifying external factors as outliers and emphasizing the models 

capability of reflecting only the genetic impact on CYP2D6 activity.  

After 30 years of *-allele and category-based pharmacogenomics, our continuous phenotyping 

approach paves the way for a new era of personalized medicine using advanced sequencing technologies 

and machine learning methods to improve prediction of variable drug response.  
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Methods  

Study cohorts The data used in this study originated from one main cohort and two independent 

cohorts. The main study cohort, the CYPTAM-cohort, consisted of 608 subjects for whom DNA 

material was available (The Netherlands National Trial Register: NTR1509)1. In short, the multicenter 

prospective CYPTAM study recruited subjects receiving tamoxifen as an adjuvant breast cancer therapy 

to investigate the association between CYP2D6 genotype, endoxifen serum concentration and clinical 

outcomes. The first replication cohort, the CYPTAM-BRUT cohort, consisted of 225 subjects recruited 

in a study investigating the association between CYP2D6 genotype and endoxifen serum concentration 

on response rate to tamoxifen in postmenopausal women (Clinicaltrials.gov: NCT00965939)2. The 

second replication cohort, the Venlafaxine-cohort, consisted of 78 subjects using venlafaxine. Samples 

were collected as part of routine patient care at the Catharina Hospital, Eindhoven, the Netherlands. 

DNA samples and accompanying data were de-identified before transfer to the Leiden University 

Medical Center (LUMC) for analysis.  

 

Drug metabolite measurements. For both the CYPTAM and CYPTAM-BRUT cohort, steady state 

through levels of tamoxifen and metabolites were measured with a validated high performance liquid 

chromatography-tandem mass spectrometry upon study inclusion. All measurements were performed 

at the LUMC department of Clinical Pharmacy and Toxicology. In total 4 compounds were measured: 

tamoxifen, 4-hydroxytamoxifen, O-desmethyltamoxifen and endoxifen.  A total of 0.2ml of each serum 

sample was mixed with 0.5ml of 0.1M ZnSO4 and 0.2ml of the internal standard working solution 4-

D5-IS. After mixing for 3min on a vortex mixer, the mix was centrifuged at 13000rpm for 5min at room 

temperature. A volume of 20µl supernatant was injected into the HPLC instrument. Chromatographic 

analysis was performed using a Waters Micromass Quattro micro API Tandem MS equipped with a 

Dionex P680A DGP-6HPLC pump, Dionex Ultimate 3000 autosampler and a Diones Thermostated 

Column Compartment. Separation of the analytes from potentially interfering serum components was 

achieved using a Waters X-bridge Column (3.5µm, 4.6 x 50mm) with a Spark HySphere C18 HD pre-

column (7µm) in a Phenomenex holder. The mobile phase consisted of 25% solution A (0.1% formic 

acid + 2mM ammonium acetate in H2O) and 75% of solution B (0.1% formic acid + 2mM ammonium 

acetate in methanol) and was delivered at a flow rate of 0.4ml/min. Concentrations were normalized to 

nM and metabolic ratios calculated to reflect the rate of conversion from one metabolite to the next.  

For the Venlafaxine-cohort, plasma concentrations of venlafaxine and its metabolite O-

desmethylvenlafaxine were determined as part of routine clinical care. Concentrations were determined 

with a validated ultra-performance liquid chromatography-tandem mass spectrometry method. 

Clozapine-D4 dissolved in acetonitrile was used as internal standard in a concentration of 0.1 mg/L. To 

100µl of each plasma sample, a volume of 300µl of internal standard solution was added and vortex-

mixed for 30 seconds.  After centrifugation for 10min at 10900rpm, a volume of 200ul of the supernatant 
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was mixed with 200µl of a 5mM ammoniumacetate solution and 10µl of this mix was injected on the 

UPLC-MS/MS. Chromatographic analysis was performed using a Waters Acquity UPLC with a BEH 

C18 (2.1 x 100mm, 1.7µm) column at 40°C. The mobile phased consisted of 90% solution A (5mM 

ammoniumacetate + 0.05%formic acid) and 10% solution B (acetonitril 100%) and was delivered at a 

flowrate of 0.35ml/min. Concentrations were normalized to nM. All samples were analyzed at the 

Catharina hospital department of Clinical Pharmacy. 

 

DNA sample processing.  DNA isolation was performed previously for the main studies and for routine 

clinical use. Remaining DNA samples were collected and transferred to the LUMC for sequencing. All 

samples were sequenced with Pacific Bioscience’s (PacBio) SMRT-sequencing technique using full 

length CYP2D6 amplicons3. PacBio sequencing enables the identification of all variants in the locus, 

including those in difficult and repetitive regions in addition to obtaining fully phased paternal and 

maternal alleles4. To obtain CYP2D6 amplicons, three separate two-step PCR reactions were executed, 

one for full length amplicons and two for Copy Number Variants (CNV) using a similar protocol to 

Buermans et al.4. All primers used were based on previous research by Gaedigk et al.5,6 and ordered 

from Integrated DNA Technologies (IDT)7 (Supplementary data Table 5). 

The CYP2D6 specific primers were designed to generate a 6.6.kB fragment covering the entire 

CYP2D6 locus including upstream and downstream regions5,6. Target regions were amplified using the 

Takara LA Taq DNA polymerase kit (catalogus number RR002A)8. A 10µl reaction volume contained 

50-100ng DNA, 1x PCR buffer with MgCl2, 0.4mM dNTPs, 0.4 µM of both of the full length CYP2D6 

primers and 0.4U Takara La taq. PCR cycle parameters were 3min at 95°C, followed by 30 cycles of 

10sec 98°C and 15min 68°C, finished with 15min at 68°C. Subsequently, amplicon barcoding was 

performed using M13-tailed primers. These barcode primers were introduced in a second PCR with 

identical conditions to the first, using 1ul of the first PCR product and 5 cycles of amplification.  

CYP2D6 gene deletions were identified with a duplex PCR. The primer set consisted of 

CYP2D6-deletion specific primers and an internal control (IC)5,6. Target regions were amplified using 

the KAPA long range hotstart kit from kapa biosystems (REF:  KK3502)9. The 10 µl reaction volume 

contained 50-100ng DNA, 0.5x PCR buffer, 1.7mM MgCl2, 0.3mM dNTPs, 0.5uM of CYP2D6-

deletion specific primers, 0.375 µM of IC primers and 0.025U Kapa Hotstart polymerase. Cycle 

parameters were 3min at 95°C, followed by 30 cycles of 15sec 95°C and 10min 68°C.  

CYP2D6 gene duplication and CYP2D6/CYP2D7 fusion gene conformations were identified 

using a triplex PCR protocol. The primer set contained the CYP2D6 full length primers, CYP2D6 

duplication primers and CYP2D6/CYP2D7 fusion gene primers. The 10 µl reaction volume contained 

50-100ng DNA, 0.5x PCR buffer, 1.7mM MgCl2, 0.3mM dNTPs, 0.5µl DMSO, 0.5µl of the CYP2D6 

full length forward primer and 0.75µl of the reverse primer, 0.375µl of both CYP2D6-duplication 

specific primers, 0.5µl of the CYP2D6 fusion gene primer and 0.025U Kapa Hotstart polymerase. PCR 

conditions were identical to the duplex PCR.  
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Presence of CNVs and fusion genes was assessed on a 0.7% agarose gel with ethidium bromide 

staining, set at 100mV with a 55min run time. CNV and fusion gene positive samples, identified as 

additional fragments besides a full length or IC fragment, were selected for the subsequent barcoding 

PCR. For the selected samples of both the duplex and triplex PCR, barcoding was done with M13-tailed 

primers. Identical conditions to the first PCR were used with 1ul of PCR product from the first PCR 

and 5 cycles of amplification.  

Barcoded amplicons were equimolar pooled into a full-length pool and a CNV and fusion genes 

pool. For CYPTAM, one pool of full-length samples per 96 wells plate was made and one pool for all 

CNVs and fusion genes. For CYPTAM-BRUT and the Venlafaxine-cohort, one pool with all full-length 

samples and one pool for all CNV and fusion gene samples of both cohorts was made. All pools were 

concentrated with Ampure XP beads (Agencourt). For the full-length fragment, additional size-

selection was performed using BluePippin (Sage Science) to remove all fragments shorter than 5kB 

prior to pooling with the CNV and fusion gene amplicons. SMRTbell library preparation was performed 

on 500ng purified and size-selected PCR pool following the procedure & checklist – Amplicon template 

preparation and sequencing (PN 100-801-600 Version 04, Pacific Biosciences) and using SMRTbell 

template Prep Kit 1.0-SPv310. The final SMRT library was sequenced on the PacBio RSII for the 

CYPTAM cohort and on the PacBio Sequel for the replication cohorts. For RSII, libraries were 

sequenced using sequencing primer V2 and P6-C4 chemistry with a movie time of 6hr, with a maximum 

of 96 samples per SMRT cell10. For Sequel, libraries were sequenced using sequencing primer V3, 

sequencing kit 3.0 and binding kit 3.0 on a 1M v3 LR SMRT cell with a movie time of 20hr, with a 

maximum of 288 samples per SMRT cell10. Deletions, duplications and hybrids were analyzed on a 

separate SMRT cell for all cohorts. 

 

Data preprocessing. The full pipeline for downstream processing is available at 

https://github.com/lumc-pgx/pgx-pipe. All downstream processing was run on a high performance 

computing cluster running the sun grid engine. Raw sequences were demultiplexed using LIMA 

followed by the CCS tool to generate CCS sequences. The subsequent haplotype phasing was performed 

using a custom pipeline which utilizes the CCS sequences to identify molecules originating from the 

same allele. Subreads of the CCS sequences were used to generate high quality phased allelic sequences 

per allele per individual using subreads of all molecules belonging to the same allele. Allelic sequences 

showing signs of disjoint sequences or chimeras were flagged. Per subject all phased allelic sequences 

were saved and plotted based on genomic distance.  

Phased sequences were aligned to the CYP2D6 sequence from GRCh38 and variants were 

called. A semi-global alignment was performed using biopython pairwise2, alignments were polished 

to ensure consistent indel positioning. Pharmacogenomic haplotype assignments were made based on 

PharmGKB translation tables11. For all haplotypes, the *-allele with a perfect match based on all 

variants observed was assigned, where the number of variants is decisive in the case of multiple perfect 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.02.967554doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.02.967554
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

matches. When no perfect match is found the *1 haplotype was assigned. All identified variants were 

run through VEP (variant effect predictor) to determine their potential impact on protein function12. 

Variants were flagged as ‘known’ for variants in *-allele nomenclature, ‘novel’ for variants not in *-

allele nomenclature, ‘in polymer region’ for variants located in homo-polymer regions.  

The phased alleles were separated from chimeras and disjoint sequences by manual curation 

based on genomic distance plots and the presence of chimeras and disjoint flags. A cut-off of at least 

10 molecules per allele and 10 passes per molecule was used to determine the reliability of the 

sequences. In the presence of gene deletion, the second allele was annotated as ‘deletion’. In the case 

of a duplication, the duplicated allele, determined based on the number of molecules observed per allele, 

was annotated as ‘duplicated’. Subjects identified as carrying a CYP2D6/2D7 fusion gene were 

annotated as ‘hybrid’ for the hybrid allele. Selected alleles were linked to the clinical data based on 

subject specific barcodes, resulting in one datafile per cohort containing clinical data, selected alleles 

and haplotype calls.  

 

Prediction models. For further analysis, samples were selected based on the presence of full length 

CYP2D6 sequences, the absence of CYP2D6/CYP2D7 conversions and fusion genes, and on the 

presences of clinical data regarding drug metabolism (N=561 for CYPTAM, N=167 for CYPTAM-

BRUT, N=69 for Venlafaxine). For each cohort the clinical datasets containing metabolite levels were 

merged with the sequencing data containing the assigned haplotypes.  

Conventional method. For the CYPTAM-cohort, haplotype and phenotype assignments based on 

PacBio sequencing data were compared to calls from the Roche Amplichip which were determined 

previously. To assess explained variability based on conventional phenotyping, the same methods were 

applied to all three cohorts. For the CYPTAM-BRUT cohort data on concomitant use of CYP2D6 

inhibiting drugs was available, based on which the cohort was split into ‘non-inhibitor users’, ‘inhibitor 

users’ and ‘unknown inhibitor use’.  

For all cohorts the same methods were applied. Haplotype calls were translated into Gene 

Activity Scores (GAS) and predicted phenotype categories based on the CPIC and DPWG 

guidelines13,14. A GAS of 0.0 was assigned to non-active alleles, 0.5 to decreased activity, 1.0 to normal 

activity and 2.0 to increased activity alleles. Subsequently the scores per allele were combined into the 

overall GAS, followed by a translation into phenotype categories. Based on the guidelines 4 clinically 

implemented phenotype categories were assigned: poor metabolizer (PM, GAS = 0.0), intermediate 

metabolizer (IM, GAS =0.5-1.0), normal metabolizers (NM, GAS=1.5-2.5) and ultra-rapid metabolizers 

(GAS = 3.0).  

As a proxy for CYP2D6 enzyme activity, the metabolic ratio of the most CYP2D6 specific conversion 

of either tamoxifen or venlafaxine metabolism was used. For the CYPTAM and the CYPTAM-BRUT 

cohorts, the log of the metabolic ratio of the conversion from desmethyltamoxifen to endoxifen 

((LN(Endoxifen(nM)/ Desmethyltamoxifen(nM))) was used as a proxy for CYP2D6 enzyme 
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activity14,15. Transformation to log was performed to normalize the data. There are no indications to 

assume non-linear kinetics of endoxifen formation by CYP2D616, in fact the kinetics of all other 

metabolites are shown to be perfectly linear17. Additionally, the metabolic ratio as used in this study 

was shown to stay consistent with dose increase for all phenotypes18,19 making it a suitable proxy for 

enzyme activity. Finally, it is expected that intra-individual variability of CYP2D6 enzyme activity is 

limited, making one measurement at steady state a suitable approach 20-22. 

For the Venlafaxine cohort, the log of the metabolic ratio for the conversion from venlafaxine to 

desmethylvenlafaxine (LN(O-desmethylvenlafaxine(nM) /venlafaxine(nM))) was used.  

The amount of explained variability in CYP2D6 enzyme activity based on conventional 

phenotype predictions was assessed using linear regression, assuming a linear relation between 

predicted phenotypes and observed metabolic ratio. Two different models were assessed, the first based 

on the clinically applied phenotype categories (PM, IM, NM, UM), the second based on overall GAS. 

Explained variability was expressed as R2-adjusted, using a p<0.05 cutoff for significance.  

Neural network. From the selected alleles per individual, a dataset was generated indicating the presence 

(1) or absence (0) of every variant observed in the entire cohort (including deletions and duplications). 

From these variants a selection is made, variants were excluded if they adhere to the following rules: 

located in homopolymer regions or not in *-allele nomenclature and synonymous, intronic, located 

upstream or downstream. These were excluded to prevent confounding from irrelevant variants in the 

development of the neural network. Variants were included if they were part of the *-allele 

nomenclature or if they were additionally nonsynonymous, frameshifts or splice sites variants.  

The neural network was build using Keras (https://github.com/keras-team/keras) with the 

TensorFlow (https://github.com/tensorflow/tensorflow) backend. It uses the selected variants (extended 

data table 1) per allele as predictors (N=78) and the measured metabolic ratio (LN(Endoxifen(nM)/ 

Desmethyltamoxifen(nM))) as a surrogate for CYP2D6 enzyme activity and the outcome variable of 

the model. The model was comprised of 2 parts (Supplementary data Fig.3). The first consisted of two 

interpreters, one per allele, which train as one. These interpreters use all selected variants per allele as 

input data and combine them into an allele contribution. The second part was the combiner model which 

combined the two allele contributions to predict the metabolic ratio. The model was trained with the 

data from the CYPTAM cohort and trained both parts simultaneously. A 10-fold cross validation with 

100 cycles both with and without internal hold-out was performed and showed no signs of overfitting 

(Supplementary data Fig.4). Shap (Shapley Additive explanation)-values were extracted and 

normalized to define allele contributions. Where 0.0 was assigned to a gene deletion and 1.0 to a fully 

wildtype allele. Variant contributions were normalized accordingly, resulting in the sum of variant 

contributions per allele corresponding to the allele contribution.  

For both replication cohorts, the same variants as which were used during the training were 

included in the selection. For the Venlafaxine cohort, the predicted metabolic ratio is translated with a 

linear transformation into the metabolic ratio for venlafaxine (LN(O-desmethylvenlafaxine(nM) 
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/venlafaxine(nM))). The explained variability for all cohorts was assessed using linear regression with 

the predicted metabolic ratio as predictor and the observed metabolic ratio as outcome. Explained 

variability was expressed as R2-adjusted, using a  p<0.05 cutoff for significance. Error rate of the model 

was expressed as the rmse (root-mean-square error).  

In vitro validation. To confirm the contribution of individual variants as predicted by the neural 

network, four high impact variants and the *2 allele were tested in vitro. Variants were selected based 

on the following criteria: the predicted contribution had to be ≥0.2 or ≤ -0.2, there is no linkage 

disequilibrium with a known causal variant, the variant needs to be potentially causal (e.g. missense, 

frameshift), both gain of function and loss of function variants should be included. Variants selected 

were: g.42130667C>T, g.4212761C>G, g.42127611C>T and g.42129180A>T as well as the *2 allele. 

Site mutagenesis was performed on pCMV4 CYP2D6*1 plasmid23 with QuikChange II Site-Directed 

Mutagenesis Kit (Agilent, CA, US). Plasmid cDNA encoding variants with the following amino acid 

exchanges were created: Arg330Pro (g.42127631C>G), Gly42Glu (g.42130667C>T) and Phe120Ile  

(g.42129180A>T). The Asp337Asn exchange was performed using pCMV4 CYP2D6*2 as template. 

Mutagenesis primers and selected variants are listed in Supplementary data table 6. Variants were 

expressed in HEK293 cells, which were grown in DMEM 6046 (Sigma), containing 1g glucose/l, 10% 

fetal bovine serum and penicillin/streptomycin (100IU/ml, 100mg/ml) to a confluence of 60-70%. The 

pCMV4 vectors containing the variants were transfected using Viromer Red (Lipokalyx, Halle, 

Germany) according to manufacturer’s protocol. Cells were harvested after 24-48 hours incubation 

were stored at -80ºC. Cell pellets were resuspended in 0.1M sodium phosphate buffer, followed by 

sonication for 20 x 1sec and were centrifuged at 800 x g. Incubations were performed with 800 x g 

supernatant corresponding to 25-125µg of protein, 0.1 M sodium phosphate buffer, 50 µM bufuralol 

(racemate) and 1 mM NADPH in a total volume of 150 µl. reactions were linear for at least 5 hours and 

were terminated by addition of 14µl of 70% perchloric acid. After centrifuging the supernatant was 

analysed by high performance liquid chromatography as described by Kronbach et al24. The levels of 

CYP2D6 apoprotein of the different allelic variants were determined using sodium dodecyl sulfate 

polyacrylamide gel electrophoresis and Western blot analysis. Residual CYP2D6 activity was assessed 

and normalized with the average activity of the *-allele set at 1.0 to allow for comparison with the 

neural network predictions.  

 

Software.  All statistics were performed using R version 1.0.143, the haplotyping pipeline and neural 

network were developed using Python.  

Ethics. The CYPTAM protocol was approved by the Institutional Review board of the LUMC. The 

CYPTAM-BRUT protocol was approved by the Institutional Review board of the Leuven University 

medical center. Venlafaxine samples were collected in routine clinical care at Catharina Hospital, 

Eindhoven, the Netherlands and fully anonymized prior to analysis.  
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