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ABSTRACT  

The CRISPR/Cas9 system derived from bacteria especially Streptococcus pyogenes (SpyCas9) 

is currently considered as the most advanced tool used for numerous areas of biological study 

in which it is useful to target or modify specific DNA sequences. However, low on-target 

cleavage efficiency and off-target effects impede its wide application. Several different sgRNA 

design tools for SpyCas9 by using various algorithms have been developed, including linear 

regression model, support vector machine (SVM) model and convolutional neuron network 

model. While the deep insight into the sgRNA features contributing for both on-target activity 

and off-target still remains to be determined. Here, with public large-scale CRISPR screen data, 

we evaluated contribution of different features influence sgRNA activity and off-target effects, 

and developed models for sgRNA off-target evaluation and on-target activity prediction. In 

addition, we combined both activity and off-target prediction models and packaged them as an 

online sgRNA design tool, OPT-sgRNA. 
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INTRODUCTION 

The clustered regularly interspaced short palindromic repeats (CRISPR) genome engineering technology 

has emerged as a powerful molecular tool for genome editing with promising therapeutic and 

research advancements (1-7). Among the many Crispr and their associated (Crispr-cas) protein 

systems, Cas9 and Cas12a are adopted to use for genome editing. As a single protein adaptor, 

they use small noncoding RNAs as guide to recognize and edit the target sites. The molecular 

mechanism of DNA recognition and cleavage of these systems have been studied in-depth (8-

16). Cas9 from Streptococcus pyogenes (SpyCas9, referred as Cas9 hereafter) are the most 

widely used. By simply changing the sequence of the single-guide RNA (sgRNA), we can easily 

reprogram Cas9 to target different sites in the genome. However, various studies showed that 

CRISPR/Cas9 displayed a wide variety of activities across different target sites, leading to the 

conclusion that some target sites are inherently more effective (17-20). Therefore, screening of 

sgRNAs with maximum on-target activity and minimum potential off-target effects is a glorious 

but challenging task.  

Recently, more than 26 computational approaches have been developed for sgRNA design 

and evaluation (20-24). These tools are designed to assist researchers in the selection of best 

target sites by helping them exclude undesirable targets based on predicted low efficiency or a 

high potential for off-target effects. They could be broadly divided into two groups, on-target 

cleavage efficiency tools (6,25-39) and off-target activity tools (18,28,33,40-51). In the on-target 

cleavage efficiency evaluation tools, researchers focus on identifying the gRNA sequence 

features that contribute to target cleavage efficiency. Despite the differences in their 

mathematical model, some common key rules have been identified. These include a G 

preceding the PAM, avoiding poly-T sequences and limiting the GC content (39,52-54). In 

addition, a PAM-proximal seed region has been established to be critical for Cas9 activity (1,54). 

More recent studies also pay attention to non-sequence information, such as location of the 

sgRNA target site within the gene and the thermodynamic stability of the sgRNA (39,45,55,56). 

In the off-target effect prediction tools, people usually first align the target site to the reference 

genome, and identify similar locations that may be inadvertently targeted by Cas9. These 

potential off-target sites were then evaluated by experimental studies, and to train scoring 
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algorithms, which attempt to predict the potential off-target activity. The two most popular 

scoring algorithms are MIT Broad score (18) and CFD score (33). Both scoring methods are 

based on evaluating the contributions made by different mismatch positions and number in the 

target site, and calculating a weight matrix to determine off-target efficiency of each sgRNA.  

Although much progress has been made for the sgRNA design and evaluation, very few tools 

which could implement both on-target activity and off-target effect evaluation are available. 

Here, we present a new computational tool to combine off-target prediction and on-target 

activity evaluation. We incorporate new computational design rules in both off-target and on-

target scoring algorithm. In addition, we create a web-based tool OPT-sgRNA to enable 

optimized sgRNA design that maximize on-target activity and minimize off-target effects. 

 

METHODS 

Data assembly 

The training dataset for sgRNA off-target evaluation was assembled from published data 

obtained by Keith Joung’s group and Jennifer Doudna’s group using GUIDE-seq methods (57-

59). The data in their experiments are composed of 19 sgRNAs and 753 off-target site pairs in 

total. The training dataset for sgRNA on-target activity effect was downloaded from 

GenomeCRISPR database and chose only one dataset considering batch effect among 

different source (60). In this dataset, Aguirre and colleagues performed genome-scale loss-of-

function screens in 33 cancer cell lines to identify genes essential for proliferation/survival (61). 

From that analysis, essential genes have been discovered. To avoid bias in different cell lines, 

we selected the sgRNA expressing data of A375 cell line with 118,862 sgRNAs targeting 22,329 

genes. In recent studies, researchers found that sgRNA with polyT end with premature of RNA 

and low GC-content end with lower activity. Therefore, sgRNAs with polyT (TTTT) and GC-

content lower than 40% are excluded. In addition, we chose the most potent sgRNAs (top 10% 

in ranking) and the least potent sgRNAs (bottom 10%). In totally, 40,234 sgRNAs targeting 

19,561 genes were used for the training. 

 

Potential sgRNA scanning and corresponding Off-target site searching 
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For a given genes, we first scan its exon and promoter regions with NGG site. SeqMap (62) is 

a tool for mapping large amount of short sequences to genome and designed to find all the 

places in the reference genome where sequence may come from. Each of sgRNA is aligned to 

genome using SeqMap (v 1.0.12) to detect its off-target site with no more than 4 mismatches. 

 

sgRNA activity and off-target prediction model 

With a large number of features (1538), we incorporate an L1-regularized linear support vector 

machine (SVM) to generate subsets of features with the best generalization error. With different 

parameters applied in feature selection (0.01, 0.05, 1), increased features help little to increase 

final model accuracy. Given the subset of features from the feature selection by L1-SVM (240 

of 1538), we implemented several model (Gradient Boosting, Random Forest, Logistic 

Regression, Decision Tree, KNeighbors, Neural Net, Naïve Bayes, linear SVM and RBF SVM) 

and evaluated their performance by 10-fold cross validation. All of the sgRNAs were randomly 

into 10 parts and then nine parts were set as training dataset and the remained part is testing 

dataset. By 10 rounds of training and testing process, all of the accuracy of models were 

calculated by mean of each round. With the AUC (area under curve) of the ROC curve, Logistic 

Regression performed as best model and then applied to calculate weights for each selected 

features. With the weight from Logistic Regression model, sgRNAs activity score can be easily 

computed. A sgRNA with a subset of all the features then transformed to binary variables by 

one-hot encoding. Sj is sgRNA j and ωi is weight of feature i. The activity score of a given sgRNA 

j is provided via logistic regression as: 

𝑔(𝑠j) = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  ∑ 𝜔𝑖  ∗  𝑜𝑛𝑒ℎ𝑜𝑡(𝑠j)

𝑖

 

𝑓(𝑠j)  =  
1

1 + 𝑒𝑔(𝑠j)
 

In the end, sgRNA activity score f(sj) will fall into range of 0 to 1, and higher values means 

higher activity.  

It is known that mismatch is the most important feature decease the effect on off-target sites, 

we perform a linear regression model to detect effects of different regions (the number of 

mismatches in 1-2, 3-8, 9-15, 16-18 and 19-20 nucleotides ahead PAM). For a given sgRNA, 

we use the linear model to predict activity of sgRNAs’ off-target sites one by one and the whole 
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off-target effect is measured by the sum of effect of each off-target site. 

 

Comprehensive library construction 

Human (hg38) and Mouse (mm10) genomes and the corresponding gene annotation files are 

downloaded from NCBI and promoter sequences (upstream2000) are downloaded from UCSC 

genome database. For a given gene, we first scan sgRNAs in its exon and promoter regions 

for PAM sequence on both the forward and reverse strand, and then search off-target sites in 

the remaining regions using SeqMap with mismatches<=4. In all, the major process of sgRNAs 

evaluation can be divided into two parts: first we sort all of sgRNAs by their off-target score and 

choose bottom 100 as the low off-targets sgRNAs. Next, activity score is evaluated by logistic 

regression model and select only top 10 sgRNAs measured by their activity scores. All of the 

available library can be downloaded from our webserver OPT-sgRNA. 

 

RESULTS 

Flow of the sgRNA screening and evaluation procedures 

To overcome the limitations of currently available sgRNA design tools, we designed a new 

online sgRNA predictor——OPT-sgRNA, suitable for editing for human or mouse genome using 

SpyCas9. As seen in Figure 1, for any provided gene name or DNA sequence, OPT-sgRNA first 

scans sequence of all exons by genomic coordinate and their corresponding promoters with 

PAM sequence. sgRNAs with polyT or low GC-content are filtered out before further evaluation. 

Next, for each sgRNA, all of its off-target sites are retrieved by aligning it to whole genome 

excluding regions of query gene by SeqMap (62) with mismatches setting as 4, and then the 

off-target effect is measured by the sum of all off-target site effect evaluated by linear regression 

model. All of sgRNAs are then sorted incrementally by its off-target effect and only top M 

sgRNAs (The default M is 100 and it can be set by user) with lower off-target effect are selected 

for the next activity scoring. sgRNAs scoring process are then started quickly and sgRNAs are 

ordered by their activity, top N sgRNAs with higher activity are presented as output (The default 

N is 10 and it can also be set by user). 
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Evaluation of off-target effect 

Several computational methods already exist to predict off-target sites and/or evaluate the 

specificity of the sgRNAs (18,28,33,41-50). Two main features are used to predict the specificity 

of the sgRNA: number and loci of mismatches, binding energy between sgRNA and target DNA. 

However, previous structural and biochemical studies have shown that the sgRNA-Cas9 

complex could divide target DNA into several distinct regions: linker, seed, middle and tail region 

(8,10,12,15). Our previous biochemical studies showed that the mismatch between sgRNA and 

target DNA in these regions show very different effect on target cleavage efficiency (15). 

Therefore, previous simple number of mismatches feature is too crude for the accurate 

evaluation. Here we use the GUIDE-Seq dataset from Keith Joung group and Jennifer Doudna 

group to perform off-target effect training (58,59). The dataset contains 753 off-target 

sequences reported for 19 different gRNAs. We choose number of mismatches in 5 different 

regions as factors to training the off-target prediction model (Figure 2). It could be found that 

when the number of mismatches is higher than 4, the cleavage activity of Cas9 decreased 

significantly (Figure 2A). And as we expected, the position of mismatch is also a very important 

parameter to evaluate the specificity of sgRNAs. The seed region shows the most significant 

effect on target cleavage (Figure 2C). We next constructed a new Linear Regression model to 

calculate the off-target score of a specific off-target site (Figure 2D).  

 

sgRNA activity evaluation and selection 

After classification of potential off-target sites, candidate sgRNAs with minimized off-target 

effects can be further evaluated by their activity. As seen in Figure 3, The sgRNA activity dataset 

contains 118,862 sgRNAs targeting 22,329 genes. SgRNAs with polyT (TTTT) and GC-content 

lower than 40% are excluded and only the most potent sgRNAs (top 10% in ranking) and the 

least potent sgRNAs (bottom 10%) are selected as finally sgRNA dataset. In all, there are 19561 

genes with 40234 sgRNAs. Next, features such as single nucleotide, neighboring di-nucleotides 

and tri-nucleotides, GC-content are extracted and transformed by one-hot coding (Figure 3, 

right panel) for feature selection by L1-SVM. Finally, 10-folds cross validation performed for 

model selection. To build an efficient prediction model, we need to select important features 

and discard all irrelevant features. There are various existing machine learning methods such 
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as wrapper or filter method that we can apply to do this job. With L1-SVM applied to feature 

selection, number of features deceases from 1538 (original) to 240 (finally). It’s interesting that 

accuracy does not increase with more features used (parameters set as 0.1, 0.05, 0.01) (Figure 

S1, Figure 4A). Considering different models applied in recent sgRNA selection tools, we train 

each model on selected features and evaluate their performance by 10-fold cross validation. 

By all, the logistic regression classifier performs as the best model (accuracy and robustness) 

to predict sgRNA activity accurately.  To our surprise, in addition to single- or di-nucleotides 

preferences as reported before (Figure S2) (54,55). We also observed tri-nucleotides 

preference in our model (Figure 4B). 

 

Webserver 

We next created a webserver to package these two models for sgRNA selection as a web tool: 

OPT-sgRNA, a user-friendly website for sgRNA selection (Figure 5, 

http://bigdata.ibp.ac.cn/OPT-sgRNA/). It composes of sgRNA searching and pre-constructed 

libraries downloading. The web portal of OPT-sgRNA accepts more than one gene symbol or 

sequence as FASTA format as input, it helps user to design self-library with selected genes. 

Users can also set the desired numbers of off-target site to be evaluated and output of 

candidate sgRNAs, and select sgRNAs either Homo sapiens or Mus musculus. The 

background gene sequences are based on genome assembly hg38 (for human) and mm10 (for 

mouse), while pre-constructed libraries covering about 50,000 genes with 10 sgRNAs for each 

gene both for human and mouse are ready to be downloaded. The web portal is developed 

using in HTML and CSS scripts and implemented in Python based on the Django web 

framework, all of the backend scripts are written in Python programming language as well. 

 

DISCUSSION 

A successful sgRNA in any CRISPR/Cas9 genome editing experiments must maximize on-

target activity and minimizing potential off-target effects at the same time. Therefore, 

computational tools for the prediction of on- and off-targeting assessment of sgRNAs is a crucial 

step for the efficient design of experiments. Although sevral tools have been developed for the 
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design of sgRNAs and prediction of their off-target sites, they still could not robustly predict 

experimental success as prediction accuracy depends on the approximations of the underlying 

model and how closely the experimental setup matches the data the model was trained on.  

In this work, we described a new open-source computational tool named OPT-sgRNA to 

design efficient sgRNAs with optimized target efficiency and specificity. There are several off-

target prediction algorithms including CFD score, MIT score, CROP-IT score, CCTop score and 

Evaluation score. All of them are based on mismatches between sgRNA and target DNAs, and 

higher scores mean this sequence are more likely to be a true target site. Evaluation score is a 

penalized linear regression model based approach, and focus on mismatches (position and 

identity) and also including chromatin accessibility features. CCTop and CROP-IT are based on 

the distances of the mismatches to the PAM and CROP-IT incorporate penalty score for 

consecutive mismatches. We incorporated a new feature in the off-target effect evaluation: 

position weight of the mismatch sites. We found that 3-8 nt adjacent to PAM are the most 

important sits to despair sgRNAs activity. For the on-target activity scoring, we used random 

forest algorithm for feature selection. After feature filteration, only 240 features are incorporated 

in our model selection. And we observed several tri-nucleotides preference in in the middle of 

the sgRNA. Our optimized sgRNA design model provides a new method for the optimal design 

of efficient sgRNA and may improve the accuracy of sgRNA prediction. 
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Figure 1. The scheme of OPT-sgRNA design tool. A list of gene symbol or sequence in 

fasta format could be used as the input for OPT-sgRNA. The number of genes or 

sequences is not limited. First, OPT-sgRNA performs PAM scanning for the given 

sequences or retrieves sgRNAs for the given genes in pre-constructed sgRNA pool(hg38, 

mm10). Second, OPT-sgRNA ranks all of the sgRNA candidates and then starts the 

evaluation. Off-target sites will be detected along genomes excepts target gene region with 

no more than 4 mismatches between off-target site and specified sgRNA. All of the off-

target sites aggregated as an off-target score and sgRNAs sorted by off-target score in 

increasing manner, top M sgRNAs activity are evaluated and top N sgRNAs will be output 

to the interface (M and N are default by 100 and 10, respectively. Both M and N can be set 

by user). 
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Figure 2. The impact of mismatch position on the off-target effect. (A) Cleavage efficiency 

of 19 sgRNAs on 753 off-target sites with different numbers of mismatches. The sgRNA 

and off-target site pair with 6 or more mismatches is rarely observed. (B) Number of 

mismatches in different regions. sgRNA can be separated into 5 different regions with 

discriminate effect to target activity and off-target specificity. The number of mismatches is 

shown in x-axis, y-axis is the observed density of number of mismatches. (C) The weight 

of different mismatch loci depicted with linear regression model. (D) The off-target 

evaluation model. For a given pair of sgRNA and off-target site, the number of mismatches 

in the specified regions is extracted and off-target activity will be calculated.  
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Figure 3. The training and evaluation workflow of the sgRNA activity model. The sgRNA 

activity dataset contains 118,862 sgRNAs targeting 22,329 genes. First, sgRNAs with 

polyT (TTTT) and GC-content lower than 40% are excluded and only the most potent 

sgRNAs (top 10% in ranking) and the least potent sgRNAs (bottom 10%) are selected as 

final sgRNA dataset. In all, there are 19561 genes with 40234 sgRNAs. Next, features such 

as single nucleotide, neighboring di-nucleotides and tri-nucleotides, GC-content are 

extracted and transformed by one-hot coding (right panel) for feature selection by L1-SVM. 

Finally, 10-folds cross validation performed for model selection. 
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Figure 4. ROC curves of different models assessed and feature importance. (A) 

Performance in 9 models including gradient boosting, nearest neighboring, linear SVM, 

RBF SVM, logistic regression, decision tree, random forest, neural net and naïve bayes 

assessed by 10-folds cross validation. After feature selection by L1-SVM, only 240 features 

are incorporated in model selection. (B) Top 50 important features are depicted as bar plot. 

Weight of different features are shown in y-axis and different color means different type of 

features (single nucleotide, di-nucleotides and tri-nucleotides). The number of features 

before and after selection are also shown in upper panel. 
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Figure 5. The main user interface of OPT-sgRNA website version. The input form for the 

multiple genes or sequences input consists of the parameters (reference genome, number 

of sgRNAs to be further scoring and number of output sgRNAs) for sgRNA selection and 

an example output was provided. Text file of gene list or multiple sequences also can also 

be uploaded as input.  
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