
Queuing models of gene expression: Analytical distributions 

and beyond 

C. Shi, Y. Jiang, T. Zhou 

 

ABSTRACT: Activation of a gene is a multistep biochemical process, involving 

recruitments of transcription factors and histone kinases as well as modification of 

histones. Many of these intermediate reaction steps would have been unspecified by 

experiments. Therefore, classical two-state models of gene expression established based 

on the memoryless (or Markovian) assumption would not well describe the reality in 

gene expression. In fact, recent experimental data have indicated that the inactive phases 

of gene promoters are differently distributed, showing strong memory. Here, we use a 

non-exponential waiting-time distribution to model the complex activation process of a 

gene, and analyze a queuing model of stochastic transcription. We successfully derive 

the analytical expression for the mRNA distribution, which provides insight into the 

effect of molecular memory created by complex activating events on the mRNA 

expression. We find that the reduction in the waiting-time noise may result in the 

increase in the mRNA noise, contrary to the previous conclusion. Based on the derived 

distribution, we also develop a method to infer the waiting-time distribution from a 

known mRNA distribution. Data analysis on a realistic example verifies the validity of 

this method. 

SIGNIFICANCE: Activation of a gene is a complex biochemical process and involve 

several intermediate reaction steps, many of which have been unspecified by 

experiments. Stochastic models of gene expression that were previously established 

based on the constant reaction rates would not well reflect the reality in gene expression. 

To this end, we study a queuing model of stochastic transcription which assume that the 

reaction waiting time follows a general distribution and derive the analytical expression 

for mRNA distribution. Our results  provide insight into the role of molecular memory  

in fine-tuning the gene expression noise, and can be used to infer the underlying 

molecular mechanism.  
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INTRODUCTION 

      Gene expression is a complex biochemical process, inevitably leading to stochastic 

fluctuations in mRNA and further protein [1-4]. While this inherent noise would be 

important for the maintenance of cellular functioning and the generation of cell 

phenotypic variability, mathematical models are a strong tool to quantify the 

contributions of different noisy sources of gene expression.  

      Single-cell studies on gene expression have indicated that most genes in prokaryotic 

and eukaryotic cells are expressed in a bursty fashion [5,6]. In theory, this kind of 

expression manner may be modeled by the two-state model where the gene switches 

between two states: one transcriptionally active (on) state and one transcriptionally 

inactive (off) state. Classical two-state models of gene expression [7-20] assume that all 

the involved reaction rates are constants, implying that the reaction waiting times, 

particularly including those from the on to off states and vice versa, follow exponential 

distributions. This Markovian assumption has led to important successes in the modeling 

of many gene expression processes [21,22]. With the Markovian assumption, analytical 

mRNA or protein distributions have also been derived [7,10,11,23-25], which provide 

the best description of the stochastic properties of the gene systems. These studies have 

revealed that the characteristic parameters in the reaction waiting-time distributions can 

have a significant impact on the mRNA and protein levels. 

      However, biochemical events involved in gene expression occur not necessarily in a 

Markovian manner but may take place in a non-Markovian manner. First, the complex 

control process of transcription initiation can generate non-exponential time intervals 

between transcription windows [26-28]. Second, the synthesis of an mRNA would 

involve multiple intermediate reaction steps that have been unspecified due to 

experimental technologies, creating a memory between individual reaction events 

[30,31]. For example, the inactive phases of promoter involving the prolactin gene in a 

mammalian cell are differently distributed, showing strong memory [26]. Indeed, the 

increasing availability of time-resolved data on different kinds of interactions has 

verified the extensive existence of molecular memory in biological systems [26-28, 32-
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34]. How non-Markovian reaction kinetics impact gene expression remains elusive even 

though non-Markovian models of gene expression have been established in terms of 

chemical master equations (CMEs) [20,35].  

There have been studies on non-Markovian models of stochastic gene expression, 

which can be divided into two classes from the viewpoint of continuous time random 

walk (CTRW) [35,36]: active CTRWs where waiting time needs to be reset, and passive 

CTRWs where waiting time cannot be reset. Qiu, et al. [37], studied a specific active 

CTRW model of gene expression and derived the analytical expression for stationary 

gene-product distribution. In contrast, more studies focused on queuing models of gene 

expression (belonging to the passive CTRW class). Pedraza and Paulsson [31] studied a 

queuing model of gene expression from the viewpoint of queue theory, showing that 

common types of molecular mechanisms can produce gestation and senescence periods 

that reduce noise without requiring higher abundances, shorter lifetimes, or any 

concentration-dependent control loops. Kulkarni, et al. [38,39] analyzed a stochastic 

model of bursty gene expression which considers general waiting-time distributions 

governing arrival and decay of proteins. By mapping the gene system to standard 

queuing models, they also derived analytical expressions for the steady-state protein 

noise (defined as the ratio of the variance over the squared mean). In addition, previous 

studies [31,40] showed that a reduction in the noise of the waiting time distribution of 

the inactive state leads to a reduction in the noise of mRNA distribution. Nevertheless, 

for queuing models of gene expression, analytical mRNA or protein distributions have 

not been derived by far. 

    In this paper, we also study a queuing model of stochastic gene expression, 

focusing on gene-product distribution rather than on statistical quantities such as the 

mean and variance studied in ref. [26,39-41]. We derive the analytical expression for 

stationary gene-product distributions, which provide insight into the role of molecular 

memory in fine-tuning the mRNA or protein noise and properties of the steady states. 

We also present estimations on the bounds of the expression noise constrained by the 

mean and variance of the waiting-time distribution. In addition, we develop an effective 

method to infer a waiting-time distribution and further the promoter structure from a 
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known mRNA or protein distribution obtained by experimental methods such as mRNA-

FISH labeling or RT-qPCR [42,43]. Our inference method is different from previous 

inference methods [27,40,42-45], which used the qualitative properties of the gene 

expression noise to infer microscopic kinetic parameters, such as transcription and 

translation rates. Data analysis on a realistic example verifies the validity of this method. 

 

 MATERIALS AND METHODS 

     The common two-state model of stochastic transcription assumes that the gene 

promoter has two activity states: one active (on) state in which the gene is transcribed 

and the other inactive (off) state in which transcription is prohibited. These 

transcriptional active and inactive states may switch to each other. The mRNA 

molecules transcribed from DNA degrade in a linear manner. All involved reaction rates 

are assumed as constants, implying that the reaction waiting times follow exponential 

distributions or the reaction events take place in a Markovian (memoryless) manner 

[21,22]. Different from the classical on-off model, our model assumes that the waiting 

time from the off state to the on state follows a general distribution denoted by )(tf . 

This assumption is reasonable since the turning on of transcription is a complex process 

with intermediate reaction steps that would have been unspecified by experiments. We 

point out that although this model has been studied in terms of statistical quantities 

[26,39,40], the analytical mRNA distribution has not been derived by far.  

For the modeling convenience, we list all biochemical reactions as follow 

 
1 2

3 4

R :  ,     R :  

R :  ,    R :  

f t koff on on off

on on X X 

 

  
                                     (1) 

where X  may represent mRNA or protein (without loss of generality, we assume that it 

represents mRNA), k  is the switching rate from on to off states,   represents the 

transcription rate, and   represents the degradation rate of mRNA. These reaction rates 

are assumed to be constants, implying that the corresponding reaction waiting-time 

distributions are exponential.  
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    Let  S t  record the elapsed time since the gene enters the off state at time t , and let 

 U t  denote the promoter state at time t . Then, the state of the system at time  t  can be 

described by the following time-evolutional probabilities 

        

    
1

0

, Pr ,

, , Pr , ( ) , ( )

P n t N t n U t on

P n x t x N t n x S t x x U t off

  

      
   (2)

 

where x  represents the elapsed time,  0P   and  1P   represent the probability density 

functions in off and on states respectively. In order to derive the renewal equations for 

 0 ,P n t t  and  1 , ,P n x t t  with regard to time increment t , we first interpret 

two conditional probabilities [41,46,47]:    H x t H x  and    f x H x , where 





x

dttfxH )()(  is the survival function of off state. The former represents the 

conditional probability that reaction 
1R  in Eq.(1) does not occur within time interval 

 ,x x t  if the elapsed time is x , whereas the latter represents the instantaneous 

probability that reaction 1R  happens also if the elapsed time is x . 

According to the total probability principle, we can establish the following renewal 

equation for  tnP ,1  and   tnP ,0 : 

      

     

     

    
 

 

1 1

1

1

0
0

, , 1 1 1

                  1, 1 1 1

                  1, 1 1 1

                  1 1 , ,
t

P n t t P n t t n t k t

P n t t n t k t

P n t t n t k t

f x
t n t k t P n x t dx

H x

 

 

 

 

        

       

       

      

                        (3a) 

    
 

 

   
 

 

0 0

0

, , , , 1

                              1, , 1

H x t
P n x t t t P n x t n t

H x

H x t
P n x t n t

H x





 
      

 
   

                             (3b) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.976738doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.976738


 In Eqs. (3a) and (3b),   iP   denotes the probability set Pr   defined in Eq. (2). The 

following boundary condition at 0x  needs to be imposed due to consideration of the 

probability equilibrium 

            0 1, , , 1 1P n t t t t k tP n t t n t                                 (3c) 

Note that in the limit of small t , Eqs. (3a) and (3b) will become differential 

equations. If the stationary distributions of  1 ,P n t  and  0 , ,P n x t  exist, and are denoted 

by  1P n  and  0 ,P n x  respectively, Eqs. (3a) and (3b) at steady state become 

          
 

 1 1 1 0
0

1 1 1 ,
f x

P n n k P n n P n k P n x dx
H x

   


                     (4a) 

 
     0

0 0

,
, 1 1,

P n x
n P n x n P n x

x
 


    


                                   (4b) 

whereas Eq. (3c) becomes 

   0 1,0P n kP n                                                                     (4c) 

In order to solve Eqs. (4a) and (4b) with Eq. (4c), we introduce the probability-

generating functions as done previously 

                         1 1 0 0

0 0

 ,    , ,n n

n n

G z z P n G z x z P n x
 

 

                                     (5) 

and denote      0 0, ,W z x G z x H x . Then, we can obtain the following differential 

equations 

 
 

       1

1 0
0

1 1 ,
dG z

z z k G z k W z x f x dx
dz

 


                            (6a) 

 
 

 
 0 0, ,

1
W z x W z x

z
x z


 

  
 

  (6b) 

with the boundary condition 

       0 1,0G z kG z     (6c) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 5, 2020. ; https://doi.org/10.1101/2020.03.04.976738doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.04.976738


One will see that Eqs. (6a)-(6c) are analytically solvable. Thus, we can obtain the total 

probability-generating function      0 1G z G z G z   with    0 0
0

,G z G z x dx


   and 

further the total stationary probability distribution      0 1P m P m P m  . 

 

RESULTS 

Analytical distributions 

     Using the method of characteristic line, we can derive the solution of  xzW ,0  from 

Eqs. (6b) and (6c) 

     0 1, 1 1xW z x kG z e     (7) 

If we denote    0 0
0

,G z G z x dx


  , then Eq. (7)  becomes  

     0 1
0

1 1xG s k G se H x dx


                                             (8a) 

and Eq. (6a)  becomes  

 
       1

1 1
0

1
1 1x

dG s
s s k G s k G se f x dx

ds

 





                             (8b) 

where 1s z  . By making Taylor expansions    

1
1

j n

j nn
G s a s




   ( 0,1j  ), making 

use of the binomial method [48,49], and noting the total probability-generating function 

     0 1G s G s G s   and the total probability      0 1P m P m P m   as well as the 

relationship between the probability-generating function and the probability distribution, 

i.e.,      
1

1 ! m m

s
P m m d G s ds


    , we can finally reach the following formal 

expression for the stationary mRNA distribution (see Appendix A  for derivation) 
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where  H s   represents the Laplace transform of  H t , i.e.,    
0

sxH s e H x dx


  .  

In particular, if the waiting time from off to on state follows an exponential 

distribution of the form    rtf t re , then    1H s s r  . In this case, we can obtain 

from Eq. (9) the following analytical mRNA distribution  
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where 11 F  denotes the confluent hypergeometric function [50]. This distribution was 

ever derived in previous works [10,51,52]. 

Next, we use Eq. (9) to calculate the mRNA distribution for a two-state model with 

an arbitrary inactive pathway (referring to Fig.1A). The probability density function for 

the waiting time takes the form    0 0expf t t a A u  (seeing Appendix B or referring to 

[10,27,40]), where A  (a matrix) describes transitions among off states, 0u  (a column 

vector) describes the transitions from the off states to the on state, and 0a  (a row vector) 

denotes the initial condition. The Laplace transform of probability density function 

 f t  is given by    
1

0 0f s s


 a E A u , and the Laplace transform of survival 

probability function  H t  is given by 

    
1

0 1H s s


 a E A u     (11) 

where  
T

1 1,1, ,1u  is a column vector. Substituting Eq. (11) into Eq. (9), we obtain 

the mRNA distribution for the two-state model with an arbitrary inactive pathway.  

When the inactive pathway consists of two parallel pathways (referring to Fig. 1B), 

the Laplace transform of waiting time distribution is given by 

  10 10 20 1 20 10 20 2

1 110 20 10 20 1 10 20 10 20 2

n m
i i

i ii i

k k k k k k k k
f s

k k s k k s k k k s k k s k 

 
 

       
 

           (12) 
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Under the assumption of 
11 12 1 1nk k k k    , 

21 22 2 2mk k k k    , and 

 10 20 1 2max ,k k k k  , we find that the waiting-time distribution can be approximated 

by a mixture Gamma distribution of the form (referring to Fig. 1C) 

     10 20
1 2

10 20 10 20

; , ; ,
k k

f s s n k s m k
k k k k

  
 

                                   (13) 

where  
 

1

; ,
rtt r e

t r
 

 


 




 is a common Gamma distribution. The valid of this 

approximation has numerically been verified, referring to Fig. 1D where empty circles 

represents the exact mRNA distribution obtained by the Gillespie algorithm [53] 

whereas the line represents the approximate mRNA distribution obtained using Eq. (13). 

 

Fig. 1 (A) A two-state model of gene expression with an arbitrary inactive pathway; (B) Two parallel 

inactive pathways; (C) Waiting-time distribution, where red line represents an approximate solution 

obtained using a mixture Gamma distribution, empty circles represent the exact solution obtained by 

the Gillespie algorithm, the parameter values are set as 502010  kk , 1... 151211  kkk  , 

6... 262221  kkk ; (D) mRNA distribution, where red line represents the analytical solution, 
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empty circles represent the numeric solution obtained by the Gillespie algorithm, parameter values 

are set as 3/1k , 15 ,  1 , and the other parameters are same as (C) .  

     

Effect of molecular memory on the mRNA noise 

Using the derived-above analytical mRNA distribution for the gene model with a 

general waiting-time distribution, we find that the mRNA noise takes the following form 

 

 
02 1 0

1 1

m

H

H

  


   


 


                                              (14) 

where 1 1 k   represents the average waiting time in the on state whereas  0 0H 

represents the average waiting time in the off state. For the gene model above, this 

formula is exact since the corresponding mRNA distribution is exact. Moreover, the 

mean mRNA is given by 1

1 0

m


  



.  If we consider that the waiting time in the off 

state follows a Gamma distribution  rt ,; , we have  
1

1
r

H
r




 

  
   

   

. When 

1 , the model reduces to the case of exponential distribution and the corresponding 

formula for the mRNA noise becomes 

2
2 1 0 0

1 0 1 0 1

m

  


     


 

 
                                       (15) 

which is a known result [29,40,51,54].  

 Under the assumption that the waiting time follows a Gamma distribution, Eq. (14) 

can be rewritten as 

    
2

0 11

1 1 1

1
m

b

m br r



   

 
   

    

   (16) 

If the degradation of mRNA is slower or the waiting time in the on state is shorter 

( 11  ), the above calculation formula can be approximated as 
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   (17) 

where  bb /112   represents the noise of burst, kb /  represents the mean of 

burst size. Formula (17) is same as the result derived by Schwabe et al [40], which can 

reduce to the formula derived by Pedraza and Paulsson [31] in the absence of 

degradation. 

     Previous studies showed that if the waiting time follows a Gamma distribution, a 

reduction in the noise of the waiting time distribution in the off state leads to a reduction 

in the noise of mRNA distribution [15,31,40]. If considering another kind of waiting-

time distribution, then we obtain a different result. As seen in the above, the waiting-

time distribution can be well approximated by a mixture gamma distribution if the 

inactive process consists of two parallel pathways. Now, we assume that the waiting 

time follows a mixture gamma distribution given by 

  1 2 1 1 1 1 2
1 2

1 2 0 1 2 0 2

1
; , ; ,

1 1
f t t t

      
   

      

    
    

    
                    (18) 

where 1 1   and 2 1   are constants. Then, it is not difficult to show that the mean of 

the waiting time is 
0T  , and the variance of the waiting time is 

 

 2

2 12 2 2 1 2
0

1 1 2 1 1 2 2

11 1 1
1

1 1
T

   
 

      

   
   

  
                               (19) 

Changing the parameter 1  and 2  allow us tune the noise of waiting-time distribution (

22

T T ) while keeping the mean of waiting time fixed. For clarity, we set  1 1c c    

and    2 2 1c c     with 0 1c  . With this setting, we find that with the increase of 

parameter c , the noise of the waiting-time distribution increases (Fig. 2A) but the 

mRNA noise decreases (referring to Fig. 2B). Alternatively, a reduction in the noise of 

the waiting time leads to an increase in the mRNA noise (Fig. 2C), which is contrary to 

the previous conclusion .The possible reason is that the mRNA noise can vary in a wide 

range even if the mean and noise of the waiting time are fixed (Fig. 2C).  
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Fig. 2  The mRNA noise adjusted by molecular memory. (A) Waiting-time distributions for different 

values of c , where 30  , 3/1k , 421  , 15 , 1 ; (B) mRNA distribution for 

different values of c , where the parameter values are set as the same as (A). Here the probability of 

the zero mRNA is not shown; (C) mRNA noise versus waiting-time noise for different values of c , 

where 5,4,321    are set, and other parameter values are the same as (A); (D) mRNA 

noise versus waiting-time noise, where 2121 ,,, bb  are uniformly sampled from the interval 

(1,200), parameter values are set as 20  , 5.0k , 15 , 1 , the red and blue lines 

respectively represent the upper bound and lower bounds of the mRNA noise calculated using Eq. 

(21).  

     Next, we estimate the bounds of the mRNA noise in the case that the mean and noise 

of waiting time are fixed. For this, we first need to estimate the bounds of  f s . By 

calculation, we can obtain the following estimation (seeing Ref. [55]) 
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    (20) 

where B  is the upper bound of the waiting time T  , W  and 
2  are the mean and 

variance of the waiting time, respectively. The upper bound corresponds to a two-point 

mixture distribution with mass  2 2 2W    on position 0 and mass  2 2 2W W   on 

position 2W W . The lower bound corresponds to a two-point mixture distribution 

with mass   22 2 B W     on position B  and mass     2 22B W B W    on position 

 2W B W  . When B , the estimation becomes 

 
 22 2

2 2 2 2

s W WsW W
e f s e

W W



 

    
 

                                    (21) 

After having had the estimation of  f s , we can further obtain the estimation for the 

bounds of first  H s   and then  the mRNA noise. To numerically verify the resulting 

estimations for the bounds of the mRNA noise, we randomly sample parameters 

 1 2 1 2, , ,     while keeping the other parameters in the mixture distribution (referring 

to Fig. 2D) fixed. From this figure, we observe that with the increase in the waiting-time 

the noise, the lower bound of the mRNA noise is almost a constant but the upper bound 

increases.  

 

Inferring waiting-time distribution from mRNA distribution 

       The mRNA distribution can be obtained through experimental techniques such as 

mRNA-FISH labeling or RT-qPCR on individual cells. An interesting question is 

whether we can infer the underlying transcription mechanism from experimental data. In 

this section, we will provide a method to infer the waiting-time distribution from the 

known mRNA distribution. Without loss of generality, we set the mRNA degradation 

rate to be unit. 
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       We first introduce binomial moments of the stationary mRNA distribution  P n , 

which are defined as [48,49] 

  ,   0,1,2,n

m n

m
b P m n

n

 
  

 
                                                (22) 

where  
0 1b   due to the probability conservation, and symbol 

m

n

 
 
 

 represents the 

combinatorial number of arbitrarily choosing n  numbers from m  numbers. Based on 

these binomial moments nb  , we further introduce a new index (see Appendix C for the 

reason of introduction) 

   



n

i

iRnG
1

1)1(
~

     (23) 

where    2

1 11i i i iR ib i b b     , and   is a constants larger than 0. Note that 

Distribution  P n  can be obtained from experimental data, so can binomial moments 

nb  ( 0,1, , 1n N  ), all iR  and all  G n  ( 1,2, ,n N ). Furthermore, we can obtain 

first the continuous-variable function  G s  (representing the Laplace transform of the 

discrete-variable  G n ) using the Burlisch-Stoer rational interpolation in the R package 

"pracma" [56], and then  G t  by the numerical inverse Laplace transform of  G s  

using the function "invlap" also in the R package "pracma". For 0t   ( 0  is a very 

small number), we can prove that    0H t c G t , where 0c  is a constant (  01 G  ) 

(seeing Appendix C for detail). Therefore, we can reconstruct an approximate waiting-

time distribution according to    f t dH t dt  . We point out the parameter   does 

not influence the shape of the resulting distribution, so we can set it as a constant of 

more than 0. In addition, we can determine two parameter values: first 

   
1

1

1

0 1

R
k

R H H





(the mean switching rate from on to off states) and then 
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  1 1 0b kH    (the mean transcription rate).To that end, we finish our inference 

method. We emphasize that in contrast to the previous inference method, our inference 

method do not need to assume the type of waiting-time distribution in advance.    

To verify the above inference method, we generate the mRNA distributions for the 

two-state model with a different waiting-time distribution given by Eq. (9). For gamma 

distribution with 1  (exponential distribution), the predicted distribution and the 

exact distribution overlap even for a small N  (Fig. 3A). For 1 , the predicted 

distribution gradually tends to the exact distribution with the increase of N  (Fig. 3B). 

The larger the   is, the larger N  is required to infer a ‘better’ distribution. Actually, we 

can infer the exact distribution, provided that the mRNA distribution is precisely 

measured. However, the error of kb  becomes larger with the increase of order k  for any 

mRNA distribution generated from numerical simulation or obtained by experiments, so 

it is difficult to infer an exact distribution, particular in the case of strong memory. 

Although the shape of waiting-time distribution do not significantly affect the mRNA 

distribution, our result indicates that the information on waiting time can actually be 

encoded in an mRNA distribution. 

Finally, we apply the above inference method to a realistic example. We try to infer 

the waiting-time distribution from the mRNA distribution for gene PDR5 measured by 

Zenklusen et al [42]. The inferred mRNA distribution is demonstrated in Fig. 3C. Here, 

we fit the predicted waiting-time distribution ( 5N ) with a Gamma distribution, and 

determine the left parameters of the model (Appendix C). The mRNA distribution 

obtained through the stochastic simulation well fits to the experimental data (Fig. 3D).  

We observe that there are errors between simulated and exact distributions, but if more 

binomial moments are used, then these errors will become smaller. In fact, we have the 

reconstruction formula:    1
n m

n

n m

n
P m b

m





 
   

 
  and binomial moments tend to zero 

as their orders go to infinity [48]. We point out that although the exact waiting-time 

distribution is difficult to infer, our numerical result indicates that the waiting-time 

distribution is definitely unimodal (referring to Fig. 3C). This qualitative result is 
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independent of how many binomial moments are used to reconstruct the mRNA 

distribution. 

 

Fig. 3 Inferring waiting-time distribution from mRNA distribution. (A) the parameter values 

corresponding to the exact distribution (red line) are as: 5.00  , 2k , 1 , 5 , 1 ; (B) 

the parameter values corresponding to the exact distribution (red line) are set as 50  , 2k , 

5 , the other parameter values are the same as in (A); (C) the waiting-time distribution inferred 

from the experimental mRNA distribution for PDR5 gene, where the red line denotes the distribution 

fitted using Gamma distribution; (D) Comparison between observed data [42] (blue histogram) and 

the mRNA distribution obtained by stochastic simulation (red line), where the parameter values are 

set as 18 , 75.17r , 2k  , 5.41 , 1 .  
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CONCLUSIONS AND DISCUSSION 

      In this paper, we have derived the analytical stationary mRNA distribution for the 

two-state model of gene expression where the waiting time from off to on states is 

assumed to follow a general distribution whereas the waiting time from on to off states 

is assumed to follow an exponential distribution. This derived distribution can provide 

insight into the role of molecular memory characterized by non-exponential waiting-

time distribution in fine-tuning the gene expression noise. In contrast to previous 

methods [7,10,11,23,24], our method is not limited to a specific Markov chain 

description of various possible promoters containing transcriptionally active and inactive 

states. Actually, our derivation method can be applied to two-state gene models with 

arbitrarily many parallel or crosstalk inactive pathways. 

Previous studies showed that a reduction in the waiting-time noise can lead to a 

reduction in the mRNA noise [31,40], under the assumption that the waiting time 

follows a Gamma distribution. In this paper, however, we found that a reduction in the 

waiting time noise may lead to the increase in the mRNA noise, under the assumption 

that the waiting time distribution follows a mixture Gamma distribution, which can 

model the case that the inactive process consists of two parallel inactive pathways. The 

plausible reason is that the mRNA noise may vary in a wide range even if the mean and 

noise of waiting time are fixed. For the two-state model of gene expression, we only 

considered that the waiting-time distribution for the off-to-on reaction is general. 

Actually, waiting-time distributions for on-to-off reaction, transcription reaction, and 

degradation reaction may also be non-exponential [29,31]. For these cases, how mRNA 

or protein distributions are derived as well as how molecular memory affects the 

expression level and noise needs further studies. 

      Previous results also showed that the observed mRNA distribution contains only the 

limited information on the transcriptional mechanism [40], and can be fitted by the two-

state model with different parameters. In contrast, our results showed that the 

information on the waiting time is actually encoded in the mRNA distribution. In 

particular, we can infer the exact waiting-time distribution, provided that the mRNA 

distribution is precise. Our method can also be used to infer the waiting-time distribution 
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from the mRNA distribution obtained by experimental data. For example, we have 

applied the method to the PDR5 gene [42] and found that the waiting-time distribution is 

unimodal. But this qualitative result expects experimental verification.  

 

Appendix A: Derivation of analytical mRNA distribution 

By expanding the probability-generating function    

1
1

j n

j nn
G s a s




   ( 0,1j  ), 

we can derive the following relations  

     0 1

n na ka H n                                                                 (A1) 

      1 1

11 n nn k f n a a   
   
 

                                           (A2) 

where    
0

sxH s e H x dx


   and    
0

sxf s e f x dx


   . Note that 
   0 1

0 0 1a a  due to 

the conservative condition of probability. We get the expression of 
 1

0a  from Eq. (A1) as 

following: 

 

 
1

0

1

1 0
a

kH



                                                        (A3) 

Since the total probability distribution of mRNA is      mPmPmP 10  , the 

corresponding total binomial moments are 
   0 1

n n nb a a  . Combing Eqs. (A1)-(A3), we 

obtain the following expression of nb : 

 
  

1

1

10
!

n n

n nn

i

b
n H i

 

  







     (A4) 

where 1 1 k   represent the average waiting time in the on state. With the expression of  

nb  at hand, the corresponding distribution can be calculated according to the 

reconstructing formula    1
k m

k

k m

k
P m b

m






 
   

 
 [48,49], where 

k

m

 
 
 

 represents the 

combinatorial number of arbitrarily choosing m  numbers from k , and kb  represent the 

binomial moments. Thus, the stationary distribution of the mRNA  P m  is given by 
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 where 1, 2,m  . 

 

Appendix B: Calculation of waiting-time distribution 

    For the inactive pathway shown in Fig. 1B, the probability distribution of waiting 

time is calculated according to    0 0expf t t a A u  , where matrix A  is 

 10 10 1 2
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A , 

and  1 10 ,0, ,0kv ,  2 20 ,0, ,0kv . The column vector 0u  takes the form: 

 
T

0 1 20, ,0, ,0, ,0,n mk ku , the row vector 0a  takes the form:  0 1,0, ,0a .  

According to    
t

H t f x dx


  , we thus have     1

0 0expH t t  a A A u . The Laplace 

transform of  f t  is calculated according to    
0

sxf s e f x dx


  . Thus, we have  

   
1

0 0f s s


 a E A u , where E  is the unit matrix. Similarly, we can have  

     
1 11

0 0 0 1H s s s
    a E A A u a E A u , where  

T

1 1,1, ,1u . 
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Appendix C: A method to infer the waiting-time distribution from experimental 

data 

Note that binomial moments ib  ( 1,2, ,i N ) can be estimated from experimental 

data. Thus,    2

1 11i i i iR ib i b b      are known. Setting 1   and substituting these 

expressions of iR  into Eq. (A4), we obtain the following relationship 

   0 1 1

1

N

i

i

H n R  


                                               (C1) 

where 0  and 1  represent the mean waiting time of the OFF and ON states, which are 

experimentally measurable quantities and are therefore known. By smoothing discrete 

variable function  H n  through interpolation, we can obtain continuous variable 

function  H s . Furthermore, we can obtain survival function  tH  through the inverse 

Laplace transform.  

If we set  0 1   (  is a positive constant of more than) and 1 1  , then 

   
1

1 1
n

i

i

G n R


                                                      (C2) 

By smoothing discrete variable function  G n  through interpolation, we can obtain 

continuous variable function  G s . Furthermore, we can obtain the function  tG  

through the inverse Laplace transform. 

Combining Eq. C1 and Eq.C2, we obtain the following relation: 

   0 1 0 1

1 1
H s G s

   

 

 
 

 
                                         (C3) 

Applying inverse Laplace transform to Eq.C3, we have: 

     0 1 0 1

1 1
H t G t t

   


 

 
 

 
                                       (C4) 

where  t  denotes the Dirac delta function. Therefore, for 0t   ( 0  is a very small 

number), we obtain    0H t c G t . Since  0 1H   , we have  0 01c G  . 
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      Once the survival function  tH  is obtained in such a manner, we can further 

determine the values of other parameters in the model. From Eq. (C1), we can determine 

the value of k  as 
   

1

1

1

0 1

R
k

R H H





. Thus, the value of   can be determined 

according to   1 1 0b kH   .  
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