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Abstract7

Motivation: The established high-throughput RNA-seq technologies usually produce paired-end8

reads. A challenging problem is therefore to computationally infer the alignment of entire fragments9

given the alignment of the two mate ends. Solving this problem essentially provide longer RNA-seq10

reads, and hence benefits downstream RNA-seq analysis.11

Results: We introduce Coral, a new tool that can accurately bridge paired-end RNA-seq reads. The12

core of Coral is a novel optimization formulation that can capture the most reliable bridging path while13

also filter out false paths. An efficient dynamic programming algorithm is designed to calculate the top14

N optimum. Coral implements a consensus approach to select the best solution among the N candidates15

by taking into account the distribution of fragment length. Coral is modular, can be easily incorporated16

into existing RNA-seq analysis pipeline. We show that Coral can improve transcript assembly by a large17

margin: on average over 2377 RNA-seq samples from GTEx, the improvement (measured with adjusted18

precision) is 7.5% and 11.2% when Coral is incorporated with StringTie and Scallop, respectively.19

Availability: Coral is open-source, freely available at GitHub (https://github.com/Shao-Group/coral)20

and Bioconda. Scripts, datasets and documentations that can reproduce all experimental results in this21

paper are available at https://github.com/Shao-Group/coraltest.22
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1 Introduction24

The established high-throughput RNA sequencing technologies (RNA-seq) enables global and accurate mea-25

surement of isoform-level gene activities. The second generation RNA-seq (i.e., short-reads RNA-seq) usu-26

ally produces paired-end reads, which report the sequences of the two ends of a fragment, while ignore the27

middle portion of the fragment (if the two ends cannot cover the entire fragment). The fact that the two ends28

are from the same fragment and that the length of fragments follows a certain distribution (through fragment29

size selection) provide valuable long-range information in determining complicated splicing variants. Such30

paired-end information has been widely used in various RNA-seq analysis tasks to improve accuracy, includ-31

ing splicing-aware alignment (e.g., STAR [1], HISAT [2], SpliceMap [3]), expression quantification (e.g.,32

Salmon [4], kallisto [5], RSEM [6]), assembly (e.g., StringTie [7], TransComb [8], Scallop [9]), fusion de-33

tection (e.g., FuSeq [10], STAR-Fusion [11], SQUID [12]), and splicing quantification (e.g., DARTS [13],34

leafCutter [14]), among many other tools and software.35

We explore the problem of computationally inferring the entire fragments given their sequenced two ends.36

We do this in a reference-based setting: given the alignment of the two sequenced ends to a reference37

genome, to infer the alignment of entire fragments. Such computational inference is possible, as we expect38

that most of the splicing junctions can be detected by spliced reads (a reference annotation can supplement39

missing splicing junctions to some extent), and the alignment of entire fragments can be obtained by travers-40

ing the splicing junctions to bridge their two ends. More specifically, the splicing junctions can be organized41

with a splice graph, in which each vertex corresponds to a (partial) exon and each edge corresponds to a42

splicing junction (see details in Methods and Figure 1). The alignment of the two mate ends e1 and e2 of a43

fragment can then be represented as two paths p1 and p2 in the splice graph, and the alignment of the entire44

fragment can be inferred by finding an appropriate path p that connects p1 and p2 in the splice graph (path45

connecting p1, p, and p2 gives the alignment of the entire fragment).46

Several challenges exist in above computational inference. First, because of the complicated mechanism47

of alternative splicing and dynamic nature of transcription and mRNA degradation, many different types of48

splicing junctions will be captured by RNA-seq reads. According to our experiments, in many gene loci,49

thousands of different splicing junctions can be observed (a majority of them are with low abundance). The50

number of possible bridging paths are exponential in the number of junctions, which results in a huge search51

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.03.975821doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.03.975821
http://creativecommons.org/licenses/by-nc-nd/4.0/


space when determining the optimal solution. Second, sequencing errors and alignment errors produce false52

junctions, which therefore introduces false bridging paths and further enlarges the search space. Third, it53

remains open what is a good characterization of the true bridging paths; in other words what the objective54

function should be when this task is formulating as an optimization problem. Fourth, the distribution of55

fragment length provides information in deciding false bridging paths, but such information is noisy and56

weak, and how to make use of it remain challenging.57

Although many RNA-seq analysis tools use paired-end information in some way, limited efforts have been58

made to directly and explicitly infer the alignment of entire fragments. Existing method for this purpose59

includes MapPER [15]. MapPER implements a probabilistic framework: starting from splicing junctions of60

all end reads, MapPER constructs potential splicing paths connecting paired-end reads; an expectation max-61

imization method assigns likelihood values to all splice junctions and assigns the most probable alignment62

for each fragment. MapPER has been shown improving junction detection.63

In this paper, we present a new method, called Coral, for bridging paired-end RNA-seq reads. In Section 2,64

we propose a novel formulation for this task and devise an efficient algorithm. We also design a new method65

using voting to make use of the length distribution to obtain more robust inference. In Section 3, we use66

extensive experimental studies to show that Coral can significantly improve transcript assembly. Conclusion67

and future directions are described in Sections 4 and 5.68

2 Methods69

We formulate the task of bridging paired-end reads as a new optimization problem, and designed an efficient70

algorithm. In Section 2.1, we describe the formulation and the algorithm. In Section 2.2, we describe its71

extension when the reference annotation is provided. In Section 2.3, we describe a new method that can72

correct the errors in the alignments based on the algorithm given in Section 2.1. Throughout this section, we73

use “read” to refer to an individual sequencing end, and use “fragment” to refer to a pair of mate ends (i.e.,74

paired-end reads).75
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2.1 Formulation and Algorithm76

The input for Coral is standard RNA-seq alignment in sam/bam format. Coral first groups fragments into77

gene loci: reads that overlap on their alignment coordinates will be assigned to the same gene locus, and78

Coral makes sure that the two ends from the same fragment (which will have the same ID in the sam/bam79

file) will be assigned to the same gene locus. Each gene locus will be treated as independent instances and80

solved independently with the algorithm given below.81

In each gene locus, junctions will be extracted from spliced reads. The collected set of splicing coordinates82

will be used to partition the reference genome into continuous segments, called partial exons. We use the83

well-known splice graph to represent the partial exons and junctions in a single gene locus (see Figure 1):84

each partial exon corresponds to a vertex, and each junction corresponds to a direct edge that connects its85

two corresponding exons. Two additional vertices, source s and sink t, are added and connected to possible86

starting and ending partial exons. The abundance of an edge is calculated as the number of reads that87

contains the corresponding junction.88

1 2 3 4 5 6

s 1 2 3 4 5 6 t
5 3 3 4 2 2 3

2 1 2

Figure 1: Example of the reads alignment in a gene locus (upper part). Reference genome are portioned into
partial exons (numbered from 1 to 6) using the splicing coordinates. Lower part shows the corresponding
splice graph; the abundance of each edge is given next.

With the splice graph, each read will be then represented as the list of the vertices to which it is aligned, and89

each fragment will be then represented as a pair of lists corresponding to its two ends. We then cluster all90

fragments into equivalent classes: fragments that are represented as exactly the same pair of lists from an91

equivalent class. An equivalent class is also represented as a pair of lists of vertices of the splice graph.92

Let G= (V,E) be the corresponding splice graph of a gene locus. Let A= ((a1,a2, · · · ,am),(b1,b2, · · · ,bm′))93

be an equivalent class. The problem of bridging a fragment f in A is therefore to find a path from am to b194

in the splice graph G. Such path, called bridging path, infers the alignment of the unsequenced portion of95

fragment f . We assume that, all fragments in A have identical bridging path. This is because fragments in96
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an equivalent class are similar, as their two ends are aligned to the same list of vertices. Algorithmically,97

this assumption allows us to reduce computational efforts (as all fragments can be bridged in a single run,98

rather than bridging them individually) while also enables a robust voting scheme to select the best bridging99

path from a set of candidates by integrating distribution of fragment length (see below).100

Our core algorithm to bridge all fragments in an equivalent class A = ((a1,a2, · · · ,am),(b1,b2, · · · ,bm′))101

consists of two steps, nominating and voting. The nominating step computes a set of candidate bridging102

paths from am to b1 in G, and the voting step selects one through a consensus approach with the fragment103

length distribution.104

We formulate the nominating step as a new optimization problem and then design an efficient algorithm. We105

start from defining a full ordering for all possible bridging paths. Let p1 and p2 be two arbitrary paths from106

am to b1 in G. Let wi
1 (resp. wi

2) be the ith smallest edge abundance among all edges in path p1 (resp. p2). We107

say p1 is more reliable than p2, if there exists an integer k such that wi
1 = wi

2, for all 1≤ i < k, and wk
1 > wk

2.108

(More formally, each bridging path is represented as the sorted list of its edge abundances in ascending109

order; then bridging paths are sorted in lexicographical order.) Our formulation for the nominating step is110

to find N most reliable paths from am to b1 in G (i.e., the first N bridging paths in the lexicographical order),111

where N is parameter of Coral (default value is 10).112

The intuition of above formulation is to find a set of bridging paths such that the abundances of their bottle-113

neck edges (i.e., edges with smallest abundances) are as large as possible (if the smallest abundances are the114

same, we select ones whose second smallest is maximized, and so on). This formulation has two advantages.115

First, by maximizing bottleneck abundances, the bridging paths are supported strongest, and hence are more116

likely to be true bridging path. Second, through this formulation, paths with false splicing junctions, which117

are usually due to alignment errors and have low abundances, can be automatically excluded, and therefore118

false bridging paths can be efficiently avoided.119

This formulation satisfies the optimal substructure property: if am→ vi1 → vi2 → ··· → vik → b1 is the most120

reliable path from am to b1, then am→ vi1 → vi2 → ··· → vik is the most reliable path from am to vik . Hence,121

a standard dynamic programming can be designed to find the optimal solution. We use an algorithm that122

computes N most reliable paths for all pairs of vertices in G. (They will be stored and be fetched as needed123

when processing each equivalent class.) Specifically, let (v1,v2, · · · ,vn) be a topological sorting of V (this124
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is possible because splice graph is a directed acyclic graph). Given a particular vi, we can use a single run125

to find N most reliable paths from vi to v j for every j > i. To compute these N paths for v j, we examine126

all vertices vk that directly connects to v j, and compare all paths stored in these vertices (each vk already127

stores N most reliable paths from vi to vk at this time point). The best N of them will be kept and after128

concatenating v j they become the N most reliable paths from vi to v j. We run this subroutine for all vi,129

1 ≤ i ≤ n, which gives N most reliable paths for all pairs of vertices in G. The overall running time of this130

algorithm is O(N · |V |2 · |E|). To speed up, instead of maintaining the full list of the edge abundances for131

each path, whose length is O(|V |), in Coral we only store the smallest M edge abundances (M is a parameter132

with default value of 5). This gives an improved running time of O(N ·M · |V | · |E|). Although optimality133

may not be guaranteed, experimental studies show that this heuristic rarely affects the overall accuracy.134

We now describe the voting step. Let A be an equivalent class defined above. The above nominating135

algorithm gives us N candidate bridging paths {p1, p2, · · · , pN} from am to b1. Assume that these N paths136

are sorted (i.e., pi is more reliable than pi+1). We now examine each fragment f in A. For each candidate137

path pi, 1 ≤ i ≤ N, we calculate the actual sequence length of fragment f , denoted as fi, assuming that f138

is bridged with pi. This can be done because once the bridging path of f is given, the alignment of the139

entire sequence of fragment f is fixed and hence the length of its entire sequence can be calculated. If fi140

is within a reasonable range that precomputed in the very beginning of Coral (100,000 paired-end reads141

with unique bridging path will be sampled to compute the empirical distribution of fragment length, and the142

value from percentile 2 to percentile 98 will be used as the reasonable range), then fragment f votes path143

pi; otherwise, we try next best path (i.e., pi+1) and check whether fi+1 is within the reasonable range. In144

other words, each fragment votes the best candidate that leads to a fragment length within the reasonable145

range. Candidate with the largest number of votes will be accepted as the bridging path for the equivalent146

class, and all fragments in it will be bridged using this path. The alignment of the entire fragment will be147

determined following this bridging path and written into the resulting sam/bam file. If none of the candidate148

paths receives any vote, then this equivalent class fails bridging and the original alignments of the individual149

reads will be reported without changing.150
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2.2 Incorporating Reference Annotation151

Coral supports using the reference annotation to improve accuracy, as true junctions might be missed due152

to low coverage, sequencing and alignment errors. If the reference annotation, i.e., a set of known tran-153

scripts, is provided, Coral will first find candidate bridging paths solely based on the annotations (instead154

of running the nominating step described in Section 2.1). Specifically, for each equivalent class A =155

(a1,a2, · · · ,am),(b1,b2, · · · ,bm′)), Coral locates the set of known transcripts T spans both (a1,a2, · · · ,am)156

and (b1,b2, · · · ,bm′), i.e., each transcript in T can bridge all fragments in A. To speed up this process, Coral157

will first create an index for all known transcripts so that such T can be quickly calculated. After having the158

candidate bridging paths, the same voting step will be used to select the final bridging path. If T is empty or159

none of the transcripts in T gets any vote, the algorithm described in Section 2.1 will be then applied.160

2.3 Correcting Alignment Errors161

We propose a novel method to correct alignment errors while bridging (Figure 2). Reads that span a junction162

but flank one side shortly are prone to alignment errors (left red read in Figure 2). Information of paired-end163

can be used to detect and correct such errors. Specifically, Let A = ((a1,a2, · · · ,am),(b1,b2, · · · ,bm′)) be an164

equivalent class that is failed bridging. If the length of the aligned portion on am is small (a tunable parameter165

with default value of 10 basepairs), Coral will then try to bridge A1 = (a1,a2, · · · ,am−1),(b1,b2, · · · ,bm′)).166

Symmetrically, Coral will also examine the length of the aligned portion on b1 and examine whether A2 =167

((a1,a2, · · · ,am),(b2,b3, · · · ,bm′)) or A3 = ((a1,a2, · · · ,am−1),(b2,b3, · · · ,bm′)) can be successfully bridged.168

If so, the corrected alignment will be reported.169

3 Results170

Coral infers the alignment of entire fragments, essentially providing longer aligned reads that can improve171

downstream analysis. Such information is particularly useful in resolving complicated splicing variants of172

the expressed transcripts. Below, we extensively evaluate the effectiveness of Coral in improving transcript173

assembly. The scripts and detailed description on how to reproduce the experimental results and figures in174

this paper are available at https://github.com/Shao-Group/coraltest.175

We follow the workflow illustrated in Figure 3 to evaluate the effectiveness of Coral in improving transcript176
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1 2 3 4 5 6

s 1 2 3 4 5 6 t
5 3 3 3 3 5 5

2

Figure 2: Example of correcting alignments while bridging. One fragment (in red) is in equivalent class
((1,2),(6)). The only bridging path is (2,3,4,5,6), which is most likely beyond the reasonable range of
fragment length. As the aligned portion on segment 2 of the first-end is short, Coral will shorten (1,2) as
(1) and then try to bridge it in equivalent class ((1),(6)), for which there is an additional candidate (1,5,6),
which gives this fragment a sequence length within the reasonable range. Therefore, Coral will report
(1,5,6) as the resulting alignment for this paired-end read, suggesting that the alignment of its first-end is
wrong (its short flanking region should be aligned to segment 5).

assembly. This workflow is configured by 3 factors: the RNA-seq aligner (we experiment two widely-used177

aligners STAR [1] and HISAT [2]), the transcript assembler (we test two recent and leading assemblers178

StringTie [7] and Scallop [9]), and whether a reference transcriptome is provided to Coral (see Section 2.2).179

For each workflow configuration (choice of aligner and assembler), we compare the assembly accuracies180

of the three configurations: without Coral, with Coral and Coral is not provided with reference annotation181

and with Coral and Coral is provided with reference annotation (see blue and red parts of Figure 3). For182

each configuration, the assembler predicts a set of transcripts. We define a predicted transcript is known if183

its intron-chain coordinates exactly match those of an existing transcript in the reference transcriptome. We184

reports two measures, the number of known transcripts (proportional to sensitivity), and precision (defined185

as the ratio between the number of known transcripts and the total number of predicted transcripts). We186

use a third-party tool, gffcompare, to compute these two measures. We use these measures for assembly to187

evaluate the effectiveness of Coral in improving transcript assembly.188

On some samples one configuration obtains higher number of known transcripts but lower precision, or vise189

versa. To still compare the three configurations on such samples, we first balance them in one measure190

and then compare the other. Specifically, let k1, k2, and k3 be the number of known transcripts obtained191

by the three configurations X1, X2, and X3, and p1, p2 and p3 be their corresponding precisions. Assume192

that k1 > k2 > k3. We sort the assembled transcripts obtained by X1 based on the expression abundance,193

and gradually filter out assembled transcripts with lowest abundance. In this way, the known transcripts194

of X1 will decrease while its precision will likely increase (as lowly-expressed ones are more likely to be195
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RNA-seq reads (dataset 1)

aligner (STAR or HISAT)

reads alignment (datasets 2 and 3)

Coral (with or without reference)

bridged reads alignment

assembler (StringTie or Scallop)

assembled transcripts

evaluation: gffcompare

assembly accuracy: precision and recall

Figure 3: Workflow of evaluating the effectiveness of Coral in improving transcript assembly. The three
configurations without and with using Coral (whether reference is further provided) are marked blue and
red, and rose.

false positive transcripts). We calculate the corresponding new measures of X1, denoted as k′1 and p′1, as196

filtering goes, and stop when k′1 = k3. We then report p′1 at this time as the adjusted precision of X1 (now197

the number of known transcripts of X1 becomes k′1 = k3, the same as X3). We do exactly the same balancing198

for X2 to get its adjusted precision of p′2. Note that the relationship between p′1, and p′2 and p3 can therefore199

reflect the overall performance of the three configurations, as their number of known transcripts have been200

adjusted identical. Similarly, we also compute the adjusted known transcripts, through gradually filtering201

out the transcripts with lowest abundance in the two configurations with lower original precision, until202

their (adjusted) precision matches the configuration with highest original precision. This way of comparing203

assembly accuracy has also been used in the Scallop paper [9].204

We use 3 datasets to evaluate Coral following above workflow and evaluation criterion. The first two datasets205

have been used in the Scallop paper [9]: the first dataset contains 10 strand-specific RNA-seq samples from206

ENCODE, and we test them using different aligners (STAR and HISAT); the second dataset contains 50207

strand-specific RNA-seq samples (already aligned) from ENCODE. The third dataset contains 2377 non-208

strand-specific RNA-seq samples (already aligned) from GTEx.209

The original assembly accuracy of the three configurations (i.e., without using Coral, using Coral and run210
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0 5000 10000 15000

Original # Known

SC,HI

SC,SR

ST,HI

ST,SR
Coral w/ ref.
Coral w/o ref.
w/o Coral

0 10 20 30 40

Original Precision (%)

SC,HI

SC,SR

ST,HI

ST,SR

Figure 4: Comparison of the average original assembly accuracy obtained with the 3 configurations over the
10 samples in dataset 1. Abbreviations: ST = StringTie; SC = Scallop; SR = STAR; HI = HISAT.

0 5000 10000 15000

Adjusted # Known

SC,HI

SC,SR

ST,HI

ST,SR
Coral w/ ref.
Coral w/o ref.
w/o Coral

0 10 20 30 40 50 60

Adjusted Precision (%)

SC,HI

SC,SR

ST,HI

ST,SR

Figure 5: Comparison of the average adjusted assembly accuracy obtained with the 3 configurations over
the 10 samples in dataset 1. ST = StringTie; SC = Scallop; SR = STAR; HI = HISAT.

without reference annotation, and using Coral and run with reference annotation) averaged over the 10211

samples in dataset 1 is illustrated in Figure 4. Coral improves both recall (proportional to the number of212

known transcripts) and precision on all combinations of aligners and assemblers used except in one case: for213

the combination of HISAT and Scallop, the precision gets slightly worse (32.2% vs. 31.4%); notice that for214

this combination, the recall gets better, and when one of them is balanced, both the adjusted precision and215

the adjusted recall get improved (Figure 5), suggesting that Coral improves the average transcript assembly216

for this combination (and therefore for all combinations).217

The improvement by using Coral, evaluated with adjusted measures on dataset 1, is illustrated in Figure 5.218

Coral, when run without reference annotation, can improve transcript assembly on all combinations of align-219

ers and assemblers: the improvement in the average adjusted number of known transcripts, computed as the220

ratio between the two configurations, ranges from 2.5% (HISAT + Scallop) to 24.3% (STAR + StringTie),221

and in the average adjusted precision the improvement (computed as the difference between the two con-222

figurations) ranges from 1.8% (HISAT + Scallop) to 19.0% (STAR + StringTie). We note that, when Coral223

is run without reference annotation, the only input of Coral is the given reads alignment (see Section 2.1),224
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0 2000 4000 6000 8000 10000 12000

Original # Known

SC

ST
Coral w/ ref.
Coral w/o ref.
w/o Coral

0 10 20 30 40

Original Precision (%)

SC

ST

Figure 6: Comparison of the average original assembly accuracy obtained with the 3 configurations over the
50 samples in dataset 2. ST = StringTie; SC = Scallop.
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Adjusted # Known

SC

ST
Coral w/ ref.
Coral w/o ref.
w/o Coral

0 10 20 30 40

Adjusted Precision (%)

SC

ST

Figure 7: Comparison of the average adjusted assembly accuracy obtained with the 3 configurations over
the 50 samples in dataset 2. ST = StringTie; SC = Scallop.

and hence such improvement is purely due to the bridging algorithm within Coral. When Coral is run with225

the reference annotation, the improvement is more pronounced: in the average adjusted number of known226

transcripts the improvement ranges from 10.3% to 33.3%, and in the average adjusted precision it ranges227

from 6.7% to 21.4%. This shows that the additional information of annotations together with the bridging228

algorithm that utilize it (described in Section 2.2) can further improve bridging paired-end reads.229

The performance on individual samples in dataset 1 is shown in Supplementary Figures 1–8. When reference230

annotation is not provided to Coral, Coral improves on 38 out of 40 cases considering the 4 combinations231

of aligners and assemblers: the improvement in adjusted precision (i.e., absolute increase) ranges from -232

2.6% to 24.0%, and the improvement in the number of adjusted known transcripts (i.e., ratio) ranges from233

-2.3% to 57.0%. When reference annotation is provided to Coral, Coral improves on 39 out of 40 cases:234

the improvement in adjusted precision ranges from -0.49% to 28.2%, and the improvement in the number235

of adjusted known transcripts ranges from -0.59% to 76.2%.236

The experimental results on the 50 samples in dataset 2 are given in Figure 6 (average original accuracy),237

Figure 7 (average adjusted accuracy), and Supplementary Figures 9–16 (accuracy on individual samples).238

Again assembly accuracy gets improvement when Coral is used in all combinations. For examples, when239

Coral is not provided with reference annotation, the average adjusted number of known transcripts gets240

increased 7.1% and 6.8% for assembler StringTie and Scallop respectively (the numbers are 9.7% and 10.6%241
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Figure 8: Comparison of the average original assembly accuracy obtained with the 3 configurations over the
2377 samples in dataset 3. ST = StringTie; SC = Scallop.
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Figure 9: Comparison of the average adjusted assembly accuracy obtained with the 3 configurations over
the 2377 samples in dataset 3. ST = StringTie; SC = Scallop.

when reference is used in Coral). Over the 100 individual cases (50 samples with 2 assemblers), 98 of them242

gets improved when Coral (without reference) is used, ranging from -0.8% to 25.7% in the adjusted number243

of known transcripts (the range is from 0.5% to 40.3% when reference is used in Coral, i.e., all cases gets244

improved).245

The experimental results on the 2377 RNA-seq samples in dataset 3 are given in Figure 8 (average original246

accuracy), Figure 9 (average adjusted accuracy), and Supplementary Figures 17–24 (distribution of assembly247

accuracy). Similar improvement has been obtained. When Coral is not provided with reference annotation,248

the average adjusted number of known transcripts gets increased 4.9% and 6.1% for assembler StringTie249

and Scallop respectively (the numbers are 7.5% and 11.2% when reference is used in Coral). Over the 4754250

individual cases, all of them get improved when Coral (without reference) is used, ranging from 0.8% to251

21.7% in the adjusted number of known transcripts (the range is from 1.3% to 34.0% when reference is used252

in Coral).253

Coral is fast: the average running time of Coral over the 2377 GTEx samples is 19 minutes (single thread).254

The distribution is given in Figure 10.255
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Figure 10: Distribution of the running time of Coral on the 2377 GTEx RNA-seq samples.

4 Conclusion256

We present Coral, a new tool that can accurately bridge paired-end RNA-seq reads. Our main algorithmic257

contribution is a novel optimization formulation (i.e., to find bridging paths with maximized bottleneck258

abundances) that leads to robust inference. A new consensus approach is introduced to further select from the259

candidates by using the length distribution information. Combined, Coral can efficiently infer the alignment260

of entire fragments.261

Coral is modular, with both input (alignment of paired-end reads) and output (alignment of entire frag-262

ments) being standard sam/bam format. It can be very easily incorporated into existing RNA-seq analysis263

pipeline (i.e., adding one line ./coral -i input.bam -o output.bam). Coral is available at GitHub and264

can also be easily installed with Bioconda. We devote to reproducibility: all the experimental results in this265

paper (and supplementary material) can be reproduced with the scripts available at GitHub.266

5 Discussion267

We showed the effectiveness of Coral in improving transcript assembly. We expect that together with other268

RNA-seq analysis tools, Coral will be able to improve other downstream RNA-seq analysis, for example,269

isoform-level quantification and splicing quantification. More specifically, with the inferred alignment of270

entire fragments, fragments will be less ambiguously aligned to multiple transcripts, and hence improve271
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isoform quantification. Also, with the inferred alignment of fragments, we know the missing junctions in the272

unsequenced portion of the fragment, which can give more accurate estimation of junction abundance (and273

hence improve splicing quantification).274
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