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Abstract 
Publications on artificial intelligence (AI)-based image analysis have increased drastically in 

recent years. However, all applications use individual solutions highly specialized for a 

particular task. Here, we present an easy-to-use, adaptable, open source software, called 

AIDeveloper (AID) to train neural nets (NN) for image classification without the need for 

programming. The software provides a variety of NN-architectures that can be simply selected 

for training. AID allows the user to apply trained models on new data, obtain metrics for 

classification performance, and export final models to different formats. The working principles 

of AID are first illustrated by training a convolutional neural net (CNN) on a large dataset 

consisting of images of different objects (CIFAR-10). We further explore the potential of AID 

by training a model to distinguish areas of differentiated and non-differentiated mesenchymal 

stem cells (MSCs) in culture. Additionally, we compare a conventional clinical whole blood cell 

count with a whole blood cell count performed by an NN-trained, using a dataset of more 

than 1.2 million images obtained by real-time deformability cytometry, delivering comparable 

results. Finally, we demonstrate how AID can be used for label-free classification of B- and T-

cells derived from human blood, which currently requires costly and time-consuming sample 

preparation. Thus, AID can empower anyone to develop, train, and apply NNs for image 

classification. Moreover, models can be generated by non-programmers, exported, and used 

on different devices, which allows for an interdisciplinary use. 
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Introduction 
Since the development of the first microscope, progress in life science has become dependent 

on image acquisition and processing. Over the years, extensive research has led to the 

development of tools used for quantitative analysis of information in microscopic images. 

Software such as Cellprofiler (Jones et al., 2008), Fiji (Schindelin et al., 2012) and ImageJ 

(Schneider et al., 2012), which are widely distributed and used among scientists, allow the user 

to easily process and quantify features from images. However, quantification using these tools 

is constrained to a set of predefined features that often limit the extent of information that 

can be extracted from the images. In recent years, the emergence of machine learning (ML) 

methods, such as deep learning (DL) which uses neural nets (NN), substantially augmented the 

scope of image processing, quantification, segmentation, and classification. The main 

advantage of the DL approach is that it does not rely on handcrafted, predefined features, but 

rather automatically finds a set of optimal features. This can be especially helpful for complex 

image classification tasks where relevant features are not obvious to the human eye. 

Recent publications demonstrated the applicability of DL for image-based object identification 

in complex biological samples. For example, thrombocyte clusters were identified in human 

blood samples (Nitta et al., 2018), cell lineage differentiation was predicted during 

hematopoietic stem cell development (Buggenthin et al., 2017), skin cancer was classified on 

dermatologist-level (Esteva et al., 2017), and mitotic cells were detected in histology images 

(Cireşan et al., 2013; Giusti et al., 2014) . The latter showed DL to even outcompete histologists 

in terms of accuracy (accuracy = number of correctly classified images per total number of 

images). However, only customized, task-specific algorithms are currently available, as the 

accessibility and utilization of DL algorithms requires distinct programming skills. Thus, there 

is an increasing demand to make DL-based image processing accessible for the general user.  

Here, we present AID (artificial intelligence developer), a flexible ready-to-use software 

platform to train, evaluate, and utilize NNs for image classification problems. AID covers the 

entire work flow of image processing and analysis: from the assembly of datasets and the 

optimization of NN parameters, to the application of the generated NN to unclassified image 

sets. A simple user interface allows the user to load different image formats and to visually 

assess them before and after image size equalization. For training, the user can either choose 

NNs of different complexities or use custom-built NNs. In addition, the interface allows the 

use of pre-trained models to transfer the learning process, i.e., when insufficient training data 

is available (Tan et al., 2018) or to shorten the training step. 

To demonstrate the software´s potential, we trained a convolutional neural net (CNN) on 

CIFAR-10, a dataset containing a collection of images from 10 different classes (Krizhevsky, 

2009). We reached a testing accuracy as high as 88% on RGB and 83% on grayscale images. 

Furthermore, we demonstrate the application of AID for broad biomedical research. First, we 

trained a model to detect differentiated adipocytes using a relatively small dataset containing 

only 46 labelled bright-field microscope images. Next, we show the utility of AID for very large 

datasets by using 1.2 million images of blood cells obtained with real-time deformability 

cytometry (RT-DC) (Otto et al., 2015), in order to generate an automatic whole blood cell count. 

We trained a model to recognize thrombocytes, lymphocytes, red blood cells, monocytes, 

neutrophils, and eosinophils based on bright-field images acquired using RT-DC. We validated 

the model by comparing the result to a conventional whole blood count generated by a 

technique frequently used in clinical practice, which agreed well. Finally, we demonstrate that 
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the tools provided by AID master even challenging classification tasks by training a classifier 

to distinguish B- and T-cells based on bright-field images from RT-DC. The resulting model 

reaches a classification performance that is state-of-the-art for label-free approaches (Nassar 

et al., 2019; Yoon et al., 2018, 2017). With the demonstrated utility for a wide range of potential 

image analysis tasks, AID is a ready-to-use software package for anyone who wants to start 

exploring the power of AI-based image analysis for their own research without the need for 

any programming skills. 

Results 
Using AID to classify natural images from CIFAR-10 and Fashion-MNIST 
AID enables anyone to apply DL for image classification as it guides the user through the entire 

project pipeline, starting from loading and assembling a dataset, proceeding with training and 

evaluating a DL model, and ending with classifying new sets of images (Figure 1A, Figure 1—

figure supplement 1, Video 1). Images for validation and training are simply dragged and 

dropped into a designated area of the user interface where they are converted to a uniform 

data format. The validation set is used after every training iteration to validate the generated 

model. A library of seven different multilayer perceptrons (MLPs) and 23 convolutional neural 

nets (CNNs) of a wide range of complexity is available for choosing a model architecture 

(Figure 1—figure supplement 2). In addition, custom-built CNNs as well as pre-trained models 

are supported. Pre-trained models can be used either for classifying new sets of images or for 

re-purposed training on a different classification task, a technique termed transfer learning 

(Tan et al., 2018). At the initiation of a training process, AID automatically generates the neural 

net architecture according to the requested input and output dimensions. Image sizes are 

adjusted either by cropping or padding. AID offers the adjustment of a range of training 

parameters before and during the training process. These parameters are known as hyper-

parameters and include different image augmentation options, learning rate, and dropout rate 

(Video 1). Example images can be visualized before and during the training process in order 

to assist the adjustment of image augmentation parameters (Video 1). The accuracy and the 

validation accuracy are plotted in real-time after each training iteration. Furthermore, F1 score, 

precision, recall, support, receiver operating characteristic curve, precision-recall curve, and 

further common metrics are shown and can be exported (Swets, 1996). Once a suitable model 

is obtained (i.e., according to validation accuracy) it can be loaded into AID to assess its 

performance on testing data (Video 1). Since developers might want to use a trained model in 

a different framework, AID also provides conversion tools to protocol buffer format 

(TensorFlow) (Abadi et al., 2016) and ONNX (https://github.com/onnx/onnx) (Video 1). All 

analyses for this work are performed using AID on a standard consumer PC. 

To illustrate the software's potential, CIFAR-10, a common dataset for benchmarking new 

image classification algorithms, was used. CIFAR-10 contains 6000 different images of each of 

the following classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck 

(Figure 1B). 4800 images were used as training set, 200 images of each class as validation set 

and 1000 images as testing set. We chose a CNN architecture with 4 convolutional layers 

(Figure 1—figure supplement 2N) (Nitta et al., 2018) and used grayscale images to reduce the 

computational time and accelerate the training process. During training, the image 

augmentation parameters were adjusted seven times. This caused immediate changes in both 

the accuracy and the validation accuracy. Importantly, training proceeded with an overall 

improvement of the validation accuracy, and the best model reached a validation accuracy of 
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83.2% (indicated as CNNgray in Figure 1 C). Furthermore, we trained the same CNN-architecture 

using the original RGB images, resulting in a model with a validation accuracy of 87.9% 

(CNNRGB). Both models (CNNgray and CNNRGB) were then applied to the testing set. We obtained 

a testing accuracy of 81.2% and 84.7% for CNNgray and CNNRGB, respectively. The resulting 

confusion matrix for CNNgray indicates that the distinction between animals, especially 

classification of cats, dogs, and frogs, was the most erroneous (highlighted in orange in Figure 

1D). In AID, confusion matrices are interactive and allow the user to visualize the respective 

images for each matrix position (Figure 1D bottom panel). 

To further evaluate AID’s performance, we resorted to Fashion-MNIST (Xiao et al., 2017) an 

image dataset of 10 different classes of fashion items. The dataset contains 7000 images for 

each class and we used 5800 images for training, 200 for validation and 1000 for testing. The 

CNNgray, previously trained on CIFAR-10 images (32 x 32 pixels) was further trained on Fashion-

MNIST images (28 x 28 pixel). To allow transfer learning, we utilized the image scaling option 

in AID to match image sizes. Initially, only the last layer of the pretrained CNN was left trainable 

while all other layers were frozen. By gradually unfreezing all layers (Yosinski et al., 2014) during 

training, we reached a robust classification model with an accuracy of 95.1% on the validation 

set and 93.8% on the testing set. The training progress and a resulting confusion matrix is 

visualized in Fig. 1 – figure supplement 3.  

 

Figure 1: AIDeveloper user interface and workflow. (A) A representative workflow of setting up a 

training process. (B) Representative grayscale images of all CIFAR-10 classes (out of 6000 images per 

class). (C) Screenshot showing the “history”-tab of AID, which was used to load the training history file 
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of the training process for grayscale images. The scatterplot shows the accuracy (red dots) and the 

validation accuracy (cyan dots) for each training iteration (also called ‘epoch’). Arrowheads indicate 

seven different real-time user adjustments (I to VII) of image augmentation or hyper-parameters. 

CNNgray indicates the model at epoch 6311, which reaches the maximum validation accuracy. (D) A 

confusion matrix indicating the true and the predicted label when classifying the testing set of CIFAR-

10 using CNNgray. Matrix items with blue and orange color indicate correctly and incorrectly predicted 

classes, respectively. Representative images of incorrect predictions from model CNNgray on CIFAR-10 

of class “cat” is shown. The testing accuracy is 81.2%. 

 

AID in life science and its potential for clinical diagnostics 
AID’s ability to train models to natural images could be applied in mobile app development 

or autonomous driving, where large numbers of natural (everyday-life) images are 

encountered (Caesar et al., 2019). Here, we focus on demonstrating its potential for the 

classification of images in life science and clinical diagnostics that also encounter the 

challenges of processing large image datasets. 

Mesenchymal stem cells (MSCs) hold a great potential for the future of cell-based therapeutic 

approaches. However, prior to the transplantation it is essential to characterize MSCs and 

assess their differentiation potential. One classical approach includes MSC differentiation into 

adipocytes, followed by histological analysis with the lipid dye Oil Red O and manual 

quantification of the stained cells  (Majumdar et al., 1998; Oswald et al., 2004). Here, we 

acquired bright-field images (320 x 320 pixels) of Oil Red O-stained adipocytes from different 

positions in the cell culture well (Figure 2A, B). Since brightness, color, and distribution of Oil 

Red O staining varied significantly (Figure 2B and Figure 2—figure supplement 1), a trained 

person was asked to visually grade and mark the differentiated areas of the acquired images. 

We then used the information from the manual labelling and masked the differentiated areas 

with a uniform green color (RGB: 0, 255, 0) (Figure 2C). Each acquired image was divided into 

100 tiles of 32 x 32 pixels and used as a training dataset (Figure 2C). Tiles with less than 5 

labelled pixels were assigned to class 0 (“without differentiation”) while all other tiles are 

assigned to class 1 (“with differentiation”).   

For the classification task, we designed a CNN with 6 convolutional layers, 4 fully connected 

layers, and residual connections between layers (Figure 1—figure supplement 2M). A transfer 

learning approach was chosen, where the model was first trained on RGB images from CIFAR-

10 and subsequently optimized for the task of distinguishing tiles with and without 

differentiation. The final model was validated using eight images, resulting in a validation 

accuracy of 92.1% (Figure 2D and Figure 2—figure supplement 1). Finally, we tested the model 

using an unlabeled image not contained in the training- nor validation set. As shown in Figure 

2D the tiles classified to class 1 (“with differentiation”) were in good agreement with stained 

regions. 
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Figure 2: Classifying image tiles containing adipogenic differentiated mesenchymal stromal cells. 

(A) Schematic representation of a light microscope to image cells in 2D culture. Human mesenchymal 

stromal cells were induced to differentiate into the adipogenic lineage and imaged following Oil Red O 

staining. (B) Image acquisition strategy. Cells were cultured in a six-well plate and 5 fixed positions 

within each well were imaged. Representative images of the center and edge position of two different 

examples are shown, indicating the variability in image color and staining quality.  (C) Image-processing 

pipeline to obtain training data. Areas of cell differentiation were labeled and the original 320 x 320 

pixels images were divided into 100 tiles (32 x32 pixels). Tiles containing more than 5 labeled pixels were 

assigned to class 1, others to class 0. (D) The bar graph presents the averaged validation accuracy over 

8 images ± S.D. The image presents the classification of a new image neither contained in the training-

set nor the validation set. The numbers indicate whether a tile was predicted to belong to class 1 (“with 

differentiation“) or class 0 (”without differentiation”). Scale bars = 50 µm. 

 

High-throughput imaging allows fast screening of large amounts of biological samples. These 

images potentially include information that is useful for clinical diagnostics, creating a need 

for fast and automated image classification. AI-based image classification is a highly useful 

technique for advancing the field of image-based real-time diagnosis. Here, we combined real-

time deformability cytometry (RT-DC) and AID to generate a label-free, image-based blood 

cell count. RT-DC is an imaging flow cytometer where bright-field images of cells in flow are 

captured by a high-speed camera (Figure 3A) at rates of 100 – 1,000 cells/s. In order to increase 

the frequency of leucocytes, whole blood was first depleted from RBCs by dextran-

sedimentation (Bøyum, 2008; Quach and Ferrante, 2017). As recently published by Toepfner et 

al., the individual cell populations can be identified simply by considering cross-sectional area 

and brightness, calculated as the average grayscale value of all pixels belonging to the cell 

(Figure 3B). These prameters are sufficient to distinguish thrombocytes, RBCs, RBC doublets, 

lymphocytes, monocytes, neutrophils, and eosinophils (Toepfner et al., 2018). To avoid 

incorrect labelling, a conservative gating was applied, by excluding events where a distinction 

was not obvious. Basophils are excluded from our model as they are difficult to distinguish 

based only on area and brightness. Furthermore, they are very rare and we were not able to 

label a sufficient number of cells for training. We assembled a training and a validation set 

containing approximately 1.2 million images and trained a LeNet5 (Lecun et al., 1998) 

architecture (Figure 1—figure supplement 2D), reaching a validation accuracy of 97.3%.  

Testing data was acquired by measuring 17 additional blood samples using RT-DC and 

comparing to a conventional blood count measured in parallel under clinical settings. The 

trained model was applied to classify the images from the RT-DC experiments. The resulting 

cell count was comparable to the conventional blood count (Figure 3C). Using RT-DC, an 
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additional population of RBC doublets was found, which is not reflected in the conventional 

blood count.   

Figure 3: Image-based whole blood count using RT-DC and AID. (A) Schematic representation of 

RT-DC, a high-throughput imaging technology. A cell suspension is flushed through a channel 

constriction in a microfluidic chip. Cells are illuminated by an LED and recorded by a high-speed camera. 

Multiple parameters including area and average brightness of the cells are determined in real-time. 

Scale bar = 10 µm (B) The brightness versus area scatter-plot of whole blood measurements is used to 

distinguish populations of the major blood cells (I thrombocytes, II erythrocytes, III erythrocyte doublets, 

IV lymphocytes, V monocytes, VI neutrophils, and VII eosinophils) (Toepfner et al., 2018). Corresponding 

images of each population highlight the phenotype of these cells. Manual gating of these populations 

was carried out to assemble a dataset for training a CNN to perform an image-based whole blood count. 

Scale bar = 10 µm (C) The bar-graphs present the relative fraction of enucleated cells (I thrombocytes, 

II erythrocytes, and III erythrocyte doublets) as well as the leucocytes (IV lymphocytes, V monocytes, VI 

neutrophils, and VII eosinophils), determined using the CNN and a conventional blood count. Mean ± 

S.D. of 17 independent blood measurements is displayed. 

 

To emphasize the potential of DL and AID in the context of blood analysis, we set out to classify 

lymphocytes into B- and T-cells label-free, a task not yet feasible routinely in clinical 

diagnostics. To discriminate between B- and T-cells in whole blood, we used real-time 

fluorescence and deformability cytometry (RT-FDC) (Rosendahl et al., 2018). This technique is 

similar to RT-DC, but allows for fluorescence detection in parallel to imaging. We generated a 

labelled dataset from 3 healthy donors, by using a panel of three fluorescent antibodies (ABs) 

specific for each cell type; “cluster of differentiation” 19 (CD19) for B-cells; CD3 for T-cells and 

CD56 for NK-cells, a subset of T-cells. As previously described, we identified lymphocytes 

based on area and brightness (blue in Figure 4A). B- and T-cells were detected based on 

expression of the different fluorescent markers as shown in Figure 4A. Training and validation 

sets were assembled using data from three donors. We used a 4th measurement from a 

different healthy donor as testing dataset. Acquired images for B-cells (CD19+ events) and T-

cells (CD19+ or CD56+ events) were loaded into AID and assigned to individual classes. CNNgray 

(Figure 1C and Figure 1—figure supplement 2N), was used to apply transfer learning. The 

parameters of the first convolutional layer were set constant and training of the rest of the 

model-parameters was continued using image data of B- and T-cells (Figure 4B). The final 

model reached a validation accuracy of 89.3%. We used AID to apply the model on testing 

data and obtained the following scores: testing accuracy = 86.2%, F1 score = 89.3%, 

precision = 92.3%, recall = 86.5% and an area under curve (AUC) of the receiver-operating 
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characteristic (ROC) and the precision recall curve of 94% and 97%, respectively. The 

probability histogram of the testing-set (Figure 4C) indicates that above a threshold of pT = 0.9, 

98.3% of the events are classified as T-cells and below pT = 0.1, 95.9% of the events as B-cells. 

 

Figure 4: Label-free classification of B- and T-cells 

from human blood. (A) Gating strategy for acquiring 

training data for B- and T-cell classification. A scatter-

plot (brightness versus area) of human fractionated 

blood, measured using real-time deformability and 

fluorescence cytometry (RT-FDC) is shown. 

Lymphocytes were gated (dashed square) based on 

brightness and area (Toepfner et al., 2018). B- and T-

cells were labeled according to standard surface CD 

markers (CD3 – T-cells, CD19 – B-cells and CD56 – NK-

cells). (B) A representative schema of a transfer learning 

process, which can be easily applied in AID. The pre-

trained CNNgray, with a validation accuracy of 83.2% on 

the CIFAR-10 dataset, was loaded into AID and 

optimized to classify images of B- and T-cells, acquired 

from fractionated blood using RT-FDC. A final validation 

accuracy of 89.3% and a testing accuracy of 86.2% was 

achieved. (C) Confusion matrix of B- versus T-cells as 

well as the probability histogram showing the 

performance of the model on the testing set. The 

abscissa in the histogram shows the predicted 

probability to be a T-cell (pT). 

 

 

 
 

 

Discussion 
Graphical user interface provides simple access to deep learning methods 
Advances in the quantity and quality of imaging data necessitate the availability and 

accessibility of processing tools, as automatization has the capacity to move scientific insights 

towards routine application. Numerous publications show the vast potential of DL for image 

processing, but ready-to-use software is not yet available (Shoham et al., 2018). Moreover, 

training of NNs requires expert programming skills thus limiting its accessibility for non-expert 

users. The open source community is capable to drive such software development, but the 

continuous evolution of programming environments and the fast turnover of software libraries 

impedes a cooperative progress. Furthermore, for inexperienced users the complex 

terminology regarding DL can prevent correct data assembly, successive training, and 

application of NNs. Some companies worked on user-friendly software solutions. Zeiss 

provides along with their microscopy software an addition called “Zen Intellesis”. This program 
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can perform image feature extraction using a fixed NN, but does not support training of an 

individual NN. Instead, the extracted features are used to train a random forest (Breiman, 1996) 

for image segmentation. NVIDIA® provides a user-interface called “DIGITS™” to assemble 

datasets and train NNs. However, DIGITS™ offers only limited access to hyper-parameters, no 

image augmentation methods, and only a few NNs which require specific input image 

dimensions. To adjust a model to other image dimensions or numbers of classes, coding is 

required. Further graphical user interface (GUI) based tools that apply machine learning to 

images are ilastik (Sommer et al., 2011), Fiji (Schindelin et al., 2012), and ImageJ (Schneider et 

al., 2012), but offer only limited access to DL methods.    

AID addresses these issues by providing a standalone executable, including an intuitive GUI, 

which allows even non-programmers to train, evaluate, and apply NNs to their image datasets. 

Moreover, AID includes different NN architectures with different levels of complexity ranging 

from very simple multilayer perceptrons to contemporary CNNs with many layers. All these 

networks can be extended, updated, or replaced easily. Larger NNs might be favorable to 

maximize the classification accuracy while smaller models allow for real-time applications. 

Facilitating AID, label-free cell sorting for neutrophils from human blood was already 

demonstrated (Nawaz et al., 2019).  

AID guides the user through the workflow to develop classification models, quantify their 

performance, and apply them to new data. Established methods for image normalization and 

augmentation are integrated. Interactive visualization tools allow a seamless link between 

user-settings and their effect on image data or the training process. Automatic documentation 

of the training process keeps track of all user-settings and model performance progression 

during training. Standard methods for quantification of model performance are embedded. 

Execution of AID is identical on Windows 7 and 10 PCs, allowing for reproducibility, sharing of 

models, and continuation of training using different PC setups. During creation of the 

standalone executable, we focused on achieving compatibility to a broad range of PC systems. 

Therefore, the leveraged DL Python library (TensorFlow) (Abadi et al., 2016) is restricted to use 

the central processing unit (CPU), as implementations to support a graphical processing unit 

(GPU) would lead to a dependency of AID on particular hardware. We demonstrated that 

considerable achievements with NNs are feasible despite the limitation to CPU processing. 

However, as AID is open source it can also be run from script which allows specific GPU 

support. Thus, AID could empower people to use DL for image classification, with implications 

for a wide range of disciplines, from life science to app development.  

Introducing AID using CIFAR-10 and Fashion-MNIST 
We introduced the features of AID using CIFAR-10, a dataset of images commonly used as a 

standard to compare and benchmark image classification methods. We converted the RGB 

images to grayscale in order to train a model that can be re-used (“transfer learning”) for 

grayscale images retrieved from an imaging flow cytometer (RT-DC). Aided by manual 

optimization of hyper-parameters during the training process (Figure 1C), we reached a testing 

accuracy of 81.2%. Despite using a fairly low complex NN with only 4 convolutional layers and 

only grayscale information, our model would reach place 58 at https://benchmarks.ai/cifar-10. 

For comparison, we trained the same architecture using the original RGB images, resulting in 

a testing accuracy of 84.7%, corresponding to place 50 on https://benchmarks.ai/cifar-10. 

Furthermore, to show how models can be re-used, we applied transfer learning to optimize 

CNNgray in order to classify images of ten fashion items (Fashion-MNIST) (Xiao et al., 2017). We 
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obtained 95.1% validation and 93.8% testing accuracy, which to our knowledge is the highest 

testing accuracy ever reported for Fashion-MNIST. It should be noted that we did not develop 

a new NN architecture, but used a published architecture (Nitta et al., 2018) which we trained 

for multiple classification tasks. 

Overall, AID can be used to load published NN architectures and train new models to classify 

both RGB and grayscale images. AID can convert RGB into grayscale upon user request. 

Furthermore, when creating a new NN, AID adjusts the input layer of the model according to 

the channel dimensions and user-defined input image size. Here, image input size is adjusted 

by center-cropping or padding. Currently, only squared input images are supported, but in the 

future rectangular image support will be implemented. Moreover, an interactive confusion 

matrix is displayed when a model is applied to new data (e.g. testing data), allowing the user 

to visualize correctly or incorrectly classified images. 

AID for life science applications and clinical blood diagnostics 

Biomedical research and clinical diagnostics often utilize microscopy imaging, resulting in an 

increasing demand for automated image classification. While large tech-companies such as 

Google (https://deepmind.com/about/health) and Microsoft (https://www.microsoft.com/en-

us/research/project/medical-image-analysis/) have initiated dedicated projects that focus on 

medical imaging, smaller research groups or start-up companies cannot always afford 

specialized staff for data analysis. Furthermore, enabling experts in a respective discipline to 

independently perform image analysis is advantageous for accurate data interpretation. Here, 

we demonstrate three applications where AID can be used in biomedical research: 1) 

quantification of adipogenic differentiation of MSCs from bright-field microscopy; 2) label-

free blood count; and 3) label-free B- versus T-cell discrimination from imaging flow cytometry 

(RT-DC).   

Quantification of adipogenic differentiation of MSCs 

MSCs are a major source of stem cells used in cell therapy (Galipeau and Sensébé, 2018). Their 

differentiation potential is assessed by measuring areas of adipogenic differentiation in an 

MSC layer, which involves cell staining, imaging, and classification of the differentiated areas. 

Currently, computer-based quantification is challenging because of non-uniform staining, 

differences in cell morphology, and staining artifacts (Figure 2B and Figure 2—figure 

supplement 1).  Therefore, we choose to train a NN to perform the detection of differentiated 

areas. More complex NNs have the capacity to learn more image characteristics, but as they 

typically contain more parameters, they tend to overfit (Srivastava et al., 2014). This issue can 

be tackled by increasing the amount of data. Here, due to the limited availability of labelled 

images, we applied a transfer learning approach, which was shown to reduce the need of data 

(Tan et al., 2018). We reached a validation accuracy of 92.1% by first training the model on 

CIFAR-10, and continuing training using the image data from differentiated MSCs. The 

validation results from 8 images confirmed that the model robustly quantified the 

differentiated areas, despite different imaging artifacts (Figure 2D and Figure 2—figure 

supplement 1). Application of this model to a classical research quantification tasked revealed 

that the model returned sensible predictions for new data (Krüger et al., 2020). The 

computational time required for classification (inference time) was approximately 4.5 ms for a 

single tile (32 x 32 pixels) and 0.4 s for a complete image (320 x 320 pixels) on an Intel® Core™ 

i7-6800K CPU (3.4 GHz), rendering this model applicable for high-throughput analysis. It must 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.03.975250doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975250


be noted that AID is currently optimized for image classification problems and is not intended 

for image segmentation. In this study, we trained a binary classifier to predict whether 

individual tiles (32 x 32 pixels) from the entire image (320 x 320 pixels = 100 tiles) contain 

differentiated regions, or not. A more common practice is to train a model to return a 

segmentation map of the same size as the input image, allowing for pixel precise predictions 

(Badrinarayanan et al., 2015; Isola et al., 2016; Ronneberger et al., 2015).  

Label-free blood count 

Whereas manual microscopy can capture approximately 1 image per second, imaging 

cytometers easily speed up this task by a factor of 1000, resulting in considerably larger 

datasets. Here, we highlight the ability of AID to train CNNs on large datasets, by employing 

an imaging flow cytometer, RT-DC, to capture 1.2 million bright-field images of blood cells 

(Figure 3A). Cell subpopulations were gated manually based on brightness and area (Figure 

3B; according to Toepfner et al., 2018) prior to loading into AID and performing training. This 

gating strategy implies that blood cell classification could be performed using area and 

brightness alone, however, these gates are not suitable for an automated classification 

strategy. This is due to the fact that brightness levels are highly dependent on experimental 

settings, such as focal plane, and therefore the brightness vs. area gate needs to be adjusted 

for each measurement. Our final CNN-based classification, in contrast, was trained to be robust 

to such technical alterations. Several image augmentation methods were used during training, 

including changes in orientation (rotation) and brightness levels to ensure robustness of the 

model. The final model was applied to classify RT-DC data from 17 individual whole blood 

measurements. The resulting blood count was very similar to a conventional clinical blood 

count (Figure 3C) indicating that the model is not influenced by mislabeled cells. This is 

expected since DL algorithms were shown to be robust against labelling noise, especially when 

using large datasets (Rolnick et al., 2017). The inference time for a single image is 

approximately 1 ms, corresponding to a prediction rate of 1,000 cells/s. which matches the 

image acquisition rate of RT-DC. Thus, in principle the model can be applied for on-the-fly 

prediction. RT-DC in combination with DL could complement the conventional whole blood 

count as we were also able to distinguish single red blood cells (RBCs) and assemblies of RBCs 

(doublets). RBC aggregates could be used as a diagnostic marker since their appearance is 

correlated to infection through increased fibrinogen concentration (Brust et al., 2015; Kamath 

and Lip, 2003). Furthermore, RBC aggregation is linked to erythrocyte sedimentation rate (ESR), 

which is a widely used marker to diagnose inflammatory or pathophysiological conditions 

(Bochen et al., 2001).   

Label-free discrimination of B- and T-cells  

Finally, we were able to train a CNN to distinguish B- and T-cells without label in RBC-depleted 

blood. We used transfer learning by loading the previously trained CNNgray into AID and 

continued training using RT-FDC images of B- and T-cells. While CNNgray was trained on a very 

different image dataset, elementary image features such as edges or corners also exist. Such 

simple image features are described by the first convolutional layer (Zeiler and Fergus, 2013) 

and we decided to omit this layer from training. AID offers this option within its user-interface. 

This strategy reduces the risk of overfitting and lowers the computational time since less 

parameters need to be updated during training. We continued training over the course of one 

month to promote a model with highest validation accuracy possible, demonstrating stable 

execution of AID for long run-times. Our results show that the classification performance of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.03.975250doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975250


AID is at least similar to other publications showing labfel-free discrimination of B- and T-cells 

(Nassar et al., 2019; Yoon et al., 2018, 2017). These results suggest feasibility of label-free 

image-based discrimination of B- and T-cells, which could again be used to complement blood 

cell counts. Conventional methods for classifying these cells involve fluorescent labelling and 

sorting which are time-consuming and costly. Moreover, molecular labelling involves the risk 

of contamination, limiting the use of the cells after sorting. Given the large margin between 

the predicted probabilities of B- and T-cells (Figure 4C), combining label-free image-based 

sorting and this model could result in highly pure B- or T-cells samples. Promising technologies 

to perform this task were introduced recently (Nawaz et al., 2019; Nitta et al., 2018). 

In conclusion, we present a software tool which drastically increases the accessibility of AI-

based image classification to non-experts. AID can handle RGB and grayscale images in small 

and large datasets and has state-of-the-art techniques for improved training of NNs, such as 

image augmentation and transfer learning already implemented. We have demonstrated the 

power of AID for obtaining robust classifiers for multiple use-cases covering a wide spectrum 

of applications. This shows that AID is ready to be applied by anyone to image classification 

problems in life science and beyond. 

 

Materials und Methods 
Computer equipment and software 
AIDeveloper (AID) is open source (https://github.com/maikherbig/AIDeveloper). AID was 

written in Python 3.5 using PyQT (package for graphical user interface), Keras (https://keras.io/) 

and TensorFlow (Abadi et al., 2016) (packages for deep learning) and several further open 

source Python packages (Supplementary file 1). We used PyInstaller to freeze AID to a 

standalone executable, running on Windows 7 and 10 PCs. While TensorFlow can be installed 

to support graphical processing unit (GPU) usage, such an installation would then depend on 

particular GPU hardware, limiting the compatibility of AID with other PC systems. Hence, we 

restricted the frozen AID software to use CPU implementations of TensorFlow, which was 

exclusively used throughout this work. For training neural nets, we used a PC system with an 

Intel® Core™ i7-3930K CPU @ 3.2 GHz and 32 GB RAM. 

CIFAR-10 
CIFAR-10 is a labelled dataset containing 60,000 RGB-images of 10 different classes 

(Krizhevsky, 2009). We downloaded the dataset from https://pjreddie.com/projects/cifar-10-

dataset-mirror/. In this dataset, 50,000 images are dedicated to training and 10,000 to testing. 

We picked 200 random training images of each class to create a validation set. To convert 

images to grayscale, AID uses the luminosity method, which performs a weighted average of 

the channels of an RGB image, accounting for the higher sensitivity of the human eye to green 

color: gray=0.21×R+0.72×G×0.07×B. 

Mesenchymal stromal cell isolation, culture, differentiation and dataset acquisition  
MSC isolation was performed in compliance with the Declaration of Helsinki. Bone marrow 

(BM) aspirates were taken from healthy volunteer donors, after obtaining informed written 

consent, and cells were isolated (ethical approval no. EK221102004, EK47022007) according to 

a previously reported method (Majumdar et al., 1998). In brief, BM aspirates were diluted in 

phosphate buffered saline (PBS, Sigma-Aldrich, Germany) at a ratio of 1:2 and a density 
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gradient centrifugation (2,000 g for 15 min at room temperature) using a 20 mL aliquot layered 

over a 1.073 g/mL Percoll solution (Biochrom, Berlin, Germany). The fraction of mononucleated 

cells (MNCs) were transferred to a cell culture flask in MSC medium. MSC medium was 

prepared using Dulbecco’s modified Eagle medium (DMEM) with glucose and L-glutamine 

(BioWhittaker® DMEM Culture Media, VWR, Dresden, Germany) and 10% foetal calf serum 

(FCS). MSCs were detached using trypsin and transferred to 3 wells of a 6-well culture plate. 

Adipogenesis differentiation was induced when cells reached 80% confluency as previously 

described (Oswald et al., 2004). Briefly, adipogenesis was induced with 1 µmol/L 

dexamethasone, 0.5 mmol/L 3-isobutyl-1-methylxanthine, 100 µmol/L indomethacin, 

10 µmol/L insulin (Sigma-Aldrich, St. Louis, USA) and 10% FCS in DMEM for 14 days. All 

cultures were kept at 37 °C with 5% CO2 in a water-jacked incubator. Medium changes were 

performed weekly. For histological visualization differentiated cells were fixed with 4 % 

paraformaldehyde (Merck KGaA, Darmstadt, Germany) in PBS. Adipogenic differentiation was 

assessed by Oil Red O staining with 0.1% Oil Red O solution (Sigma-Aldrich, St. Louis, USA), 

followed by five washes with distilled water. To generate the image dataset an inverted 

microscope (Axiovert 25, Carl-Zeiss, Jena, Germany) equipped with a digital camera (Olympus 

E330, Olympus, Hamburg, Germany) was used. Images from 5 different positions of each well 

were taken (Figure 3A, B).  

Labeling was performed by an expert marking each pixel that corresponded to an area of 

differentiated cells, resulting in a pixel precise map. In total, 46 images from 16 different donors 

were labelled. 38 labeled images were used for training and the remaining 8 images for 

validation. Each original image of 320 x 320 pixels in size was partitioned into 100 tiles of 

32 x 32 pixels. The chosen size of 32 x 32 pixels approximately meets the size of the objects 

and also reflects a compromise between large tiles which would often contain several objects 

and single-pixel-tiles that would prevent a model from learning about the morphology of the 

objects. A tile was assigned to class 0 (“without differentiation”), if it contained less than five 

marked pixels or to class 1 (“with differentiation”) if it contained more or equal to 5 pixels. 

After equally partitioning all images, tiles of class 1 were clearly under-represented. Therefore, 

more tiles from random locations containing more than 4 marked pixels were added. This 

strategy helps to balance the dataset and allows to obtain tiles with objects at various locations 

in the image. The latter can help to train a more translation invariant model. 

Real-time fluorescence and deformability cytometry for blood  
Real-time deformability and fluorescence cytometry was performed as described elsewhere 

(Otto et al., 2015; Rosendahl et al., 2018). Briefly, a microfluidic chip made from 

polydimethylsiloxane (PDMS, SYLGARD®, Dow Corning, USA) was mounted on an inverted 

microscope (Observer Z1, Zeiss, Jena, Germany) equipped with an LED (CBT-120, Luminus 

Devices, USA) and a high-speed camera (EoSens CL MC1362, Mikrotron, Unterschleißheim, 

Germany). Two syringe pumps (NemeSyS, Cetoni, Germany) were used to deliver suspended 

cells and sheath fluid into the chip at a total flow rate of 0.06 µL/s. Cells were captured inside 

a constriction channel of 20 µm x 20 µm cross-section (Figure 4A). For suspending cells, a 

measurement buffer (MB) based on Mg2+-and Ca2+-free PBS, supplemented with 0.6% (w/w) 

methylcellulose, was used. 

For preparation of whole blood samples, venous blood was drawn from human donors using 

a 20-gauge multifly needle into sodium citrate tubes (S-Monovette® 10 mL 9NC, Sarstedt, 
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Germany) by vacuum aspiration. Whole blood samples were prepared by diluting 50 µL of 

whole blood in 950 µL of MB as previously published  (Toepfner et al., 2018).  

To prepare RBC-depleted blood samples, 2 mL of a 6% dextran solution (Dextran T500, 

Pharmacosmos A/S, Denmark) diluted in sodium chloride (0.9% Sodium Chloride Irrigation, 

Baxter Healthcare, Switzerland) was added to 10 mL of whole citrated blood. After gentle 

mixing, RBCs were allowed to sediment for 30 min (Bøyum, 2008; Quach and Ferrante, 2017). 

The supernatant was transferred to a 10 mL tube and centrifuged for 10 min at 120 g (Universal 

30RF, Hettich, Switzerland). After removing the cell-free plasma, the pellet was resuspended in 

2 mL MB.   

For B- and T-cell classification fractionated blood was used. Blood aspirates were diluted in 

PBS at a ratio of 1:5, followed by a density gradient centrifugation (2000 g for 15 min at room 

temperature) using a 20 mL aliquot layered over a 1,073 g/mL Percoll solution (Biochrom, 

Berlin, Germany). The MNC fraction was washed once in PBS and 100 µL aliquots were used to 

stain B-cells using an antibody against CD19 (coupled to allophycocyanin; APC), T-cells using 

anti-CD3 (coupled to fluorescein; FITC) and NK-cells, as a subset of T-cells using anti-CD56 

(coupled to phycoerythrin; PE). Cells were washed in PBS and finally resuspended in MB. Real-

time fluorescence and deformability cytometry (RT-FDC) was performed as described 

elsewhere (Rosendahl et al., 2018). Briefly, cells were flushed through a constriction in a 

microfluidic chip at a flowrate if 0.06 µL/s. A laser sheet was projected into the middle of the 

channel. When cells passed through the sheet, three lasers (488nm, 561nm, 640nm) excited 

the fluorescence signal and the fluorescence intensity was measured by dedicated detectors; 

resulting in three 1D-fluorescence traces for each cell. Here, we used the maximum peak-

height of the fluorescence traces to quantify whether the corresponding cell is expressing a 

particular fluorescent marker. Since bright-field image and fluorescence acquisition are 

synchronized, the fluorescence information can be used as ground truth to label each image.  

All studies complied with the Declaration of Helsinki and involved written informed consent 

from all participants. Donors were recruited at the University Medical Centre Carl Gustav Carus 

Dresden and ethics for experiments with human blood were approved by the ethics committee 

of the Technische Universität Dresden (EK89032013, EK458102015).  
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Supplementary Figures 

 

Figure 1—figure supplement 1: Screenshots of the graphical user interface (GUI) of AID 

Intuitive elements allow the user to load data, select a neural net, and set hyper-parameters. 

(A) Main user interface of AID which shows a table of the loaded data and allows the user to 

define classes and which dataset belongs to training and validation set. Definition of the model 

is performed by choosing an architecture and input image size in corresponding GUI elements. 

(B) Real-time visualization of the progress during training of a specific model showing accuracy 

(red) and validation accuracy (cyan). 
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Figure 1—figure supplement 2: Sketches of neural nets (NN) that are implemented in 

AIDeveloper. 

Each coloured box represents an individual layer of the network. Input layers in AID currently 

only accept squared images with either one (grayscale) or three channels (RGB image). The 

output layer always consists of a fully connected layer including as many nodes as different 
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output classes and a softmax activation layer  (Goodfellow et al., 2016, p. 184). Fully connected 

layers are abbreviated ’Dense’ and the number of nodes is given. In all shown NNs, rectified 

linear units (ReLU) are used as activation function. Convolutional layers are abbreviated ‘Conv.’ 

and the number of convolutional filters and the filter-size is given. Dropout layers are shown 

including their respective dropout rate. Downsampling is achieved using maxpooling layers 

and the pooling size is shown. Arrows indicate skip-connections, which bypass the main thread 

of the NN and either add or concatenate their data back to the NN in a subsequent layer. 
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Figure 1-figure supplement 3: Transfer learning approach for Fashion-MNIST 

(A) The image shows a training process for the classification of fashion items from the Fashion-

MNIST dataset. Here, transfer learning was applied by re-using a model (CNNgray) previously 

trained on CIFAR-10. The red line (acc) shows the rolling median of the accuracy (window 

size = 10 training iterations) and light red indicates the accuracy of individual epochs. The blue 

line (val_acc) shows the corresponding rolling median of the validation accuracy and light blue 

indicates the validation accuracy of individual epochs. The model with the highest validation 

accuracy (95.1%) was applied to the testing set resulting in a testing accuracy of 93.8%. (B) The 

confusion matrix shows the performance of the final model on the testing set. The model 

appears to have most difficulties in distinguishing “Top” and “Shirt” (highlighted in orange).   
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Figure 2—figure supplement 3: Adipocyte detection in validation images  

The micrographs of MSC layers induced to differentiate into the adipogenic direction highlight 

the image colour and Oil Red O staining variability. Regions in the image containing 

differentiated adipocytes were marked by an expert (True label, left column). The trained neural 

net was applied to predict those regions (Predicted label, right column). Scale bars = 50 µm.   
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Supplementary file 1: Python libraries used 

Name Version Build 

_tflow_select 2.2.0 eigen 

absl-py 0.4.1 py35_0 

altgraph 0.16.1 <pip> 

astor 0.7.1 py35_0 

blas 1 mkl 

ca-certificates 2018.12.5 0 

certifi 2018.8.24 py35_1 

dclab 0.10.5 <pip> 

dis3 0.1.3 <pip> 

et_xmlfile 1.0.1 py35h2c13def_0 

fcswrite 0.4.1 <pip> 

future 0.17.1 <pip> 

gast 0.2.0 py35_0 

grpcio 1.12.1 py35h1a1b453_0 

h5py 2.8.0 py35h3bdd7fb_2 

hdf5 1.10.2 hac2f561_1 

icc_rt 2019.0.0 h0cc432a_1 

icu 58.2 ha66f8fd_1 

imageio 2.4.1 <pip> 

intel-openmp 2019.1 144 

jdcal 1.4 py35_0 

jpeg 9b hb83a4c4_2 

keras 2.2.2 0 

keras-applications 1.0.4 py35_1 

keras-base 2.2.2 py35_0 

keras-preprocessing 1.0.2 py35_1 

keras2onnx 1.4.0 <pip> 

libpng 1.6.36 h2a8f88b_0 

libprotobuf 3.6.0 h1a1b453_0 

macholib 1.11 <pip> 

markdown 2.6.11 py35_0 

mkl 2018.0.3 1 

mkl_fft 1.0.6 py35hdbbee80_0 

mkl_random 1.0.1 py35h77b88f5_1 

npTDMS 0.13.0 <pip> 

numpy 1.15.2 py35ha559c80_0 

numpy-base 1.15.2 py35h8128ebf_0 

onnx 1.5.0 <pip> 

onnxconverter-

common 1.4.2 <pip> 

openpyxl 2.5.6 py35_0 

openssl 1.1.1a he774522_0 

pandas 0.24.0 <pip> 

patsy 0.5.1 <pip> 
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pefile 2018.8.8 <pip> 

Pillow 5.4.1 <pip> 

pip 10.0.1 py35_0 

protobuf 3.6.0 py35he025d50_0 

PyInstaller 3.5.dev0+80bd962c3 <pip> 

pyqt 5.9.2 py35h6538335_2 

pyqtgraph 0.10.0 py35h28b3542_3 

python 3.5.6 he025d50_0 

python-dateutil 2.7.5 <pip> 

pytz 2018.9 <pip> 

pywin32-ctypes 0.2.0 <pip> 

pyyaml 3.13 py35hfa6e2cd_0 

qt 5.9.7 vc14h73c81de_0 

scikit-learn 0.20.0 py35heebcf9a_1 

scipy 1.1.0 py35h4f6bf74_1 

setuptools 40.2.0 py35_0 

sip 4.19.8 py35h6538335_0 

six 1.11.0 py35_1 

sqlite 3.26.0 he774522_0 

statsmodels 0.9.0 <pip> 

tensorboard 1.10.0 py35he025d50_0 

tensorflow 1.10.0 eigen_py35h38c8211_0 

tensorflow-base 1.10.0 eigen_py35h45df0d8_0 

termcolor 1.1.0 py35_1 

tf2onnx 1.4.1 <pip> 

typing 3.6.6 <pip> 

typing-extensions 3.7.2 <pip> 

vc 14.1 h0510ff6_4 

vs2015_runtime 14.15.26706 h3a45250_0 

werkzeug 0.14.1 py35_0 

wheel 0.31.1 py35_0 

wincertstore 0.2 py35hfebbdb8_0 

xlrd 1.1.0 py35_1 

yaml 0.1.7 hc54c509_2 

zlib 1.2.11 h62dcd97_3 
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