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Abstract 
 
Gene networks have proven their utility for elucidating transcriptome structure in the 

brain, yielding numerous biological insights. Most analyses have focused on expression 

relationships within a circumspect number of regions – how these relationships vary 

across a broad array of brain regions is largely unknown. By leveraging RNA-

sequencing in 864 samples representing 12 brain regions in a cohort of 131 

phenotypically normal individuals, we identify 12 brain-wide, 114 region-specific, and 50 

cross-regional co-expression modules. We replicate the majority (81%) of modules in 

regional microarray datasets. Nearly 40% of expressed genes fall into brain-wide 

modules corresponding to major cell classes and conserved biological processes. 

Region-specific modules comprise 25% of expressed genes and correspond to region-

specific cell types and processes, such as oxytocin signaling in the hypothalamus, or 

addiction pathways in the nucleus accumbens. We further leverage these modules to 

capture cell-type-specific lncRNA and gene isoforms, both of which contribute 

substantially to regional synaptic diversity. We identify enrichment of neuropsychiatric 

disease risk variants in brain wide and multi-regional modules, consistent with their 

broad impact on cell classes, and highlight specific roles in neuronal proliferation and 

activity-dependent processes. Finally, we examine the manner in which gene co-

expression and gene regulatory networks reflect genetic risk, including the recently 

framed omnigenic model of disease architecture.  
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Introduction 

 

Human neuropsychiatric diseases are genetically complex, mostly adhering to a 

polygenic architecture1 consisting of thousands of risk-conferring variants and genes.2,3 

In contrast to purely Mendelian disorders – where generalizable mechanistic insight can 

be obtained from the analysis of a single gene – the etiology of complex genetic 

disorders is organized around functional groups of genes or pathways.4 Be they 

members of a protein complex, components of a signaling cascade, or a collection of 

critical genes converging on a biological process, genes within these groups are 

expected to be co-regulated so as to be expressed at the appropriate levels to permit 

the group or pathway to function consistently.5,6,7  Recent work provides strong 

evidence that RNA co-expression and protein-protein interaction (PPI) networks provide 

a powerful organizing framework for understanding how such groups of genes are 

organized, with predictive power to prioritize disease-associated variation in 

psychiatric8,9,10 and other polygenic disorders.11,12,13,14,15,16 In polygenic disorders, where 

thousands of genes are involved, this network framework aids in characterizing relevant 

biological pathways by subdividing genes into smaller, tractable and coherent sets of 

modules for experimental analysis.17,18 

 

Genetic studies of neuropsychiatric and neurodegenerative disorders have 

identified non-coding genetic variation as the largest contributor to disease liability.19,20 
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However, the hundreds of risk genes involved in these disorders are expressed across 

multiple brain regions and cell types, each of which has different functional 

consequences and likely different relevance to disease.21 These observations highlight 

the importance of systems biology in grouping transcriptional activity into coherent 

functional groups, enabling a more comprehensible understanding of disease.22 Gene 

co-expression networks further this understanding by linking together genes which co-

vary across prevalent cell types and cell states within tissue.23,24  

 

 To inform our understanding of molecular mechanisms in human brain, and their 

potential relevance to disease, we create an unbiased atlas of co-expression networks 

across 12 human brain regions.25 We compare different network construction methods 

and demonstrate that the co-expression relationships defined in these networks are 

robustly identified using alternative network methods and orthogonal brain data sets. 

Combined with previous networks built from fetal brain across developmental time-

points,26 these networks comprise a new resource for understanding the convergent 

pathways, time-points, and brain regions affected by disease-associated variation.  

 

We use this resource to address several core biological questions. First, we show that 

co-expression in the brain is hierarchically organized into signatures that vary from 

brain-wide, to multi-region and to region-specific. We demonstrate that brain-wide and 

cross-regional networks correspond to signatures of prevalent cell types and biological 

processes. Second, we show that region-specific modules capture regionally 
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upregulated genes, and reflect more specialized cellular subtypes. We provide evidence 

that complex neuropsychiatric diseases such as autism spectrum disorder (ASD) and 

schizophrenia (SCZ) are influenced by a combination of both widespread and focal 

disruption to gene expression. For both ASD and SCZ, three major types of 

genetic/functional genomic signals: differential expression, rare high-impact variants, 

and common low-effect variants, converge on cross-regional networks that implicate 

neuronal and neural progenitor cell types. We also identify signals of region-specific 

disruption in these disorders, implicating additional cortex-specific components. Finally, 

we incorporate our gene networks into a model of genetic architecture, asking whether 

these co-expression and co-regulatory networks exhibit a core-periphery structure that 

follows the recently framed omnigenic hypothesis.27  
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Results 

 

Building robust human co-expression networks  

 

To explore the molecular anatomy of the human brain starting at the tissue level, 

we utilize RNA-sequencing data from the Genotype-Tissue Expression Consortium 

(GTEx), focusing on the 12 major brain regions profiled: Cerebellum (CBL), cerebellar 

hemisphere (CBH), dorso-lateral pre-frontal cortex (PFC), Brodman area 9 (BA9), 

Brodman area 24 (BA24), hippocampus (HIP), amygdala (AMY), hypothalamus (HYP), 

substantia nigra (SNA), nucleus accumbens (ACC), caudate nucleus (CDT), and 

putamen (PUT) (figure 1a).  

Technical artifacts induced by RNA quality, library preparation, and sequencing 

run are known to generate spurious gene-gene correlations while confounding true co-

expression relationships.28 Taking advantage of the careful sample annotations and 

experimental protocols conducted in GTEx,29 we rigorously corrected for known 

technical covariates (Methods) to avoid these potential confounding factors. We 

evaluated the impact of using latent factors to correct for hidden confounders,30 and by 

examining the effect of latent variable correction on cell-type genes and pathway 

analysis, determined that it was removing significant biological signal, particularly 

regarding cell type (figure S1; Suppl. Methods). This observation is consistent with 

recent results that caution against the use of latent factor correction when applying co-

expression analysis in highly heterogeneous tissues such as brain.31 
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To ensure modules are not driven by brain-involved diseases or atypical sample 

outliers, we exclude individuals on the basis of their known medical conditions at time of 

death, principal-component outliers, and sample-sample connectivity outliers (Methods, 

Suppl. Table 1).32 In addition, we find that several outlier samples were taken from the 

same individuals, all of whom had a severe infection (sepsis, influenza, hepatitis, HIV), 

which is known to impact expression. We apply feature-selection and support vector 

machines to classify and remove these and any other samples where gene expression 

could be confounded by serious infectious disease (Suppl. Methods). 

To reduce the impact of sample outliers, we use a bootstrapped-resampling 

version of weighted gene co-expression network analysis WGCNA (robust WGCNA, 

Methods)33 separately within each profiled region. To structure our analysis, we 

constructed a tissue hierarchy using median genome-wide expression, which produces 

a tissue grouping that reflects neuroanatomical and developmental regions (figure 1b). 

Using this hierarchy, we form a tree of consensus co-expression networks for each split, 

thereby generating co-expression modules for 20 hierarchical expression categories: 12 

brain region specific categories (corresponding to each sampled region), 7 multi-

regional categories (corresponding to multiple, structurally-linked regions, figure 1b), 

and a brain-wide category. The majority of the resulting modules are highly overlapping, 

therefore we group these modules hierarchically into groups of highly similar modules 

which we term “module sets” (Methods). In total, we identify 311 modules at all levels, 

of which 173/199 (87%) of the tissue-level modules are replicated with strong support in 

at least one other independent dataset (figure 1c; Methods). Finally, by using network 
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preservation statistics on all samples within regions and meta regions, we verify that 

module sets are supported by strong evidence within their own regions and little 

evidence outside of them (figure 1d). 

 

To test whether co-expression modules vary substantially by the method used for 

co-expression network construction, we build modules at the tissue level using three 

alternative approaches: ARACNe,34 PAM-guided graphical LASSO,35 and Fisher-von-

Mises mixture modeling.36 We find that all methods show high pairwise clustering 

coefficients (figure S1e), and differ predominantly by module splitting (figure 1e). For 

instance, most of the differences between ARACNe clusters and WGCNA clusters 

come from large ARACNe modules represented as several separate WGCNA modules, 

consistent with prior comparisons that demonstrate this is due to WGCNA’s signed 

adjacency matrix carrying directional information, compared with ARACNe’s use of 

unsigned mutual information.37 In all cases, the vast majority of co-expression 

relationships identified by WGCNA are also co-clustered by each other method, 

suggesting that the results using WGCNA are generally robust to alternative methods of 

network construction (figure S1e-h). 

 

We assessed the validity of our consensus-building approach by constructing 

whole-brain consensus networks using tensor decomposition,38 t-SNE,39 and the 

clustering algorithm dbSCAN,40 finding that all methods are in high correspondence 

(Suppl. Methods, figure S1i-m). We further apply a down-sampling approach to 
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estimate overall power for module and hub detection (Methods), demonstrating power 

to comprehensively identify all module hub genes (Figure S1n,o). Module co-members 

are identified with expected lower, but reasonable precision (60%) recall (45%) and 

accuracy (55%) (figure 1f,g). Because thresholds for gene to module assignments can 

be arbitrary, we provide a table that lists genome-wide co-expression relationships for 

every gene-module pair (module eigengene correlation, kME; Table S1). 

 

Identifying brain-wide, regional, and tissue-specific modules  

 

With the goal of establishing the regional specificity transcriptional programs 

throughout the brain, we utilize a hierarchical merging strategy using a combination of 

Jaccard similarity and module kME correlation to identify highly similar modules 

(Methods), thereby grouping modules into 48 module sets, 11 representing 

relationships present across the entire brain (Brain-Wide, or BW, figure 1g), and 38 

consisting of those from regions within an established brain structure. We choose a 

simple naming convention by which a specific module is specified by its original tissue 

and module set: for instance, the hypothalamic module which is grouped into the whole-

brain module set BWM10 is depicted as HYP-BWM10. As the organization of the 

regional transcriptome is necessarily complicated, we summarize our analyses at the 

whole-brain, multi-regional, and region-specific levels. To verify this approach in 

establishing shared and specific modules, we utilized the neighbor-based AUPR41 

(Methods) to provide a degree of evidence for the top-level module set from the raw 
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expression data (figure 1d), finding that brain-wide modules show evidence across all 

tissues, while the majority of region-specific modules show evidence only within that 

region (32/63) or adjacent regions (50/63). We find that the most distinct physiological 

regions, HYP, CBL, and SNA show the largest number of tissue-specific modules (table 

S1). 

 

One module stands out in terms of preservation: Non-cerebellum (NCBL) M1 is 

only preserved in part of the striatum (caudate and nucleus accumbens) and 

telencephalon (amygdala and hippocampus), but not in putamen, cortex, or cerebellum; 

yet the module is preserved in several external microarray datasets. As the module 

eigengene is up-regulated in tissues adjacent to the ventricle and choroid plexus (CP - 

figure 2a), we hypothesized that this module could represent ependymal and choroid 

epithelial cells that are adjacent to the profiled regions. Indeed, we find that CP marker 

genes are enriched within the module (figure 2a), and, importantly, that regions lacking 

co-expression of NCBL.M1 module show low expression of CP cell markers. This 

finding demonstrates that our hierarchical approach identified the biologically correct 

placement of this cell type module, and the specificity of this module set corresponds 

directly to the presence or absence of the corresponding cell population. 

 

Module sets reflect common features and heterogeneity of brain cell types and 

processes 
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Cell type composition is a major driver of gene expression variance in tissue.42,43 

We expect whole-brain co-expression modules to represent major cell classes 

(neurons, astrocytes, microglia, oligodendrocytes), and multi-regional or regional 

modules to represent more specialized cell subtypes. Using markers for primary brain 

cell types44,45 and cell subtypes46, we find that that modules at all levels significantly and 

specifically enrich for genes that correspond to a particular cell type. In particular, five of 

11 whole-brain modules (M4, M6, M7, M10, M11) represent the 5 major brain cell 

classes (figure 2b), and two additional modules (M1, M8) capture cellular activity – 

neuronal differentiation and reactive gliosis, respectively (figure S2a). The region-

specific modules BROD-M8, CEREB-M1, and STR-M2 correspond to interneurons, 

Purkinje cells, and medium spiny neurons, respectively; cell types that are either 

significantly enriched, or found only in these regions (figure 2c). 

 

Genes intolerant to loss-of-function mutations in humans are known to be 

expressed disproportionately in brain,47 and particularly in cerebral cortex-expressed 

genes across all developmental periods,48 therefore we sought to link these genes to 

cell types and regions of the adult brain. We assessed whether any of our modules 

enrich for loss-of-function intolerant genes (defined as pLI49 > 0.9) and found that the 

whole brain module BW-M1 is the most significantly enriched for LoF intolerant genes, 

followed by module BW-M4 and another related module BW-M5 (figure 2d, S2b), all of 

which are neuronal. Notably only a single cluster enriched for glial cell type markers, 
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oligodendrocytes (BW-M7), shows an enrichment for LoF-intolerant genes, but its 

degree of enrichment is far lower than that of neurons (table S2).  

Consistent with prior work linking LoF intolerant genes with neurodevelopmental 

pathways, the most strongly-enriched module, BW-M1, enriches for markers of neural 

progenitors,50 neuronal migration,51 neuronal differentiation, and neurogenesis.52 This 

module is most strongly preserved in known neurogenic regions (such as the 

hippocampus figure 1d), suggesting that it corresponds to neural progenitor cells 

(NPCs) and adult neurogenesis. BW-M5 (MAPK cascade, ATP processing) enriches for 

the KEGG pathways of neurodegenerative disease: Huntington’s, Alzheimer’s and 

Parkinson’s diseases (figure S2c). The concentration of LoF-intolerance within neuron 

and neuron-related modules suggests either a cellular or a tissue-level buffering for 

genetic disruption to microglia and astrocyte specifically-expressed genes. In contrast, 

given that the function of oligodendrocytes is directly related the speed of neural 

transmission via ensheathment of axons, the enrichment in neurons and to a lesser 

extent oligodendrocytes suggests that efficient and rapid neural transmission could be 

genetically constrained.  

 

To examine neuron-linked modules across regional hierarchies in greater detail, 

we use single-cell data53,54,55 aggregated by PsychENCODE to estimate cell type 

proportions among telencephalon samples via non-negative matrix factorization.56 By 

correlating sample cell type proportions with module loadings (eigengenes), we identify 

region-specific excitatory and inhibitory neuronal modules (figure 2e) including a 
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Brodmann-specific (BA9+BA24) interneuron module M8, and an excitatory cell type Ex7 

which loads only onto PFC-specific modules M1 and M3. Interestingly, no module 

corresponds identically to a single neuronal cluster, suggesting that either larger sample 

sizes or a more sophisticated gene-subclustering approach are required to achieve 

single-cell comparable resolution. 

 

We observe that neither the striatal, nor cerebellar co-expression networks 

contain module sets corresponding to BW-M4 (neuron), suggesting that the neuronal 

subtypes in striatum and cerebellum give rise to sufficiently distinct co-expression 

patterns that form their own region-specific modules: CEREB-M2 represents cerebellar 

basket cells, CEREB-M3 represents Purkinje cells, and STR-M1 enriches for markers of 

medium spiny neurons MSNs, all of which are region specific cell types (figure 2d). To 

investigate this possibility, we expanded our previous approach to include single-cell 

sequencing from human cerebellum57 and mouse striatum,58 and identify three regional 

modules – BROD-M8, CEREB-M2, STR-M1 – with a strong relationship between 

module kME and relative gene expression in interneurons, Purkinje cells, and medium 

spiny neurons respectively (figure 2c). Consistent with the prior observation that 

constrained genes broadly enrich within neuronal genes, hub genes in these neuronal 

subtype modules are significantly enriched in those that are LoF-intolerant (figure S2d). 

 

Human-specific expression reflects differences in regional patterning 
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 Recent comparative expression studies have identified thousands of genes up-

regulated in humans compared to non-human primates, and have implicated spatial 

differences in neuronal subtypes and neurotransmitter receptors in driving this 

divergence.59,60 We sought to investigate whether patterns of human-specific regulation 

are reflected in regional biology, or whether the identified differences instead reflect 

inter-regional differences and brain patterning more broadly. To do this, we subset the 

co-expression modules from human and non-human primate brains identified by Sousa 

et al.61, to the 25 that show evidence of human-specific expression (Methods), 10 of 

which show significant overlap with our co-expression modules. Seven of these 

modules of human-specific regulation overlap whole-brain modules, and only two 

modules (M160, M220) solely overlap a regional module (figure 2g). These findings 

highlight that differential expression across regions and species generate different 

relationships from co-expression within regions. As such, regional differences in co-

regulation between species remain largely unexplored.  

 

Identifying cell-type-specific lncRNA 

 

 Long non-coding RNA (lncRNA) are a diverse set of RNA species that modulate 

gene expression or protein function62 across many CNS cell types,63 and several 

studies suggest that lncRNA dysregulation is a component of neuropsychiatric 

disease.64,65,66,67 Many brain-expressed lncRNA have roles in neurodevelopment,68 and 

the enhancer with the most accelerated substitution rate in the human genome, HAR1, 
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corresponds to the neuronally-expressed lncRNAs now termed HAR1A and HAR1B.69 

Since lncRNA as a class tend to be expressed at a lower level than protein-coding 

RNA,70 they are difficult to profile and annotate through single-cell sequencing. We 

leveraged our co-expression networks corresponding to cell types to annotate human 

brain-expressed lncRNA in an unbiased, transcriptome-wide manner to associate 

lncRNA with neurological cell types and processes.  

 

 

Only 52 known lncRNA species were profiled in the initial GTEx data set, likely 

because GTEx utilized library preparation using poly-A selection which would only 

profile the small subset of lncRNAs that are polyadenylated. Therefore, we expand the 

set of profiled lncRNA by projecting our whole-brain modules into ribosomal RNA 

depleted gene expression data from 44 neuro-typical post-mortem brains71 in which our 

whole-brain and cortical modules were well-preserved (ZSummary from 3 to 30; 

methods). We use gradient boosted trees72 to learn expression signatures of our 

module assignments in the new dataset and then classify lncRNA into their appropriate 

modules (methods). We identify 286 lncRNA belonging to major cell types and 

processes, the majority of which associate with neuronal module BW-M4 (66) or NPC 

module BW-M1 (109).  Remarkably, slightly more than 20% (61/286) of these cell-type 

specific lncRNAs were previously shown to be dysregulated in neuropsychiatric disease 

(table S4). We cross-reference the inferred modules with published hippocampal and 

cortical RNA-seq,73 observing that lncRNA in our cell-type modules are indeed up-
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regulated within those cell types (figure 2f). Imputing Brodmann-area modules into the 

cortical RNAseq data identifies two predicted interneuron BROD-M8 lncRNA, 

LINC000507 and LINC00936 (RP11-591N1.1). 

A previous study of ASD differential expression highlighted the differential 

expression of lncRNA as an integral component of the ASD transcriptomic signature.74 

Because our module assignments for lncRNA are built from external data, we reasoned 

that we could use them to investigate differences in lncRNA co-regulation between ASD 

and control brain, and investigate whether lncRNA exhibit a different pattern of 

disruption in ASD from protein coding genes. We remove a set of matched protein 

coding genes (methods) from GTEx data, and performed module imputation for both 

lncRNA and matched protein-coding genes. After imputing gene modules using the 

neurotypical control samples, we contrasted both the expression and co-expression of 

module genes between ASD cases and matched controls. We find significant case-

control differences in both expression and connectivity for modules BW-M1, BW-M6, 

and BW-M8 (p < 10-15, two-sample nonparametric Kolmogorov-Smirnov test), implying 

dysregulation in neurogenesis, astrocytes, and reactive glia. This observation is 

mirrored in the protein-coding genes, implying that lncRNA are disrupted in ASD to the 

same extent as other RNA species (figure S2e,f), as suggested previously.75 

 

 

Identifying cell-type-specific gene isoforms 
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Given the successful annotation of lncRNAs using co-expression, we apply a 

similar strategy to integrate isoform-level expression within cell type modules, both to 

understand cell-type specific splicing and to identify those isoforms likely involved in 

specific pathways (figure 3a). We identify 1,987 isoforms showing specificity to major 

cell types (methods) as measured by isoform expression (transcripts per million) kME 

to cell type modules, of which 549 are neuron, 543 astrocyte, and 696 oligodendrocyte. 

To validate these findings, we obtain RNA-sequencing data from sorted cells,76 quantify 

expression at the isoform-level, and rank isoforms and isoform ratios within cell type 

(methods). As expected, we find a significant association between isoform kME (to a 

cell-type module) and the rank of that gene’s expression in the sorted cell data 

(Spearman’s rho=0.286 oligo 0.258 astro, p<10-15 for both, figure 3b). 

 

 Since single cell data does not yet provide similar isoform level coverage to bulk 

data, this validation of our approach motivates us to build putative cell-specific isoform 

maps for the region-specific cell types for which we had an enriched module: D1/D2 

medium spiny neurons, Purkinje cells, basket cells, and inhibitory neurons. We identify 

between 300 and 500 putative cell-type-specific isoforms, finding that very few (<5%) of 

the resulting isoforms show high kME to the broad neuronal module BW-M4, consistent 

with the interpretation that these marker isoforms are cell type specific (figure 3c). All 

isoforms enrich for synapse-related functions, with additional regional variability: MSN 

isoforms enrich for the oxytocin signaling pathway, consistent with the observation that 

they are downstream targets of oxytocin in the nucleus accumbens,77 whereas Purkinje 
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isoforms enrich for AMPA receptor regulators, and inhibitory neuron isoforms enrich for 

the NMDA receptor activity (figure 3d). These results demonstrate how our networks 

can be used to identify cell-type-specific splicing differences from bulk expression data, 

and highlight the synapse as a nexus of gene regulatory complexity and heterogeneity. 

Furthermore, they provide further evidence for the importance of isoform level analysis 

compared with gene expression alone in defining cell-type specific transcriptomes.78 

 

A subset of ASD risk genes switch isoforms across cell types 

 

We next leverage this rich cell type-specific isoform data to identify examples of 

single genes with different isoform profiles across distinct cell types (“cell switching”). In 

the vast majority of cases the parent gene and cell-specific isoforms are assigned (by 

virtue of high kME) to the same co-expression module. However, in 7% of cases, the 

parent gene of an isoform will confidently differ in co-expression relationships from at 

least one of its alternatively spliced derivatives (figure 3e). We identify 52 genes 

exhibiting isoform switching between cell type modules, 11 of which show 

neuron/astrocyte switching (BW-M4/BW-M6), and 8 or which show 

neuron/oligodendrocyte switching (BW-M4/BW-M7). In all cases, the expression trend 

from sorted-cell RNA-seq matches the kME trend observed between isoforms and cell-

type specific modules (figure S3a). Notably, of the 11 neuron/astrocyte switching 

genes, two, ANK2 and SCP2, are well known autism spectrum disorder (ASD) 

susceptibility genes (figure 3f), while two others, ERGIC3 and PDE4DIP are strong 
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candidates (AutDB79 score 4; figure S3b-e; p < 0.01, Fisher’s exact test for enrichment 

of AutDB>4 genes among neuron/astrocyte switching genes). ANK2 and SCP2 show 

differential splicing of at least one event in ASD vs CTL brains (Parikshak2016 data, 

FDR < 0.05, linear mixed-effects model), but ERGIC3 and PDE4DIP do not, and ANK2 

isoform switching is exhibited between ASD and SCZ cases.80 Analysis of single-cell 

data indicates that the primary difference between ANK2 neuron- and astrocyte-specific 

transcripts is the inclusion of the 2,085 amino acid “giant exon.” The giant exon of 

ankyrins are known to function as an organizer of initial axon segments, and as a 

stabilizer of GABA-A synapses,81 confirming a neuron-specific role for this splice variant 

of ANK2. We further validate this finding at the protein level by western blot at several 

maturation points (day 0, day 16, day 21 and day 31) of iPSC differentiation into 

neurons and astrocytes, establishing that the long isoform is absent in progenitors and 

astrocytes, but present and persistent in neurons (figure 3h), suggesting that the large 

exon of ANK2 is of particular relevance to some of its neuron-specific functions. 

However, the differentially spliced events for ANK2 in ASD and SCZ do not involve the 

giant exon, indicating that while there is a role for the disruption cell-type specific 

alternative splicing in ASD, it is not related to up-regulation of this glial isoform within 

neurons. 

 

Ribosomal genes are down-regulated across the cortex 
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We next sought to incorporate regional differential expression with co-expression 

to provide insight into module-level regulation across brain regions. While differential 

expression has been used to identify differences between brain regions82, we find that 

this approach is too broad: nearly every gene expressed in brain shows differences in 

expression across brain regions (n=15616/15894, FDR<10-3, likelihood ratio test). We 

reasoned that genes with “extreme” expression profiles (i.e., significantly up-regulated 

or down-regulated in a region-specific or multi-region-specific manner) are more likely to 

have a specific role. We developed a novel Regional Contrast Test (RCT, figure 4a), 

which assigns z-score per group of regions per gene, whereby z-scores > 4 represent 

over-expression within that group, and those with z-scores <-4 represent under-

expressed (methods; table S5). Because of the presence of several similar regions, we 

examined contrasts at varying degrees of granularity (table S2).  

 

We first examine the set of genes up-regulated in subcortical regions (striatum, 

hippocampus, and amygdala) versus cortex, and observe that these differences 

enriched for non-neuronal cell type modules (p < 1e-10 for BW-M11, BW-M6, BW-M8, 

BW-M10, and BW-M7), consistent with a higher glia/neuron ratio in the striatum (figure 

4c). Conversely, we find BW-M4 (neuronal) to enrich for the genes up-regulated in 

cortex, as compared with sub-cortical regions. Interestingly, we also observe a 

significant (p = 4.89e-3) enrichment in BW-M2, a module dominated by small- and 

large- ribosomal subunit RNA (figure 4d, 4e), for sub-cortical upregulated genes. This 

suggests that subcortical regions may show higher translational demand, more 
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ribosomes, or faster ribosome turnover than cortical regions. Recent work has 

demonstrated that protein turnover – particularly the large and small ribosomal subunits 

– drastically increases in cultures with high glial proportion,83 providing an explanation 

for increased abundances of these ribosomal mRNA in regions of high-glial-proportion 

in the brain. 

 

Qualifying regional specificity of previously-identified neuropsychiatric disorder co-

expression networks 

 

 We next use this multi-region data set to address regional specificity of disease 

associated modules by re-evaluating gene modules identified in post mortem tissue 

from 11 publications (normal brain84,85 , autism86 , schizophrenia87,88, cross-psychiatric89,  

Alzheimer’s disease90, epilepsy91, and developing brain92,93,94) with the objective of 

identifying: i) whether or not those previously-discovered modules, typically generated 

using only one or two brain regions were related to any the modules we identified from 

the normal individuals in GTEx, and ii) whether those previously-discovered modules 

are indeed region-specific. Remarkably, we observe a common set of modules involved 

in overlaps across every study: BW-M1, BW-M4, BW-M6, and CTX-M1 (figure S4a-d). 

In fact, there are no studies for which a disease-implicated module does not show 

significant overlap with one of the GTEx whole-brain or multi-regional modules, 

suggesting that these many studies likely reflect overlapping co-expression patterns 

corresponding to core cell types disrupted by neuropsychiatric disease (table S6). 
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Convergence of molecular signatures into brain-wide and regional pathways in 

neuropsychiatric disease 

 

We next investigate whether genetic perturbations in neuropsychiatric disease converge 

onto region-specific or cross-regional modules. Utilizing databases of de-novo variants 

implicated in ASD and SCZ,95 GWAS summary statistics,96,97,98,99 and our RNA-

sequencing in post-mortem ASD and normal brains,100 we identify two whole-brain 

modules, BW-M4 (neuron) and BW-M1 (neural progenitor) that simultaneously enrich 

for ASD-linked rare variants (figure 5a), SCZ GWAS signal (figure 5b), and that 

manifest disrupted expression in ASD post mortem brain relative to controls (figure 5c-

g). We also identify two regional modules, CTX-M3 (activity-dependent regulation and 

endocytosis) and CEREB-M1 (mRNA binding) that show ASD rare-variant and SCZ 

GWAS enrichment. While the co-expression relationships for CTX-M3 and CEREB-M1 

are distinct, the genes do overlap more often than expected by chance 

(Jaccard=383/1938, OR=9.5, p<10-20 Fisher’s exact test), and both show significant 

preservation in control brain, but not in ASD post mortem brain (figure 5g), consistent 

with the disruption of these modules in ASD. 

 BW-M4 represents a neuronal module set, identified independently throughout 

the telencephalon and sub cortical regions, all sharing GO terms related to membrane 

organization or ion transport (figure S5a). Examination of significant genes within BW-

M4 (defined as MAGMA Z>3.0, Methods), we find that the enriched terms for both the 
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Psychiatric Genomics Consortium101 and ClozUK102 SCZ GWAS studies are related to 

the synapse and synaptic transmission (figure S5b), suggesting a convergence of risk 

genes onto synaptic signaling pathways, consistent with a recent comprehensive 

pathway analysis.103 Using meta-GSEA (methods) to rank ontologies across GWAS 

studies and brain regions, we find that both ASD and SCZ appear to share highly-

ranked terms related to synapse assembly and plasticity. The term synaptic 

transmission shows very strong evidence only from SCZ association statistics, while the 

strongest terms with evidence in ASD alone are learning and social behavior (figure 

S5c). Because of the difference in GWAS power, it is likely that ASD-specific terms 

reflect ASD-specific biology: ASD is a social disorder that can present with learning 

disability. On the other hand, the implication of synaptic transmission in SCZ alone likely 

reflects that sample sizes are too small, and thus power too low, to draw mechanistic 

conclusions about ASD genetic risk. 

  

BW-M1 contains genes and pathways corresponding to neurogenesis, 

differentiation, and migration (figure 6a), as well as components for RNA splicing, 

structural components of cell division, and stem cell population maintenance (figure 

6b). Genes within BW-M1 are strongly loss-of-function intolerant, and the module 

enriches significantly for PPI interactions. The genes in this module, which are up-

regulated in ASD cortex, include the TGF-beta signaling pathway (FDR=0.0047, 

STRING104). This pathway is known to regulate neurogenesis,105 and consist mainly of 

the BMP/SMAD pathway (BMPR1A, BMP2K, SMAD4, SMAD5, SMAD9) which is critical 
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for orchestrating proliferation/differentiation balance.106 NPC proliferation/differentiation 

balance is another major theme of the module, as it contains key REST co-repressors 

CTDSPL and RCOR1, the down-regulation of which promote proliferation over 

differentiation;107 as well as differentiation repressors ADH5, TLR3, SOX5, SOX6, and 

PROS1108,109,110,111,112,113 and the differentiation/proliferation regulator SPRED1.114  The 

de novo LoF and GWAS enrichments suggest that NPC proliferation and differentiation 

– both in the prenatal and adult brain – are disrupted in ASD and SCZ. Analysis of 

module trajectories in the developing brain115 shows very strong prenatal upregulation, 

with continuing postnatal expression into early adulthood (figure 6d,e). Disruption of 

this module may be related to the observed ASD expression signature – downregulation 

of neuronal modules and upregulation of astrocyte modules116 – suggesting that one 

component of neuropsychiatric disorders are brain-wide changes in neuronal 

proliferation/differentiation/maturation balance that begins in early development and 

persists throughout postnatal development and into adolescence.117 

 

The two regional modules that show convergent evidence of disruption in 

neuropsychiatric disorders, CTX-M3 and CEREB-M1, show an enrichment for de novo 

LoF variants linked to ASD, gene set enrichment for SCZ GWAS risk variants, and are 

disrupted in post mortem brain from ASD subjects (figure 5). Although, they have 

distinct components, both CTX-M3 and CEREB-M1 show significant overlap in their 

genes, and modest evidence of preservation outside of their respective regions, with 

preservation AUPR scores < 0.5 (figure S6a,b). Both modules enrich for PPI (CEREB-
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M1 p<7e-15, CTX-M3 p<0.0023), as well as LoF-intolerant genes, indicating that they 

contain essential biological pathways.  

 

To validate the cortical-specificity of CTX-M3, we used normalized RNA 

expression values from the Allen Human Brain Atlas118 to contrast the expression 

trajectories of hub genes in cortical versus noncortical regions. We find that the relative 

levels of these genes across all cortical regions (frontal, parietal, occipital, and temporal 

lobes plus cingulate gyrus) are tightly coupled, in contrast to highly variable expression 

in non-cortical regions (hippocampus, hypothalamus, striatum, cerebellum, figure 6g), 

confirming cortex-specific co-expression.  

 

Notably, CTX-M3 contains both the syndromic ASD risk gene, FMR1, as well as 

its direct interactor, the protein NUFIP1, both of which have been implicated in the 

regulation of activity-dependent translation and local synaptic translation119 and 

additionally in ribophagy.120 It also contains the ID gene ATRX, which forms a complex 

with the protein product of DAXX to regulate H3.3 loading onto and maintenance within 

heterochromatin. H3.3 is itself associated with activity-dependent transcription in 

neurons,121 suggesting that dysfunction or dysregulation of ATRX could alter the 

availability of this activity-related histone.  

 

To further examine the role of activity-dependence within this module, we 

examine a set of genes identified as up-regulated following neuronal activity,122 finding 
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that 10% of these genes fall into CTX-M3 (p = 0.0472, Fisher’s exact test, figure 6h). 

The observed enrichment is driven largely by components of protein phosphatase 1, 

which has both nuclear and synaptic roles in synaptic plasticity and long-term 

memory.123,124 However, several components of the mitochondrial ribosome (MRPL27, 

MRPL45, MRPS26) are observed concomitant with activity-dependent upregulation, 

and CTX-M3 is highly enriched for the mitochondrial ribosome, containing 21 genes 

within this functional pathway (p < 1.7e-10, Fisher’s exact test). These observations 

indicate that genes normally up-regulated by neuronal activity form one component of 

this down-regulated ASD and SCZ associated module, CTX-M3. Other components of 

this module include poly-A binding, alternative polyadenylation and alternative splicing 

(NGDN, MBNL1, MBNL2, CSTF3, SPSF3, CPSF6), multiple endocytosis regulating 

genes (RALA, VAMP4, VAMP7, TSG101, VPS25, RAB18, RAB3GAP2, CHMP2B, and 

sorting nexins SNX2, SNX3, SNX13, SNX14), consistent with their potential role in 

supporting neuronal activity dependent processes that are disrupted in ASD (figure 6f).  

 

Network enrichment and genetic architecture: quantifying omnigenics in neuropsychatric 

disease 

 Complex diseases including neuropsychiatric disorders are influenced by large 

numbers of genetic variants and genes.125,126,127 Gene networks from disease-relevant 

tissues can capture interactions between these genes and have therefore been 

hypothesized to inform disease heritability.128,129,130 Gene-set enrichment analysis of 

network modules is a simple approach for investigating how network structure relates to 
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disease-associated gene. However, this approach ignores network distance and higher-

order structures and does not directly inform models of heritability. We therefore sought 

to evaluate the use of network distance, as defined by brain-wide and regional co-

expression networks, into a model of genetic architecture, and examine the role that co-

expression networks play in the genetic architecture of neuropsychiatric disease. 

 Our approach is motivated by the recently proposed omnigenic model of 

disease.131 The omnigenic model posits the existence of core and peripheral genes: the 

core genes are defined as those with direct effects on disease, with the peripheral 

genes manifesting effects that are mediated through the core genes. That is, within a 

cell type or set of cell types relevant to disease, mutations in peripheral genes are 

proposed to lead to increased susceptibility due to indirect perturbations of core gene 

activity. This model suggests that larger disease effect sizes will be observed for loss-

of-function variants affecting core genes, common cis-eQTLs of core genes, and 

variants affecting peripheral master regulators that converge on numerous core 

genes.132 Embedded within this formulation is the expectation of two broad classes of 

genes: one class of genes with high effect size mutations (core genes and peripheral 

master regulators), and another class with small indirect effects that act in trans 

(peripheral genes133). Although the omnigenic model does not explicitly define how core 

and peripheral disease genes relate to gene networks, co-expression networks naturally 

exhibit a hub and periphery structure, and it has been hypothesized that module hub 

genes are more likely to harbor large effect size mutations,134 and thus may be potential 

candidates for core disease genes or their master regulators. We therefore sought to 
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test whether network-central genes in brain co-expression networks might reflect an 

omnigenic disease architecture. 

 With this motivation, we first construct a simple model whereby allelic effect size 

is a function of network distance to simulated core genes (network genetic architecture, 

methods). We simulated variants to generate a frequency-effect-distance distribution 

(methods), and observed that the resulting effect size and heritability distributions bore 

a striking resemblance to the theoretical distributions posed in the original omnigenic 

publication (figure 7a).135 We observe that within this model, high-effect variants fall 

within or very near to core genes, and nearly all of (98-100%) the top 1% of variants by 

effect magnitude fall into the first decile of distance to the simulated core genes (figure 

7b). When the distance is corrupted by 30% random measurement error (methods) this 

proportion remains robustly above 60% (figure 7b).  

 We leveraged our robust, comprehensive brain networks to evaluate the extent 

to which various gene networks’ central genes capture an omnigenic “core” structure for 

two common neuropsychiatric disorders: ASD and SCZ.136 We reasoned that genes 

associated with these disorders by virtue of de novo loss-of-function mutations are likely 

to be both: (i) core genes under an omnigenic architecture, and (ii) among the highest-

effect mutations for these diseases (core genes under our model). We identified sets of 

genes likely to harbor high-impact rare variation for both ASD and SCZ by using the top 

implicated genes from each of three previous rare and de novo studies of 

neuropsychiatric disease: extTADA,137 iHART,138 and NPDenovo139 (methods). We 

leveraged these data to develop a statistic, 𝜙"#$%, that measures the “core” nature of a 
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hypothesized gene set on an arbitrary network. We then use this approach along with 

brain co-expression network structure to evaluate whether either 1) network-central 

genes or 2) rare-variant implicated genes appear to behave as “core” genes (methods). 

Specifically, we define the core proportion of a network, 𝜙"#$%, as the proportion of likely 

high-impact genes whose distance to proposed core genes (e.g., network central 

genes) is in the lowest decile. For instance, using 10 genes as a proposed core and a 

10,000-gene network results in 10,000 distance values (minimum path distance to any 

of the 10 genes), 𝜙"#$% is then the proportion of rare-variant implicated genes whose 

rank (by distance) is 1,000 or less. A value of 𝜙"#$%=1.0 would occur if all true disease 

core genes fall very close to the proposed core genes within a network (e.g., if disease 

core genes are network central genes) reflecting a well-separated core/periphery 

structure.  

First, in an exploratory analysis, we evaluated network-central genes across 

whole brain, cortex, prefrontal cortex, developing cortex, and fetal cortex co-expression 

networks, using whole blood co-expression as a baseline. We used multiple approaches 

to selecting modules and hub genes, for defining co-expression distance, and for 

selecting the number of rare-variant implicated genes (methods), resulting in 6,732 

statistics for brain tissue networks and 7,124 statistics for the whole blood network.  

 As expected, the largest observed value of 𝜙"#$% from whole blood co-expression 

networks using network central genes was 0.52, below the simulated theoretical 

baseline (figure 7). Surprisingly, the largest observed value of 𝜙"#$% across all cortical 

tissue co-expression networks and their central genes was even lower: 0.44, 
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representing the distance of NPDenovo-implicated genes to module BW-M7 (figure 7), 

while other networks in our collection showed peak values ranging from 0.25 (whole 

cortex evaluated with extTADA-SCZ) to 0.43 (whole brain evaluated with extTADA-

ASD). The fact that the statistic is higher for blood may result from the larger number of 

whole-blood modules, which increases the number of comparisons, or by the larger 

number of whole-blood samples which increases the power to separate and define 

modules. Importantly, 𝜙"#$% does show a significant odds ratio for 416/6732 brain 

network distances (FDR < 0.05, Fisher’s exact test) and for 217/7125 blood network 

distances: values of 𝜙"#$% as low as 0.207 are statistically significant, demonstrating that 

the genetic architecture of these diseases indeed reflect network distances, just not so 

strongly as to cleanly separate core and peripheral genes. 

 Because disease core genes need not be network-central genes, it could be the 

case that co-expression networks capture the correct notion of gene-gene distance, but 

network-central genes are not the correct core gene set. Therefore, we next evaluated 

use of rare-variant implicated genes as candidate core genes.  We partitioned the rare-

variant implicated genes from the source studies into proposal (10 or 20 genes) and 

evaluation sets (35 to 100 genes, methods), using the proposal gene set to compute 

network distances, and the evaluation gene set to calculate 𝜙"#$%. This resulted in 3,562 

statistics for all brain co-expression networks, and 484 for the blood co-expression 

network. As in the network-central gene analysis, we find that the largest value of 𝜙"#$% 

in brain networks (0.47) is lower than that of blood networks (0.50) which is in turn lower 

than the theoretical baseline of 0.60.  
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 The inability of the co-expression networks to separate a core and periphery 

according to our test may reflect one of several explanations.  First, it may be that the 

diseases assessed do not in fact have a core/peripheral gene structure, and the 

omnigenic model is insufficient to explain their architecture.140 Second, it could be that 

peripheral master regulators are somewhat common among the candidate core genes 

(e.g. de novo LoF genes) tested above, and thus not a “clean” core set. We have 

endeavored to reduce the impact of potential master regulators by excluding known 

transcription factors, DNA binding proteins, RNA binding proteins, and noncoding genes 

during our analysis (methods), so any master regulators would need to function 

through an alternative indirect mechanism. A third possible explanation is that the 

networks here are simply not the correct networks to describe the architecture of these 

diseases, whether due to power, cell type specificity, or other properties – we return to 

this possibility below.  Finally, it could be that network centrality is not the correct 

property to consider in assessing omnigenic architecture, and that an alternative 

analysis using arbitrary connectivity without candidate network central genes would be 

required.  While we cannot definitively assert which influences our results, it is clear 

from our analysis that the simple interpretation that co-expression network central 

genes will cleanly distinguish large effect “core” genes from a periphery is not 

supported. 

 To consider the impact of network choice on these results, we explored several 

possibilities.  Although most modules identified in co-expression networks from bulk 

tissue do represent cell types assayed via single-cell expression,141 it is possible that 
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either the bulk nature of tissue data, or the fact that these co-expression networks are 

based on static correlation, rather than physical or dynamical interactions, fail to capture 

the appropriate core-periphery relationships. To consider other types of networks, we 

utilized the InWeb PPI network142 from brain, and inferred empirical gene regulatory 

networks (eGRNs) from brain tissue and cell types (methods),143 and repeated the 

analyses above using high-connectivity genes as network central genes. We find that 

the core/periphery structure in these other networks also do not mirror the expectations 

of our omnigenic-like model (supplemental figure 8): across both PPI and eGRN 

networks, the largest observed value of 𝜙"#$% was 0.38. 
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Discussion 

 

Gene co-expression networks have provided a powerful organizing framework for 

transcriptomic studies of the nervous system. Many gene co-expression network studies 

have focused on a single brain region, albeit relative to disease states, or over 

development.144,145,146,147,148,149,150,151,152,153 In many cases, this has made it unclear 

whether such networks were specific to the brain regions studied, or more generalizable 

across regions. Here, we have described the construction of a robust, hierarchical, 

resource aimed at establishing common and region-specific aspects of gene co-

expression within the brain. We identified 11 whole-brain co-expression modules, 

corresponding to common cellular components such as major neuron and glial types. 

We also captured region-specific signatures dominated by regional cell subtypes. By 

using a consistent framework that allows us to understand the relationship of modules 

identified at different scales, we demonstrated that: i) the convergent pathways in 

neuropsychiatric diseases such as autism and schizophrenia are primarily reflected in 

neuronal and neurogenesis pathways that are common across brain regions, rather 

than specific to a single region; ii) Disease risk in ASD and SCZ is enriched in these 

down-regulated neuronal and neurogenesis modules; several of these modules reflect 

down-regulation of activity dependent transcriptional programs; iii) cell-type-specific 

lncRNA and isoform co-regulation can be included these networks, and that isoform-

level analysis is likely essential to interpret disease associations; Iv) brain RNA co-

expression, PPI, and co-regulatory networks do not cleanly capture the dichotomous 
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core/periphery structure proposed by the omnigenic model. It will be important to further 

explore cellular-level or other types of gene networks.154 For example, within-cell co-

expression networks – which are difficult to estimate from bulk tissue or even single-cell 

expression – may more directly relate to disease etiology and thereby show more 

omnigenic-like network architecture parameters than the networks investigated here. 

 

The fact that gene expression markers for major cell classes can be identified 

from bulk tissue co-expression is now well-established.155,156,157 The relationship 

between module membership and cell-type relative expression demonstrates that co-

expression analysis is a valid method of marker discovery for both cell subtypes and 

isoforms. Indeed, isoform kME values for striatal modules M1 and M2 may represent 

the most salient information regarding both isoforms with high relative expression 

human medium spiny neurons. As sample sizes grow larger, we expect to identify new 

subdivisions of co-expression modules, corresponding to ever-finer distinctions between 

underlying cell types. 

 

We show, through analyzing lncRNA from a separate collection of brains – 

sequenced in a different location and with different technology – that the modules we 

have constructed are applicable to other, smaller, RNA-sequencing datasets, and retain 

the very same cell-type signals. This approach based on gradient boosted trees is 

potentially very powerful: it allows every gene in a new expression dataset to be 
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identified as potentially region-specific or cell-type specific, without requiring large 

sample sizes for co-expression analysis or samples from multiple regions.  

 

A similar approach was used to create isoform networks, using guilt-by-

association via co-expression to assign isoforms to modules, which in many cases are 

cell-type specific. This is important, as single cell sequencing approaches that capture 

full-length transcripts are expensive; and those that do not only incompletely represent 

isoform expression profiles.158 Here, we provide a first generation set of 1,987 cell-type 

specific isoforms for major cell classes in the brain of which 549 are neuron, 543 

astrocyte, and 696 oligodendrocyte. Remarkably, several of these isoforms, including 4 

ASD risk genes, manifest isoform switching between neurons and glia. One of these 

ANK2, has been recently described and validated as having different isoforms in 

neurons and glia, which manifest distinct PPI.159 As long-read sequencing matures and 

is applied at larger scale, more complete cell-type specific isoform networks can be 

constructed using this approach. Our data indicate that this will be of substantial value 

in understanding disease-relevant variation. 

 

Our findings that ASD-linked dnLoF mutations as well as SCZ GWAS signal 

enrich in brain-wide neuronal and neurogenesis modules underscore previous findings 

linking both common and de novo variation to synaptic genes,160,161 neuronal genes,162 

developmentally-expressed genes,163 and neurogenesis pathways.164 Even though 

cortical regions contain a much higher proportion of neurons than other brain regions, 
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the pattern of enrichment is not cortex-specific, and enrichments in the BW-M1 and BW-

M4 module sets are significant across the brain, implying likely widespread effects of 

these genetic risk variants on brain function.  

 

The only region-specific modules with convergent evidence across disease and 

modality were CTX-M3 and CEREB-M1, which appear to reflect activity-dependent 

transcriptional profiles identified in previous studies. Indeed, VAMP4 – present in CTX-

M3 – is an essential molecule for activity-dependent bulk endocytosis (ADBE),165 and 

several module proteins (including RAB GTPases RAB7a and RAB18) overlap with the 

ADBE proteome.166 This suggests a parsimonious explanation that this module 

concerns the maintenance of organelles and proteins required for long-term neuronal 

activity, (i.e., mitostasis and ADBE proteostasis), through activity-dependent mRNA 

transcription and neuropil targeting.167 CTX-M3 does show suggestive evidence of 

preservation outside of cortical regions (figure S6), and it may appear cortex-specific 

simply because it is easier to uncover neuronal biology in regions with the highest 

proportion of neurons, such as the cortex. At the same time, the hub genes of this 

module show tight regulation of mean expression across cortical regions, but not non-

cortical regions in the Allen Human Brain Atlas,168 which supports weak, but not 

complete overlaps with other non-cortical neuronal modules. In addition, power to detect 

enrichment is a function of module size. Region-specific modules have a smaller 

average size than brain-wide modules, and it may be that additional samples will 

provide evidence for selective vulnerability as the number of samples increases.  
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Incorporating gene networks into models of genetic architecture remains a major 

challenge, with application both to predictive disease models and to translational 

genetics. Although the omnigenic hypothesis does not specify a concrete network 

model, in order to apply the model to etiology of specific diseases, we must connect it to 

quantifiable relationships between genes. Our approach to investigating the models 

comes from a unifying hypothesis: that there is a relationship between mutational effect 

size and network distance – with omnigenic and polygenic architectures representing 

the strong and weak extremes of that relationship. From this point of view, quantifying a 

network’s effect on trait architecture in terms of the decay parameter is of a higher 

concern than labeling it as either omnigenic or polygenic, as there likely are traits at 

both ends of this spectrum. For instance, one might expect secondary phenotypes of 

Mendelian disorders (such as age-at-onset or disease severity) to show a strong 

omnigenic-like relationship in the relevant network, with all distances measured to the 

disease gene. Our results show that organizing genes into bulk tissue co-expression 

networks does not explain high-impact mutations in terms of a clear core/periphery 

relationship – either from the perspective of modules, or empirically-defined clusters. 

For the three distinct network types tested – gene co-expression networks, PPI 

networks, and gene-regulatory networks derived from bulk tissue – we find that the 

network structures do not strongly distinguish peripheral genes from core genes as 

would be consistent with an omnigenic architecture. However, there are many other 

natural network topologies to test, including single-cell and within-cell networks, once 
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sufficient data is available from a large number of subjects and cell types. Perhaps more 

importantly, the model underlying our analysis provides a means to relate total effect – 

direct and indirect – to a network structure. Future work in extending our model could 

provide a means of assessing the proportion of heritability explained by network 

interactions, and thereby probing the network architecture of disease. 
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Figure 1: Human whole-brain co-expression atlas. (a) Overview of module 

construction (b) Hierarchical merging hierarchy based on median within-region 

expression (c) Module preservation in external datasets, with the not preserved (z < 5) 

region highlighted in red (d) Module evidence across all regions of the human brain, for 

brain-wide and cerebellar module sets. Strong evidence: z > 8, Evidence: z > 5, Weak 

evidence z > 3, No evidence z < 3. (e) Dendrogram from rWGCNA in amygdala, 

showing high degree of overlap between four methods of network construction and 

module identification. (f) Precision and recall of co-clustering a gene with the hub gene 

of its true module, as a function of module separability and sample size (g) Example 

hub gene network of whole-brain modules. 

 

 

 
Figure 2: Cell-type heterogeneity relates to co-expression modules, gene 

intolerance, and evolution. (a) top: Absolute value of the eigengene of module 

NCBL.M1 plotted across regions, showing higher variance in regions adjacent to or 

accessible through ventricles. left: Expression of NCBL.M1 eigengene and mean 

expression of choroid-plexus marker genes in regions with and without an NCBL-M1 

module. Right: Marginal probability of a gene being a choroid plexus marker, as a 

function of NCBL-M1 soft membership. (b) Brain-wide modules largely correspond to 

cell class. Top WGCNA dendrogram at the whole-brain level, colored by module, middle 

genes colored by cell type for which they are a marker in human and (bottom) mouse. 

(c) Relative expression of neuronal marker genes for modules BW-M4, BROD-M8, 



CEREB-M2, and STR-M1 within interneurons from cortical SC-sequencing, Purkinje 

neurons from cerebellar SC-seq, and medium spiny neurons from mouse striatal SC-

seq, as a function of module kME. (d) GSEA enrichment plots for LoF-intolerant genes 

(pLI > 0.9) for all whole-brain modules. (e) Factorization-based decomposition of bulk 

expression. Correlations for BW, CTX, and PFC modules come from decomposition of 

DLPFC expression; AMY from decomposition of AMY bulk expression, and BROD from 

decomposition of B24 bulk expression. (f) lncRNA relative expression in single-cell data, 

grouped by the imputed module in riboZero RNAseq data from BA9. (g) Cell type 

expression and significant module overlaps for human differentially-expressed modules 

from Sousa et al. (17), with cell type assignments are as per (17). 

 

Figure 3: Creating a catalogue of cell-specific isoforms (a) Overview of isoform 

assignment on the basis of kME to cell-type modules. (b) Isoform relative expression 

(log-FC of TPM) in oligodendrocytes plotted against isoform kME to BW.M7 showing 

significant positive relationship (p<10-6, linear regression). (c) Venn diagram of isoforms 

assigned to neuronal subtypes (d) GO enrichment of parent genes of subtype-specific 

isoforms. Top module-specific terms are shown, followed by terms which are significant 

across multiple subtypes (min p-value shown). (e) Assignment of daughter isoforms of 

genes with membership to a whole-brain cell type module, showing that most daughter 

isoforms are either assigned to the parent gene module, or to the grey (unclustered) 

module. (f) IGV visualization of the event differentiating the astrocyte and neuron 

isoforms of ANK2, the inclusion of the giant exon, in sorted cell data. (g) Expression of 



ANK2 and SCP2 transcripts in sorted-cell data, showing isoform switching between 

neuron and astrocyte. (h) Western blot of ANK2 across iPSC differentiation into 

neurons, and within astrocytes, demonstrating the presence of a long isoform specific to 

neurons. 

 

Figure 4: Region-specific gene up-regulation reflects region-specific cell types 

and ribosomal turnover. (a) Overview of the regional contrast test: top Example of 

heterogeneous data where mean expression within each region differs from the global 

mean. left With only 50 samples, all regions are significantly differentially expressed in a 

global manner. middle Visualization of the PFC statistic for PFC and CDT: The PFC 

mean (set to 0) overlaps only a small amount of the confidence region for another 

region, while confidence regions straddle the CDT mean. right The RCT statistic 

identifies the two most extreme tissues as differentially up- and down-expressed 

compared to all other regions. (b) Count of genes, which are significantly up-regulated 

within brain regions, across four backgrounds. (c) Cell-type enrichments for the up-

regulated genes for the corresponding comparisons in (b). (d) Plot of scaled expression 

(per gene across tissues) for all genes in BW-M2, showing CTX-specific down-

regulation of ribosomal subunits. (e) PPI co-expression network for genes in WB-M2, 

showing a sizeable fraction of the module core, a substantial fraction RPL and nearly all 

RPS mRNA are up-regulated in sub-cortical regions. 

 



Figure 5: Gene-level module enrichments for de novo PTVs, GWAS summary 

statistics, and differential expression. (a) FDR values (Fisher’s exact test) for 

enrichment of de novo loss-of-function variants within modules, summarized to module 

sets. Bar height gives geometric mean of FDR, and whiskers the range of (significant) 

FDR values for modules within the module set. Bold modules also show enrichment 

from GWAS summary statistics; see (b). Module sets are ordered by Jaccard similarity 

between their index modules. Green region: These modules enrich for neuronal 

markers. Blue region: These modules enrich for fetal neuron, mitotic progenitor, or outer 

radial glia markers. (b) FDR values (MAGMA) for GWAS summary statistics within 

modules. Method of ordering identical to (a). (c) Module eigengene expression for BW-

M1 and BW-M4 in ASD cases and control brains across three regions and associated p-

values from a T-statistic (linear model including covariates as in Parikshak2016). (d-f) 

Volcano plots and sign-test P-values for genes in NPC, astrocyte, and neuronal 

modules. (g) Module preservation statistics separately in ASD and control brains, 

suggesting differential preservation for modules CTX-M3 and CEREB-M1. 

 

Figure 6: Ontologies, PPI networks, and expression profiles of ASD-associated 

modules. (a) Enrichment p-values (Fisher exact test) for neuron-related ontologies in 

whole-brain modules. (b) Combined (geometric mean) enrichment p-values of 

ontologies for all modules in module set BW-M1 that showed enrichment for ASD-

implicated de novo loss of function mutations. (c) Co-expression-PPI network of BW-

M1, highlighting de novo loss of function mutations (large nodes) and ontologies 



(colors). (d) Expression of BW-M1 across developmental time-points, subclustered into 

four modules using WGCNA. (e) Assignment of network nodes in (c) to the subclusters 

in (d) via label propagation. (f) Coexpression-PPI network for CTX-M3, colored by 

enriched gene ontology sets. (g) Expression profile of CTX-M3 hub genes across brain 

regions, demonstrating tight co-regulation in cortical regions (solid lines) by virtue of 

small variance, and variable expression across non-cortical regions (dashed lines). (h) 

Enrichment p-values (Fisher exact test) of the CTX-M3 module for gene ontologies, 

including bulk endocytosis genes. 

 

Figure 7: Characterizing core-periphery structure of high-impact neuropsychiatric 

disease genes across multiple networks. (a) Example simulation of network genetic 

architecture, where the variant effect size decays rapidly with distance to core. Left: 

Cumulative proportion of genes (blue) and heritability (pink) along the distance 

distribution. Dotted line shows the cumulative heritability when true distance is replaced 

by a corrupted (30% error) distance. Right: The relationship between core distance and 

effect size results in high-effect variants only appearing very close to core genes. (b) 

High-impact genes are defined by the effect-size percentile on the x-axis, and the % of 

genes falling into the core-distance decile is plotted on the y-axis. This plot 

encompasses 20 simulations. Dotted boxes represent the expected values for Φ when 

the distance is error-free, while solid boxes represents the case where distance is 30% 

corrupted by error. (c) Validation of the effect size distribution: the effect size of each 

quantile is normalized to the effect size for which a balanced GWAS of 10,000 samples 



has 80% power; the highest-impact variants are only 20-50x stronger than empowered 

variants. (d) All values of Φ across distance metrics, core set size, module definitions, 

and brain co-expression networks, demonstrating that no value of Φ exceeds 50%. (e) 

top 10 Φ values (per core set) for the GTEx whole-blood co-expression network. 

 

  



 

 
 
  



Expression quantification, QC, and covariate correction 

 

Reads were aligned using STARclxix in standard two-pass fashion. Gencode v25 

transcripts (hg19/b37) were used as the reference transcriptome and genome for 

alignment. Transcripts were quantified using RSEM to produce gene and isoform level 

TPMs. The analyzed TPMs are log-transformed log(0.005 + x) resulting in approximate 

normality. 

 

Sample and individual-specific covariates were downloaded from the GTExclxx website, 

and supplemented with technical alignment information from the STAR alignment and 

PicardTools QC of the resulting .bams.  

 

Individuals were excluded if they were positive for any of the following phenotypes: 

'MHALS', 'MHALZDMT', 'MHDMNTIA', 'MHENCEPHA', 'MHFLU', 'MHJAKOB', 

'MHMS',  'MHPRKNSN', 'MHREYES', 'MHSCHZ', 'MHSEPSIS', 'MHDPRSSN', 

'MHLUPUS', 'MHCVD', 'MHHIVCT', 'MHCANCERC', 'MHPNMIAB', 'MHPNMNIA', 

'MHABNWBC', 'MHFVRU', 'MHPSBLDCLT', 'MHOPPINF'. The individual-specific 

covariates 'GENDER', 'AGE', 'RACE', 'ETHNCTY', 'TRISCH', 'TRISCHD', 'DTHCODD', 

'SMRIN', 'SMNABTCH', 'SMGEBTCH', 'SMTSISCH', 'SMTSPAX' were extracted. The 

`DTHCODD` variable was binned into the following categories: ‘UNKNOWN’, ‘0to2h’, 

‘2hto10h’, ‘10hto3d’, ‘3dto3w’, ‘3wplus’. 

 



STAR alignment metrics and PicardTools QC metrics were subset to non-excluded 

samples, outliers were flagged and removed via a chi-squared test (p < 10-5). The 

PicardTools metrics were log-scaled, and the top 5 principal components extracted 

using the PCA class from scikit-learnclxxi (“seq-PC”). The STAR alignment covariates 

were subset to those with “splice” in the feature name, and the top 3 principal 

components similarly extracted (“STAR-PC”).  

 

Given the gene expression and covariate matrices, features that explain a significant 

proportion of expression variance in a non-trivial subset of genes were extracted using a 

forward-backward regression approach (see supplemental methods). This approach 

identified the features "seq_pc1", "seq_pc2", "seq_pc3", "SMRIN", "SMEXNCRT", 

"Number_of_splices_GT/AG", “TRISCHD” and “DTHCODD” as significant features, with 

no significant interactions between these features or between any of these covariates 

and tissue type. 

 

Because there were no significant cross-terms between tissue and covariate, all tissues 

were combined for the removal of covariate effects. A linear model (expr ~ tissue + 

covariates - 1) was applied, with a separate intercept (mean) for each tissue. The 

covariate effects were removed, while the estimates of mean expression per tissue 

were retained.  

 

 



Forward-backward covariate selection using MARS (earth) 

 

A key step in the treatment of RNA-seq data is identifying what technical or biological 

covariates are strong drivers of measured expression. RNASeqQC produces a large set 

of alignment metrics derived from the aligned RNA-seq bams. We combined these with 

the splicing metrics output by STAR. Separately, each of these data were scaled and 

the top 5 PCs calculated to summarize the bulk of the technical covariate distribution, 

producing an additional 10 potential covariates. This final set of technical covariates are 

combined with the sample-level individual-level information provided by GTEx (ischemic 

time, age, biological sex, RIN, ethnicity, race). 

 

We then used the `earth` package in R to select covariates that explained a large 

amount of expression variance across many genes. We set the parameters so that no 

non-linear splines were used, but that cross terms up to degree 3 were allowed, 

enabling the model to select tissue-by-covariate or covariate-by-covariate effects. 

 

earth builds a forward model by selecting the covariate (or cross term) which most 

improves the total R^2 across all genes considered; and when a diminishing-returns 

threshold is reached (for us, an improvement of 0.01), prunes the terms using a 

penalized R^2 heuristic. 

 



We ran earth 100 times on a random sample of 1,000 genes; each run producing an 

estimate of variance explained for all covariates (covariates not included in the model 

are assumed to explain 0% of expression variance). We summarized the impact of each 

covariate by taking the upper 20% of the variance explained (figure S1a). Any covariate 

whose summary estimate was >5% variance explained was included in our final model 

for covariate correction. For group variables (such as tissue); if any subgroup exceeded 

the variance explained threshold, then the entire group variable was selected.  

 

Notably, no cross-terms exceeded the threshold for variance explained, suggesting that 

we could perform covariate correction simultaneously across all tissues. The lack of 

region-by-covariate effects may be due to the fact that the library preparation batches 

and sequencing batches are well-balanced across brain regions.  

 

Tissue hierarchy 

 

The median expression of all genes across a given tissue is taken as the exemplar of 

said tissue. These exemplars (12 in all) are hierarchically clustered into the tissue 

hierarchy observed in figure 1 using Euclidean distance and single-linkage hierarchical 

clustering. 

 

Module construction 

 



Robust WGCNA: Robust rWGCNAclxxii was applied to each brain tissue independently. 

Briefly, the power parameter is selected as the smallest power (between 6 and 20) 

which achieves a truncated r^2 of >0.8 and a negative slope. Then, 50 signed co-

expression networks are generated on 50 independent bootstraps of the samples; each 

co-expression network uses the same estimated power parameter. These 50 

topological overlap matrices are then combined edge-wise by taking the median of each 

edge across all bootstraps. 

 

The topological overlap matrices are then clustered hierarchically using average linkage 

hierarchical clustering (using `1 – TOM` as a dis-similarity measure). The boostraps are 

used to determine cut height as follows: multiple cut-heights are considered (0.9 to 

0.999, by 0.005); and for each cut the within-module correlation of TOMs is considered. 

For the top 8 modules by size (fewer if fewer modules are produced), the consensus 

and each bootstrap TOM is subset to the genes within each module, and the correlation 

between bootstrap and consensus is computed. The median (within module, across 

bootstraps) of these consensuses is computed, and the mean of these summaries is 

taken to be a measure of `goodness` for the cut. The cut height which maximizes this 

metric is taken to define the initial modules. 

 

These initial modules are then merged via `mergeCloseModules` in WGCNA, which 

hierarchically re-clusters modules based on the module eigengenes, using the 



correlation-based adjacency as a dis-similarity matrix. Modules with a distance of < 0.35 

are merged together into a combined module. 

 

Aggregating co-expression: At each merge of the hierarchy, a single round of 

consensus topological overlap is performed. Each pair of genes has two descendent 

edges, and the parent edge is estimated as the 80th percentile between the two (i.e. for 

x < y; p = 0.2 x + 0.8 y)). This process proceeds up the tissue hierarchy until a single 

network TOM remains. 

 

Consensus labeling: After construction of co-expression networks from all tissues and 

splits, modules have been defined for a total of 21 groups (BRNACC-BRNSNA, BROD, 

CTX, CBL, BGA, STR, NS-SCTX, SCTX, NCBL, WHOLE-BRAIN), yielding over 300 

overlapping modules. The overlapping nature of these modules motivates labeling each 

module in terms of a hierarchy group, allowing one to identify (say) BRNHYP-M2 and 

BRNCTX-M7 with the module group WHOLE-BRAIN-M3. 

 

To perform this labeling, similarity matrices are computed. First, the module eigengenes 

for all modules (regardless of origin) are computed within every tissue, and the 

correlation matrix (using `bicor’) is computed for each module for each tissue. This 

produces an (all modules) x (all modules) matrix for each tissue. The consensus 

eigengene similarity (“E”) between two modules is chosen as the component-wise 

maximum of all of these matrices. The second similarity matrix is the standard Jaccard 



similarity (“J”) between module gene lists. These similarities are combined into a dis-

similarity matrix D = 1 - (E + 3*J)/4, which is used to hierarchically cluster (average 

linkage) these modules.  

 

Module groups are defined by cutting the dendrogram at a height of 0.35. This process 

results in a set of module clusters, each of which has a “level” in the brain tissue 

hierarchy (for instance, a cluster of BRNCTXBA9-M4, BRNCTXB24-M2, CTX-M7 would 

have the level “CTX” as the top-level of the tree represented is CTX). The 

“representative” of the module group is taken to be the module at the highest (most 

rootward) level of the tree – and if there are two, the larger of the two. A second round 

of clustering is performed by removing all modules in the group (except for its 

representative) from the dissimilarity matrix, and re-clustering only the group 

representatives. This process repeats until there are no additional merges. Finally, each 

module is labeled with its group representative; for instance “BRNCTXBA9-M4” would 

receive the label “CTX-M7”, because it shares its highest similarity with the consensus 

cortex module M7. 

 

In addition, we re-named and abbreviated modules: “BW” for brain-wide, “NCBL” for 

non-cerebellar, “NS.SCTX” for non-striatal subcortex, “CEREB” for Cerebellum; and the 

GTEx tissue names were abbreviated to clear region codes: ACC, AMY, B24, BA9, 

CBH, CBL, CDT, HIP, HYP, PFC, PUT, SNA.  

 



Preservation 

 

We consider two module preservation statistics: the classical Z-summaryclxxiii and a 

leave-one-gene-out neighbor statistic. For the classical Z-summary; module statistics 

such as the mean gene-gene correlation in the module, the correlation-of-correlations 

across datasets, the variance explained by the first module PC, and other metrics are 

computed for each module (in both the original and comparison dataset); and compared 

to 100 random (via permutation) modules of identical size. Each observed statistic is 

converted to a Z-score, and these are averaged to generate a final summary, for which 

large Z-scores are indicative of replication of the underlying biological signal. 

 

The neighbor statistic (“Z-AUPR”) is strongly influenced by the single-cell statistic 

MetaNeighborclxxiv. Briefly, a k-nearest-neighbor network is built in the comparison 

dataset (we use k=15), and we impose the module labels from the reference dataset. 

For each gene, we compute the proportion of its neighbors (again, in the comparison 

dataset) whose labels match its own. Note that if this proportion is > 0.5, then this gene 

would be assigned the same label in the comparison dataset as the reference dataset 

under a neighbor-voting scheme. Using these scores, we can compute an AUPR for 

each module. We repeat this approach for 100 permuted modules (and, unlike the 

WGCNA permutation, we split genes into connectivity deciles, and permute only within 

decile), and use this baseline to convert observed AUPR to Z-scores. As with the 



classical Z-summary, high Z-AUPR is indicative of replication of underlying biological 

signal. 

 

Module comparisons 

 

We considered three alternatives to WGCNA for network building and module 

identification: ARACNe, GLASSO, and von-Mises-Fisher clustering. 

 

ARACNe was run with default settings (10 permutations, FDR of 0.05); and genes 

filtered by ARACNe (for having no significant edges) were placed into a background 

‘grey’ module. The resulting network was imported into iGraphclxxv and modules 

identified by Louvain clustering. 

 

As sparse inverse-covariance estimation is computationally intensive, we took an 

approximate approach. First, we partitioned the genes into initial groups of approximate 

size 1000 using k-medioids clustering. GLASSO was applied independently to each 

group to estimate a blockwise precision matrix. Within each block, the penalty 

parameter was selected using StARSclxxvi, targeting an edge instability of between 0.05 

and 0.1. Genes with no partial correlation to any others were grouped into a background 

‘grey’ module. The remaining network was imported into iGraph and modules identified 

by Louvain clustering. 

 



vMF clustering, unlike the other approaches, does not build a network, but seeks to 

identify gene clusters directly. Gene expression vectors were pre-processed by 

transforming their values into ranks (across samples) and normalizing them to unit 

norm. In this way, an inner product between two gene vectors is effectively their 

Spearman correlation. The resulting data is modeled as a collection of draws from an n-

dimensional mixture of k von-Mises-Fisher distributions (where n is the number of 

samples). The model was fit using the R package movMFclxxvii for k varying from 8 to 50. 

The final choice of k came from the model that maximized likelihood – 2 * ndim * k; and 

module assignments were determined from the most likely mixture probability (or ‘grey’ 

if that probability was less than 0.8). 

 

Whole-brain module comparisons 

 

Beyond comparing modules within each tissue, we sought to compare our hierarchical 

WGCNA modules with an orthogonal approach for building consensus modules. As 

consensus modules built from methods already similar to WGCNA would certainly 

produce similar consensus modules, we considered an alternate approach: tensor 

decomposition. 

 

First, we built a fully imputed (gene x brain x region) tensor by using probabilistic PCA to 

impute missing samples within every (brain x region) submatrix for each gene. We then 

applied CANDECOMP to this tensor to produce 150 feature triplets: {(gene x 1), (brain x 



1), (region x 1)}. We treated the gene-level features as a (gene x 150) feature matrix, 

and ran t-SNE to embed the genes in a 2-dimensional space. 

 

While this embedding did not show distinct visual clusters, it clearly showed regions of 

high and low density, likely corresponding to modules. Given this intuition, we applied 

the DBSCAN clustering algorithm, producing a set of 30 whole-brain modules.  

 

We found that the ribosomal, glial, and choroid-plexus modules were in one-to-one 

correspondence with TD-DBSCAN modules (figure S1d, e), and that the neuronal 

WGCNA modules correspond to multiple TD-DBSCAN modules, with statistically 

significant overlaps. Visually, the WGCNA modules are localized in the embedded 

tensor-decomposed space, strongly suggesting that the modules are not driven by the 

specifics of WGCNA, nor are they induced by the structure of hierarchical merging; but 

rather that these genes are grouped together by disparate approaches because of an 

underlying biological signal. 

 

Learning curves 

 

To examine how module identification and specificity changes as a function of the 

number of samples, we combined samples from similar tissues to increase the 

maximum N: we combined the cerebellar samples into one larger group (N=122), and 



we also grouped the cortical samples (PFC, B24, BA9) together with hippocampal 

samples into a second group (N=304). 

 

“Reference” modules for these groups were determined by applying rWGCNA to the full 

dataset. We down-sampled the group to a smaller set of samples of size n = 25, 50, …, 

N and performed rWGCNA on the smaller set. We repeated this process 10 times, 

generating 10 networks and module assignments for each sub-sampling of the full 

dataset. 

 

Because two clusterings should be considered identical up to renaming the labels in 

one or the other datasets, we use module co-clustering as a measure for accuracy, 

precision, and recall. Within the reference (whole group) dataset, we extract the top 

‘hub’ gene from each of the modules, and the list of genes co-clustered with that hub 

gene (i.e. the other members of its module). For a given reference module, within a sub-

sampled dataset, we have 

 

Recall = (# ref hub co-clustered genes also co-clustered in subsample)/(# ref hub co-

clustered genes) 

Precision = (# ref hub co-clustered genes also co-clustered in subsample)/(# subsample 

co-clustered genes) 

 



In effect, these are precision/recall statistics for the hub gene co-clustering indicators. If 

two reference modules fail to separate in a sub-sample (a typical failure mode), the 

result is slightly higher recall, but far worse precision. 

 

Single-cell data 

 

Quantified single-cell data was downloaded from http://mousebrain.orgclxxviii (mouse) 

and subset to only cells from the CNS (without spinal chord); and GEO GSE97942clxxix 

was downloaded for human. These data were log-transformed log(1 + x) for counts and 

log(0.005 + x) for TPM; and the cell type labels from the respective publications were 

used for all subtype analyses. Absolute expression values were taken as the mean 

expression of a cluster; and relative expression was obtained via 

 

Relative = absolute – background 

 

Where the background expression is the average expression of a gene over all cells. To 

incorporate gene variance information into relative expression, the relative expression 

rank is defined as the lower end of a small confidence-interval for the difference in 

means: 

 

rank = (𝜇- − 𝜇/) − 	0.5 ∗
𝑣-
𝑛-
+
𝑣/
𝑛/

 



kME enrichments are based on the correlation between module kME and the relative 

expression rank within a given cell type. 

 

 

Cell-type enrichment and single-cell data 

 

For kME-based enrichments (such as those in figure 2), the shaded region of the figure 

represents the standard error around the estimated functional relationship between kME 

and relative expression rank. In all cases it is visually apparent that these lines deviate 

from 0 by a factor far exceeding 2.5 times their standard error (p ~ 0.006). 

 

For gene-set based enrichments such those presented in the text, and those in figure 3, 

cell type markers were obtained from several 

sourcesclxxx,clxxxi,clxxxii,clxxxiii,clxxxiv,clxxxv,clxxxvi,clxxxvii representing various studies performed 

both in mouse and in human. The statistical test is a logistic regression using the model 

 

is.cell.marker ~ 1 + is.in.module + gene.length + gene.gc 

 

adjusting for gene length and GC. We test that the coefficient for module presence is 

significantly different and greater than zero, implying an enrichment (as opposed to 

depletion) of cell-type related genes. 

 



This test is performed independently on cell type markers from the various studies, and 

FDR adjusted across all tests. 

 

Defining mouse orthologs to human genes 

 

The ensembl API was used, through biomaRt, to query human genes with associated 

mouse orthologs and the type of orthology; and visa versa. These queries enabled 

defining genes as one-to-one orthologs, one-to-many orthologs, many-to-many 

orthologs, or non-orthologous. The ensembl API was also used to obtain human-mouse 

dN and dS values; and the ratio dN/dS calculated, with 0/0 treated as 0.  

 

Module Imputation 

 

For our lncRNA analysis, we imputed whole-brain modules into an independent RNA-

seq datasetclxxxviii by i) splitting the data into BA9 and BA41-42-22 regions, ii) Calculating 

module kMEs within each region, and iii) Averaging across the two regions. This 

generates a set of 11 features (average within-region kME to each module) for each 

gene. The overlapping genes between the GTEx modules and control brain expression 

were used as labels to fit a boosted trees classifier (using the R package xgboost with 

2000 trees and a learning rate of 0.025). Non-overlapping genes (which contain most 

lncRNA and a set of held-out, matched protein-coding genes) are assigned to modules 

via the prediction of the fitted classifier. Using cross-validation on the matched protein-



coding genes, we estimate that the sensitivity and specificity of this approach are 0.63 

and 0.53 for BW-M6, with sensitivity ranging from 0.25-0.7 and specificity from 0.2-0.8 

across other modules. The most common misclassification (>60%) results from 

assigning a ‘grey’ gene as in the module, or a BW-M6 gene as ‘grey’.  

 

Human-specific modules 

 

To define modules exhibiting human-specific differential expression, we obtained 

the modules and human-specific differentially-expressed gene list from Sousa2017.clxxxix 

We subset only to modules flagged as showing inter-species heterogeneity, and 

computed enrichment p-values and FDR values by Fisher’s exact test, using the 

intersection of all GTEx-ascertained genes and Sousa2017-ascertained genes. This 

resulted in a set of 25 modules with enrichment FDR<0.1 for human-specific 

differentially expressed genes. 

 Using the same statistical approach and background gene set, we then tested for 

significant overlaps between the 311 GTEx modules and the 25 human-specific 

modules, identifying 10 with an enrichment FDR < 0.1. These overlaps are plotted in 

figure 2(g). Not every module in brain-wide module sets necessarily overlapped at 

FDR<0.1; so the figure reflects the proportion of modules within brain-wide module sets 

that show such an overlap. Furthermore, because hypothalamus and substantia nigra 

were not profiled in Sousa2017, these regions (and the NS.SCTX region) were 



excluded from this fraction calculation (but not from the initial overlap tests and FDR 

correction). 

 Sousa2017 also lists cell types in which these modules are expressed. These are 

summarized in figure 2(g). Expression is listed for cell types Ex1-Ex8 and In1-In8; for 

space this is collapsed to the fraction of Ex and In in which the module is expressed, so 

a gene expressed in In4 and In2 would receive a value of 0.25 for the “In” group. 

 

 

GO enrichment 

 

Gene ontology enrichment is performed competitively, with covariate correction, using 

logistic regression. Briefly, each GO category is treated as a binary variable (1 for genes 

in the category, 0 for genes not in the category – only genes ascertained in our gene 

expression matrix are part for the regression). Modules are also treated as binary. We 

include as covariates the average gene expression across all tissues in the brain, the 

gene GC content, the log gene length, and the gene expression reproducibility (see 

below). The GO enrichment model is then 

 

GO ~ module.1 + … + module.k + mean.expr + GC + log.gene.length 

 



And is fit using logistic regression. If we detect that convergence fails, an L2-regularized 

logistic regression is instead applied (using `brglm`). The enrichment p-values are taken 

to be the statistics that reject (βi ≤ 0) for all βi corresponding to a module indicator. 

 

The enrichment p-values are adjusted for all ontologies. 

 

Meta-GSEA 

To aggregate enrichment results (such as GO) from the module level to the 

module set level, the GO p-values are treated as independent p-values, and Fisher’s 

method is applied: For a given ontology category, a χ2 value is calculated as -2 * 

log(p1*p2*…*pk), where the product is taken across modules in the set. In the case of 

independence, this statistic has 2*k degrees of freedom; allowing a p-value to be 

calculated. Because the modules in a set overlap by construction, the resulting statistics 

are not calibrated probabilities, and are referred to as “scores” or “rankings,” and should 

not be interpreted as reflecting significance. In nearly all cases, the highly-ranked 

consensus ontology had been significant in one or more of the modules within the set. 

The meta-GSEA applied to generate supplemental figures 5b,c was to identify 

the genes within the regional BW-M4 modules (e.g. PFC-BW-M4) with MAGMA Z-

scores > 3.0 (SCZ) or 2.5 (ASD). This generated an indicator variable which was then 

used to perform gene ontology, using the BW-M4 genes as a background; generating p-

values for each ontology. Meta-GSEA was applied to these p-values, generating a 

score for each ontology, plotted in 5b,c. 



 

pLI enrichment 

 

Gene pLI scores were downloaded from the ExAC consortium releasecxc, and a gene 

was considered likely to be LoF-intolerant if its pLI score was 0.9 or higher. Enrichment 

for "hard" module membership (i.e. comparing two gene lists) is performed via Fisher's 

exact test on the contingency table between module membership and LoF-

tolerance/intolerance. "Soft" module enrichment (i.e. based on kME) is computed via a 

Brownian Bridge statistic.  

 

The genes are ranked by their module membership (kME); and the proportion of all 

genes which are likely LoF-intolerant (the pLI rate, r=P/M) is computed. At a given 

quantile q of genes, we tabulate how many of the first q * M genes are LoF-intolerant; 

and denote this cumulative sum by Cs(q). The expected number of LoF-intolerant genes 

is Ne(q) = q * P = q * r * M. For large M, this cumulative sum converges to a scaled 

Brownian motion with drift r; and has variance V(q) = q * (1 - q) * M * r * (1 - r). Z-scores 

for this cumulative sum at each q are given by Z(q) = (Cs(q) - Ne(q))/√V(q). An excess 

of LoF-intolerant genes occurs when min_q Φ(Z(q)) < 0.05. For clearer visualization, we 

plot (Cs(q) - Ne(q)) and 2.17 * √V(q) as functions of q. 

 

We also used a generalized additive models (“GAM”) and a generalized linear models 

(“GLM”) to verify findings of constraint. In these cases we applied the (logistic) model 



 

is.constrained ~ rank(kME)+ gene.length + gene.GC 

 

and found that, for the whole-brain modules, these enrichments were so strong that the 

three methods were in 100% concordance. The results of the linear models did not 

change substantively when using competitive as opposed to marginal enrichments. 

 

For supplemental figure 4 (enrichment in pLI and o/e bins), the odds ratio and p-values 

were computed using a Fisher Exact Test between module membership, and bin 

membership. 

 

PPI enrichment 

 

We use the InWeb PPI databasecxci (brain tissue) for a source of defined protein-protein 

interactions, with a confidence threshold of 0.2 used as a cutoff for a particular 

interaction. PPI prediction is treated as edge-related data, where the response variable 

is binary (presence/absence of PPI), and the predictors the following collection of data 

relevant to that edge: the (PPI) connectivity of its first vertex, the (PPI) connectivity of its 

second vertex, the product of kMEs of its vertices (for each module), the product of the 

GCs of its vertices, and the product of the reproducibilities of its vertices. Or: 

 

Eij ~ Ci + Cj + kME_M1i * kME_M2j + … + kME_Mki * kME_Mkj + GCi*GCj  



 

This equation encodes the model that gene pairs which are mutually close to a given 

module are more likely to physically interact. The logistic model is fit using `statsmodels` 

in python, and the hypotheses βi ≤ 0 is assessed for each βi corresponding to a 

module.  

 

Regional contrast test 

 

The Regional Contrast Test is a multivariate test of significance for 

 

H0: βi ≤ max(β1, …, βi-1, βi+1, …, βn) 

Ha: βi > max(β1, …, βi-1, βi+1, …, βn) 

 

This statistic corresponds to a multidimensional integral, with infinite limits on all 

coefficients other than βi, and taking max(β1, …, βi-1, βi+1, …, βn) < βi < ∞. Because of 

the large numbers of degrees of freedom in this regression, we treat the variance-

covariance matrix (Σβ(ML)) of the β vector as giving the true sampling covariance of these 

parameters, and perform Monte-Carlo integration by drawing 50,000,000 samples from 

the multivariate normal distribution N(β, Σβ(ML)) using the R package fastmvn.  

 

The above statistic works for testing each tissue against all others. A grouped version of 

the test is a simple extension, which considers several β in tandem. For simplicity we 



assume the indexes for the group are the first k coefficients, then the comparison 

becomes: 

 

H0: min(β1, …, βk) ≤ max(βk+1, …, βn) 

Ha: min(β1, …, βk) > max(βk+1, …, βn) 

 

This only changes the integration limits to (for j ≤ k) to max(βk+1, …, βn) < βj < ∞; and we 

use the same Monte-Carlo approach as before. 

 

Post-hoc tests for module enrichment use Fisher’s exact test on the contingency table 

 

 Significant 

(RCT) 

Not significant 

(RCT) 

In module A B 

Not in module C D 

 

 

 

Isoform specificity from sorted cell data 

 

RNA-sequencing data was obtained from GSE73721 (SRA project SRP064454) and 

quantified at the isoform level with Kallisto (mouse gencode release M16). These data 



included sorted populations of astrocytes, oligodendrocytes, endothelial cells, a single 

neuronal population, and a whole-tissue background. Relative isoform expression were 

obtained as described in “Single-cell data,” with the background set to be the average 

expression across the whole-tissue background samples. 

 

Isoform switching and validation 

 

Isoform-level TPM values (produced by RSEM) were corrected using a linear model 

with the same covariates used for correcting gene expression TPMs. Subsequently, 

each isoform expression (within tissue) was correlated to brain-wide module 

eigengenes computed within the tissue, and the mean correlation across tissues taken 

as an estimate of module membership for the isoform.  

 

To determine an appropriate kME threshold, we evaluated the impact of thresholding on 

cell type enrichments. Each threshold produces a set of isoforms within a module; and 

each isoform can be annotated with the cell type marker status of its parent gene. 

Fisher’s Exact Test produces an odds ratio and p-value for cell-type enrichment at each 

threshold. We found that a threshold of 0.45 produced a 15-fold enrichment for both 

astrocyte and oligodendrocyte markers when looking at kME to their respective modules 

(M6 and M7); but that when increasing this threshold the odds ratio for oligodendrocytes 

did not substantially change, while the astrocyte odds ratio increased (figure S7). 

Based on this we defined the threshold for isoform module membership at 0.45 kME. In 



the case where an isoform has >0.45 kME to multiple modules, module with highest 

kME is selected. 

 

An “isoform switch” is defined as two sister isoforms having membership to different 

modules.  

 

Western Blot Analysis 

 

Human iPS cells were differentiated into cortical glutamatergic-pattern neurons (GPiN) 

according to Nehme 2018,cxcii and samples extracted at days 0, 16, 21, and 31. Human 

astrocytes were used as an outgroup. IP was performed using an ANK2-specific 

monoclonal antibody S105-17. 

 

De-novo variant enrichment 

 

Denovo-DBcxciii was used to extract lists of genes harboring de novo variation linked to 

ASD and Schizophrenia. The v1.5 of the database was obtained on 02-17-2018, and we 

filter for “PrimaryPhenotype=autism” (or, separately, 

“PrimaryPhenotype=schizophrenia”) and “FunctionClass” as one of “frameshift”, 

“frameshift-near-splice”, “splice-acceptor”, “splice-donor”, “start-lost”, “stop-gained”, 

“stop-gained-near-splice”, or “stop-lost.” 

 



Module enrichments are calculated via Fisher’s Exact Test, using the contingency table 

formed by cross-tabulating module presence/absence with presence/absence on the 

denovo-db gene list. 

 

As the denovo-db is a broad collection of de novo mutations in affected individuals and 

does not curate these variant lists on the basis of total evidence, we consider two 

additional data sources for alternative enrichment scores. First, we consider the curated 

list of SFARI genes of rank S, 1, 2, or 3; and perform enrichment on the resulting likst. 

Second, recent work from our labcxciv computes transmission and de-novo association 

Bayes Factors for 18,472 genes. We regress the log Bayes Factor against module 

presence/absence and look for a significant, positive coefficient.  

 

GWAS variant enrichment 

 

Enrichment for GWAS signal was performed through the use of MAGMAcxcv gene set 

analysis. Briefly, variants were mapped to genes on the basis of genomic distance, 

while taking chromatin contact maps from adult brain Hi-Ccxcvi into account. MAGMA 

was used to generate gene scores and LD-based covariances. Subsequently, 

MAGMA’s gene set analysis was used to compare the distribution of gene scores 

between modules and the background set of ‘grey’ genes. 

 



8 GWAS studies were considered in this analysis:  The iPsych and PGC cross-disorder 

GWAS studies (accounting for ASD, SCZ, and cross-disorder), Alzheimer’s disease, 

multiple sclerosis, and educational attainment.cxcvii,cxcviii,cxcix,cc,cci 

 

Differential preservation analysis 

 

Modules defined in the GTEx tissue samples were assessed for their preservation in 

ASD case samples and (separately) in normal samples. These produced a pair of 

preservation Z-scores per module. We defined differential preservation to be cases 

where the control Z-score is  preserved (>3) while the ASD Z-score is not preserved 

(<3).  

 

Core/periphery enrichment within networks 

 

Simulation of network genetic architecture 

 

Simulation: 10,000 causal variants are simulated with frequency parameters estimated 

from human populations,ccii and distances drawn from a binned Beta distribution: 

 

𝑝<~Beta 0.14, 0.7  

𝑑<~
𝑘GBeta(𝑎G, 𝑏G)

𝑘G
 

𝛽<|𝑑<, 𝑝<~𝑁(0, 𝜎NO 2𝑝< 1 − 𝑝<
QR 1 + 𝛿𝑑< QT) 



𝜎NO is arbitrary and set to 1; 𝑘G is arbitrary so long as it is greater than about 5, and is set 

to 𝑘G=12; 𝑎G, 𝑏G,	𝛾V,	𝛾O, and 𝛿 are model parameters. Recent results from the UK 

Biobank suggest that a value of 𝛾V = −0.4 is reasonable for a polygenic trait (height=-

0.45, education=-0.32, blood pressure = -0.39) and is fixed to this value. Architectures 

were simulated on a grid of 𝑎G, 𝑏G=1,1.5,…6; 𝛿=1,1.2,…,2.6; 𝛾O=-15,-10,-7,-5,-2. Notably 

for any values of 𝑎G, 𝑏G, 𝛿 and 𝛾O can be found such that D1 explains >40% of the 

heritability. Errors-in-distance: Here the above simulation of distance is replaced by a 

normal copula (where 20% error corresponds to r=0.8 – this is a purposeful under-

estimate, as r2=0.64 so the latent error is more like 36%): 

𝑍	~	𝑁 0, 1 𝑟
𝑟 1 	 

𝑑YZ[\ =
𝑘GΦ^%_` -a,/a

bV (Φc d,V 𝑍V )
𝑘G

 

𝑑e\-f =
𝑘GΦ^%_` -a,/a

bV (Φc d,V 𝑍O )
𝑘G

 

When simulated from a network, first a set of K=1, …, 10 hub genes are simulated with 

the constraint that no pair can be directly connected by an edge. These form initial 

communities of size 1. For the remaining 40 core genes, a community is selected at 

random, a community member is selected at random, and a neighbor is selected at 

random and added to the community and to the set of core genes. These form the basis 

of dtrue, which is taken as the minimal path distance to any core gene. For dmeas the 

communities are distorted by removing M=1,..,10 core genes at random; or by adding 

K=5,10,…,25 non-core genes at random.  



 Normalized effect sizes: Identifying the effect size of an empowered 5% 

frequency GWAS variant happens through three steps: (i) Estimating the liability 

distribution; (ii) Mapping case/control frequency differences to effect sizes (iii) 

Estimating power. 

 (i) Liability Distribution: A 5000x10,000 genotype matrix X is sampled 

independently, with frequencies given by the previously-simulated vector f, and 5,000 

genetic liabilities are generated by lg=Xβ. These liabilities are used to estimate 

parameters for a T-distribution using ‘fitdist’ from the R package ‘MASS’; the degrees of 

freedom are reduced by 25% to account partially for rare variants not sampled in this 

population of 5,000; and these parameters used to generate 400,000 genetic liability 

scores. These are converted to total liability scores by adding noise l = lg + N(0, σe); with 

σe chosen so that the heritability is 0.85. 

 (ii) Frequency-ratio-to-effect: The goal is to estimate the ratio paff/punaff for a 

variant with a frequency pi and effect βi. The genetic liabilities lnew = l+xβi with x ~ 

binomial(2, pi) are computed for 400,000 simulated individuals. As 10,000 variants 

contribute to l, the addition of xβi is assumed to have a minimal effect on heritability. 

Case/control labels are defined by lnew ≥ quantile(lnew, 0.95) so that the disease 

prevalence is 5%, and the empirical frequency mean(xaff)/mean(xunaff) is taken as an 

estimate of the ratio paff/punaff. Fixing pi=0.05 and varying βi produces an empirical and 

invertible map from variant effect to frequency ratio. 

 (iii) Estimating power: Given an effect size βi, the case and control frequencies 

for a p = 0.05 variant are obtained from (ii). 5000 case and 5000 control genotypes are 



sampled according to the corresponding frequencies, and a two-sided T-test performed 

by ‘t.test’ in R. 1,000 simulations are performed, and the number of times the T-test p-

value achieved a Bonferroni-corrected p-value of 0.1/10,000 (the number of causal 

variants) was tabulated. 

 

Network construction and computation of d(G)  

 

Co-expression Networks 

 Within co-expression networks, the raw co-expression (cosine) distance is used 

to define gene-gene distances. In addition, a sparse ε=2.5%+1-NN graph is calculated 

as follows: the cosine distance graph is subset to only the 2.5% smallest edges, and 

any singleton genes are connected to their closest neighbor. This graph is treated as 

unweighted, and not necessarily connected. Cross-component distances are treated as 

1 + the maximum observed within-component distance. This is referred to as “sparse 

distance.”  

Module hub genes are defined as the 2.5% of module genes with largest kWithin 

values (minimum 5). Distances between a gene and a module is computed as (i) 1 – 

kME; (ii) mean cosine distance to a module hub; (iii) minimum cosine distance to a 

module hub; (iv) mean sparse distance to a module hub; (v) minimum sparse distance 

to a module hub. When using arbitrary gene sets as core genes, (ii)-(iv) are be 

computed with respect to the gene set in place of module hubs. 

 



Transcription Factor Binding Networks  

Bipartite transcription factor binding graphs were obtained from 

regulatorycircuits.org, and converted to a similarity network as in Marbach2016. Briefly, 

the probability weights are taken as edge weights, and the random-walk kernel 

K=(I+W)4 with W the symmetrically-normalized Laplacian D-1/2AD-1/2 of the adjacency 

matrix; and converted to a dissimilarity via 𝐷h = 1 − (hbijk h )
(i`l h bijk h )

. A natural set of 

“core” genes on this network are the most highly-connected genes of K; of which the top 

25 are taken. Distances are either the mean or minimum path distance under DK.  

 

Protein-protein interaction networks 

 InWebcciii was used for the protein-protein interaction network. The refined brain-

PPI network was obtained from the resource, and a confidence of 0.05 required for an 

edge to be defined; and the interactions were converted into a binary matrix. Distances 

were defined as either the minimum or mean path distance in this network. 

As with TFBNs, the natural set of hub genes are the most connected genes, of which 

the top 25 are taken. 

 

Hub genes and empirical core genes 

 Core gene sets which define distance (“proposal set”) are taken to be either 

collections of network hub genes, or the top 10 or 20 genes (by Bayes factor) from each 

of the three studies (separately). The core gene sets which define the statistic Φ 

(“evaluation set”) are taken to be the top 25, 35, 50, 75, or 100 genes from each of the 



three studies. To restrict attention to directly causal (e.g. non-regulatory) genes, as the 

omnigenic model suggests, the core genes are also filtered to remove known 

transcription factors,cciv DNA-binding proteins, RNA-binding proteins, and non-coding 

RNA. Without this filtering, values of Φ still fall below 50% for brain co-expression 

networks, but achieve 70% for blood co-expression. Φ statistics are calculated for only 

for evaluation sets where, after excluding those genes also in the proposal set, 

noncoding genes, DNA-binding proteins, known transcription factors, and RNA binding 

proteins, at least 15 genes remain. 

 

Significance calculation for Φ 

 

Because Φ reflects a partitioning of a subset of genes, a significance value can be 

calculated by Fisher’s Exact Test. As a specific example: the overlap of genes between 

two studies is 15902 genes. After computing network distances, the top decile contains 

1590 genes. Imagine that the core gene set (after excluding non-coding, non-regulatory 

genes) contains 31 genes, and 12 of these overlap the set of 1590. The contingency 

table 14312 1590
20 12  reflects this observation, and has a p-value of 0.001.  
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Supplemental Figure 1: Related to figure 1. (a) ePC and HCP loadings onto 

canonical cell type genes, showing significant heterogeneity of loadings across cell 

types. (b) ePC loadings after covariate correction using HCP and LM base correction, 

showing that cell type heterogeneity of the 1st component of expression is lost after 

HCP correction. (c) Network-based GO prediction accuracy for each brain region. The 

same gene holdouts are used in 10-fold cross validation, generating 10 values for the 

AUC difference of each GO category, which are used to generate a Z-score for the 

expected AUC difference. (d) Relative improvement to the integrated correlation 

coefficient (Parmigiani 2012; suppl methods) for BRNHYP genes, for linear model and 

HCP based corrections. (e) Pairwise co-clustering statistics for the 4 algorithms 

compared in figure 1. X-axis denotes which modules are taken as the reference set. (f-

h) Pairwise module overlaps between 3 of the 4 algorithms compared in figure 1 

(GLASSO yielded too many modules to visualize here). (i) t-SNE embedding of gene 

features from whole-brain tensor decomposition, colored by DBSCAN clusters. (j) As (i), 

but colored and annotated with whole-brain modules. (l,m) Overlap between whole-

brain consensus and tensor-decomposition+DBSCAN modules. Color scheme as in (f-

h). (n) Within-module recall curves for hub-gene co-clustering, demonstrating that at 

100 samples, the recall is above 50% for most modules. 

 

Supplemental Figure 2: Related to figure 2. (a) Cell-type marker enrichment for brain-

wide modules, extended with markers of microglial activation and deactivation, and 

markers of reactive gliosis and A1/A2 reactive astrocytes. (b) Plots of the marginal rate 



of LoF-intolerant (pLI>0.9) genes, as a function of BW-M1 (most enriched) and BW-M2 

(most depleted) kME. (c) Gene ontology enrichment for BW-M5. (d) Marginal LoF-

intolerance rates, by gene kME, for neuronal subtype modules. (e,f) Module mean 

topological overlap, and gene expression, for 5 whole-brain modules in ASD cases and 

matched controls (Parikshak 2016). The case/control difference in lncRNA is closely 

matched by the same difference in randomly-selected, matched coding genes. (g) LoF-

intolerance enrichment for neuronal subtype modules, using pLI and o/e bins as 

response variables, and a linear model correcting for gene GC and length. All modules 

except BROD-M8 show strong enrichment, and BROD-M8 shows enrichment when 

using soft-membership instead of hard membership. 

 

Supplemental Figure 3: Related to figure 3. (a) Replicate of main figure 3(b) in 

astrocytes, showing a strong positive relationship between astrocyte module 

membership, and relative expression in astrocyte cells. (b-e) Relationship between 

module kME and cell type relative expression for transcripts across 4 neuron/astrocyte 

isoform switch genes, demonstrating concordance between high kME, and high relative 

expression. 

 

Supplemental Figure 4: Published module overlaps. (a-d) Overlaps between 

published modules and the consensus whole-brain co-expression modules identified in 

this paper, demonstrating that the majority of modules show a high overlap, particularly 



to the neuronal module BW-M4. These modules were been selected because of 

published enrichment for neuropsychiatric disease risk genes. (supplemental methods). 

 

Supplemental Figure 5: Related to figure 5.  (a) Gene ontology enrichments for 

module set BW-M4 across all regions in which a BW-M4 module is present. (b) Meta-

GSEA scores for significant MAGMA genes in BW-M4 across all tissues, implicating 

synaptic transmission and calcium transport as neuronal dysfunctions in SCZ. 

 

Supplemental Figure 6: Regional AUPR curves for CEREB-M1 and CTX-M1 

Left. Nearest-neighbor precision-recall curves for CEREB-M1 labels across all region-

level co-expression networks; showing significantly higher AUPR for cerebellar regions, 

but substantial AUPR for all remaining regions. Right. Nearest-neighbor precision-recall 

curves for CTX-M3. 

 

Supplemental Figure 7: isoform module assignment threshold, related to figure 3 

Fisher’s exact test of the contingency of “assigned to module” and “top-ranked cell type 

marker” for varying kME thresholds for (left) oligodendrocytes and (right) astrocytes; for 

marker rankings based on both absolute and relative expression within the cell-sorted 

data. Thresholds in the range 0.45-0.55 appear to balance significance and odds ratio 

across absolute and relative rankings. 

 



Supplemental Figure 8: Related to figure 7. Plot of Phi statistics for InWeb brain PPI 

network (“PPI”) and four regulatorycircuits.org (“RC”) networks: Hippocampus (“Hippo”), 

amygdala (“Amy”), NEU+ neurons, astrocytes, and neuroprogenitor cells (“NPC”). 

Vertical breaks represent the study used to calculate phi, while the colors represent 

those studies used to define proposal core genes, or network central genes. 


