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ABSTRACT 11 

Deep neural networks have revolutionized computer vision, and their object 12 

representations match coarsely with the brain. As a result, it is widely believed that 13 

any fine scale differences between deep networks and brains can be fixed with 14 

increased training data or minor changes in architecture. But what if there are 15 

qualitative differences between brains and deep networks? Do deep networks even 16 

see the way we do? To answer this question, we chose a deep neural network 17 

optimized for object recognition and asked whether it exhibits well-known perceptual 18 

and neural phenomena despite not being explicitly trained to do so. To our surprise, 19 

many phenomena were present in the network, including the Thatcher effect, mirror 20 

confusion, Weber’s law, relative size, multiple object normalization and sparse coding 21 

along multiple dimensions. However, some perceptual phenomena were notably 22 

absent, including processing of 3D shape, patterns on surfaces, occlusion, natural 23 

parts and a global advantage. Our results elucidate the computational challenges of 24 

vision by showing that learning to recognize objects suffices to produce some 25 

perceptual phenomena but not others and reveal the perceptual properties that could 26 

be incorporated into deep networks to improve their performance.   27 
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INTRODUCTION 29 

How do I know this is true? 30 
I look inside myself and see. 31 

Tao Te Ching (Mitchell, 1988) 32 
 33 

 Convolutional or deep neural networks have revolutionized computer vision 34 

with their human-like accuracy on vision tasks, and their object representations match 35 

coarsely with the brain (see Serre, 2019; Sinz et al., 2019 for detailed reviews). Yet, 36 

at a finer scale, they are still outperformed by humans (Katti et al., 2017; Katti and 37 

Arun, 2019) and show systematic deviations from human perception (Pramod and 38 

Arun, 2016a; Geirhos et al., 2018b; Rajalingham et al., 2018; Dodge and Karam, 39 

2019). Even these differences are largely quantitative in that there are no explicit or 40 

emergent properties that are present in humans but absent in deep networks. This has 41 

given rise to the prevailing belief that any remaining differences between brains and 42 

deep networks can be fixed by training on larger datasets, incorporating more 43 

constraints (Sinz et al., 2019) or by making relatively minor modifications to network 44 

architecture such as by including recurrent feedback (Kar et al., 2019a; Kietzmann et 45 

al., 2019). 46 

 Despite these insights, we do not yet know whether there are qualitative 47 

differences between how brains and deep networks see. This is an important question 48 

because resolving qualitative differences might require non-trivial changes in network 49 

training or architecture. One approach could be to train deep networks on multiple 50 

visual tasks and compare them with humans, but the answer would be insightful only 51 

if networks fail to learn certain tasks (Fleuret et al., 2011a). Alternatively, we could 52 

compare qualitative or emergent properties of our perception with that of deep 53 

networks, provided these properties can indeed be checked in any deep network 54 

without explicit training for these properties.  55 
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 Fortunately, many classic findings from visual psychology and neuroscience 56 

report emergent phenomena and properties that can be directly tested on deep 57 

networks. Consider for instance, the classic Thatcher effect (Figure 1A), in which a 58 

face with rotated parts looks grotesque in an upright orientation but looks entirely 59 

normal when inverted (Thompson, 1980). This effect can be recast as a statement 60 

about the underlying face representation: in perceptual space, the distance between 61 

the normal and Thatcherized face is presumably larger when they are upright than 62 

when they are inverted (Figure 1B). This has been confirmed using dissimilarity ratings 63 

in humans (Bartlett and Searcy, 1993). These distances can be compared for any 64 

representation, including for a deep network (Figure 1C). Since deep networks are 65 

organized layer-wise with increasing complexity across layers, this would also reveal 66 

the layers at which the deep network begins to experience or “see” a Thatcher effect 67 

(Figure 1D).  68 

 Knowing whether a deep network exhibits the Thatcher effect can be insightful 69 

for a variety of reasons. First, it would confirm that the deep network indeed does see 70 

faces the way we do. Second, this question can be asked of any deep network without 71 

explicit training to produce a Thatcher effect. For instance, testing this question on 72 

face and object detection networks would reveal whether object or face-specific 73 

training is sufficient for the emergence of the Thatcher effect. Finally, this question has 74 

relevance to neuroscience, because object representations in the early and late layers 75 

of deep networks match with early and late visual processing stages in the brain (Cichy 76 

et al., 2014; Kar et al., 2019b). The layer at which this effect arises could therefore 77 

reveal its underlying computational complexity and offer clues as to its neural 78 

substrates.  79 
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 Here, we identified a number of emergent perceptual and neural properties from 80 

visual psychology and neuroscience that can be recast as statements about distances 81 

between images in the underlying perceptual/neural representation. We then tested 82 

each of these properties on a state-of-the-art deep neural network optimized for object 83 

recognition. This revealed a highly interesting and insightful list of properties that were 84 

either present or absent in the network.  85 

 86 

Figure 1: Evaluating whether deep networks see the way we do  87 
(A) In the classic Thatcher effect, when the parts of a face are individually inverted, 88 

the face appears grotesque when upright (top row) but not when inverted 89 
(bottom row). Figure credit: Reproduced with permission from Peter Thompson.   90 

(B) When the brain views these images, it presumably extracts specific features 91 
from each face so as to give rise to this effect. We can use this idea to recast 92 
the Thatcher effect as a statement about the underlying perceptual space. The 93 
distance between the normal and Thatcherized face is larger when they are 94 
upright compared to when the faces are inverted. This property can easily be 95 
checked for any computational model.   96 

(C) Architecture of a common deep neural network (VGG-16). Symbols used here 97 
and in all subsequent figures indicate the underlying mathematical operations 98 
of that layer: unfilled circle for convolution, filled circle for ReLu, diamond for 99 
maxpooling and unfilled square for fully connected layers. Broadly, unfilled 100 
symbols depict linear operations and filled symbols depict non-linear 101 
operations.  102 

(D) By comparing the distance between upright and inverted Thatcherized images, 103 
we can ask whether any given layer of the deep network sees a Thatcher effect.  104 

  105 
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RESULTS 106 

 We identified a large number of emergent perceptual and neural properties that 107 

can be tested across layers of a deep network. We organized these properties broadly 108 

into five groups: (1) those that reveal sensitivity to object or scene statistics, 109 

comprising the Thatcher effect, mirror confusion and object-scene incongruence; (2) 110 

neural principles observed in high-level visual cortex, related to multiple object tuning 111 

and sparseness; (3) relational properties such as Weber’s law, relative size and 112 

surface invariant pattern processing; (4) encoding of 3d shape or scene structure and 113 

(5) processing of object parts and global structure.  114 

We evaluated these properties for a state-of-the-art pre-trained deep network, 115 

VGG-16, optimized for object classification on the ImageNet dataset (Simonyan and 116 

Zisserman, 2014). For each property, we performed an experiment in which we used 117 

carefully controlled sets of images as input to the network, obtained the activations of 118 

the units in each layer, and asked whether each layer shows that property. We 119 

obtained qualitatively similar results on several other pre-trained feedforward networks 120 

with diverse architectures: AlexNet, GoogleNet, Resnet-50 and Resnet-152 (Section 121 

S1). To ensure that the results are truly due to training and not simply a consequence 122 

of the architecture of the network, we also repeated these experiments on a randomly 123 

initialized VGG-16 model (Section S2). For simplicity, we report our results only for the 124 

VGG-16 network in the sections below, with results for all other networks detailed in 125 

supplementary material (Sections S1-2).   126 

 127 

Experiment 1: Do deep networks see a Thatcher effect?  128 

 The Thatcher effect is an elegant demonstration of how upright faces are 129 

processed differently from inverted faces, presumably because we encounter mostly 130 
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upright faces. As detailed in the Introduction, it can be recast as a statement about the 131 

underlying distances in perceptual space: that normal vs Thatcherized faces are closer 132 

when inverted than when upright (Figure 2A). For each layer of the deep network 133 

(VGG-16), we calculated a “Thatcher index” of the form (dupright – dinverted)/(dupright + 134 

dinverted), where dupright is the distance between normal and Thatcherized face in the 135 

upright orientation, and dinverted is the distance between them in an inverted orientation. 136 

Note that the Thatcher index for a pixel-like representation (where the activation of 137 

each unit is proportional to the brightness of each pixel in the image) will be zero since 138 

dupright and dinverted will be identical. For human perception, since dupright > dinverted, the 139 

Thatcher index will be positive and can be estimated from previous studies (see 140 

Methods).  141 

 Next, we calculated the Thatcher index across layers for two networks with 142 

similar architecture but trained on different tasks (see Methods). The first was VGG-143 

16 which is trained for object classification (Simonyan and Zisserman, 2014). The 144 

second was VGG-face which is trained for face recognition (Parkhi et al., 2015). The 145 

Thatcher index for both networks across layers is shown in Figure 2B. It can be seen 146 

that the VGG-16 shows a positive Thatcher index in the conv4 and conv5 layers but 147 

eventually does not show a Thatcher effect in the final fully connected layers (Figure 148 

2B, red curve). By contrast, the VGG-face network shows a steadily rising Thatcher 149 

effect that remains close to human levels even in the fully connected layers. Thus, the 150 

Thatcher effect is present only in deep networks trained on upright face recognition 151 

but not on generic object recognition.  152 

 153 

 154 

 155 
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Experiment 2: Do deep networks show mirror confusion?  156 

 Mirror reflections along the vertical axis appear more similar to us than 157 

reflections along the horizontal axis (Figure 2C). This effect has been observed both 158 

in behaviour as well as in high-level visual cortex in monkeys (Rollenhagen and Olson, 159 

2000). To assess whether deep networks show mirror confusion, we calculated a 160 

mirror confusion index of the form (dhorizontal – dvertical)/(dhorizontal + dvertical), where dhorizontal 161 

and dvertical represent the distance between horizontal mirror image pairs and between 162 

vertical mirror image pairs respectively (see Methods). Since vertical mirror images 163 

are more similar in perception, this index would be positive. Across the deep network 164 

VGG-16, we found an increasing mirror confusion index across layers (Figure 2D). 165 

Thus, the deep network does experience (as we do) more mirror confusion for vertical 166 

compared to horizontal mirror images.  167 

 168 

Experiment 3: Do deep networks show scene incongruence?   169 

 Our ability to recognize an object is hampered when it is placed in an 170 

incongruent context (Davenport and Potter, 2004; Munneke et al., 2013), suggesting 171 

that our perception is sensitive to the statistical regularities of objects co-occurring in 172 

specific scene context. To explore whether deep networks are also sensitive to scene 173 

context, we gave as input the same images as tested on humans, and asked how the 174 

deep network classification output changes with scene context (see Methods for more 175 

details). An example object (hatchet) placed against a congruent context (forest) and 176 

incongruent context (supermarket) are shown in Figure 2E. The VGG-16 network 177 

returned a high probability score for the correct target object in the congruent context 178 

(Figure 2E, top row) but gave a low probability score for the same object in an 179 

incongruent context (Figure 2E bottom row). We obtained similar results across all 180 
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congruent/incongruent scene pairs: the VGG-16 top-1 accuracy dropped substantially 181 

for incongruent compared to congruent contexts (drop in accuracy from congruent to 182 

incongruent scenes: 20% for top-5 accuracy; 27% for top-1 accuracy; Figure 2F). On 183 

the same scenes, human object naming accuracy has been reported to drop for 184 

incongruent scenes, but the drop was smaller compared to the VGG-16 network (drop 185 

in human accuracy from congruent to incongruent scenes: 14% in the Davenport & 186 

Potter, 2004; 13% in Munneke et. al. 2013; Figure 2G). We note that assessing the 187 

statistical significance of the accuracy difference in humans and deep networks is not 188 

straightforward since the variations in accuracy reported are across subjects for 189 

humans and across scenes for the VGG-16 network. We conclude that deep networks 190 

show scene incongruence albeit to a smaller extent than humans. 191 

  192 
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 193 

Figure 2: Object and scene regularities in deep networks 194 
(A) Schematic showing the perceptual arrangement of normal and Thatcherized 195 

faces in the upright and inverted orientations. A Thatcherized face is more 196 
similar to its normal counterpart in the inverted orientation.  197 

(B) Thatcher index (averaged across 20 pairs of normal-Thatcherized face pairs) 198 
plotted across layers for two pre-trained networks, VGG-16 (red) and VGG-face 199 
(blue). Shaded error bars indicated s.e.m across 20 face pairs. The gray zone 200 
indicates human-like performance, with dotted lines indicating the strength of 201 
the Thatcher effect estimated from humans (see Methods).  202 

(C) Schematic showing the representation of vertical and horizontal mirror images 203 
in perception. Vertical mirror image pairs are closer than horizontal mirror image 204 
pairs. The same effect holds even if the dog is rotated by 90°, showing that this 205 
effect is not simply due to the object’s axis of elongation.  206 

(D) Mirror Confusion Index (averaged across 50 naturalistic objects and their 90° 207 
rotated versions) across layers for the VGG-16 network. Dotted lines show the 208 
strength of the mirror confusion index estimated from monkey inferior temporal 209 
neurons (see Methods). 210 
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(E) An example object (hatchet) embedded in a congruent context (forest) and an 211 
incongruent context (supermarket), highlighting the vulnerability of deep 212 
network classification to scene context. The CNN class probability returned by 213 
the VGG-16 network is shown beside each image. It can be seen that the deep 214 
network returns the correct class label on the congruent but not the incongruent 215 
scene.  216 

(F) Accuracy of object classification by the VGG-16 network across congruent 217 
(blue) and incongruent(red) context scenes, for top-5 accuracy (left) and top-1 218 
accuracy (right).  Error bars represent s.e.m across 40 congruent/incongruent 219 
scene pairs.  220 

(G) Accuracy of object naming by humans in congruent (blue) and incongruent (red) 221 
contexts across two separate studies (Davenport and Potter, 2004; Munneke 222 
et al., 2013). Humans are less accurate on naming objects placed on 223 
incongruent scene contexts, but show a smaller drop compared to the VGG-16 224 
network. Error bars represent s.e.m reproduced from the published studies.   225 

 226 

Experiment 4: Do deep networks show multiple object normalization?  227 

 Next we asked whether individual units in deep networks conform to two 228 

general principles observed in single neurons of high-level visual cortex. The first one 229 

is multiple object normalization, whereby the neural response to multiple objects is the 230 

average of the individual object responses at those locations (Zoccolan et al., 2005). 231 

This principle is illustrated in Figure 3A. Note that this analysis is meaningful only for 232 

units that respond to all three locations: a unit in an early layer with a small receptive 233 

field would respond to objects at only one location regardless of how many other 234 

objects were present in the image. To identify units that are responsive to objects at 235 

each location, we calculated the variance of its activation across all objects presented 236 

at that location. We then performed this analysis on units that showed a non-zero 237 

response variance at all three locations, which meant units in Layer 23 (conv4.3) 238 

onwards.  239 

 To assess whether deep networks show multiple object normalization, we 240 

plotted for each unit in a given layer its response to multiple objects against the sum 241 

of its responses to the individual objects. If there is multiple object normalization, the 242 

slope of the resulting plot should be 1/2 for two objects and 1/3 for three objects. The 243 
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resulting plot is shown for Layer 37 of the VGG-16 network (Figure 3B). The overall 244 

slope was 0.60 for two objects and 0.42 for three objects for all units. To evaluate this 245 

effect across layers, we plotted the two-object and three-object slopes obtained in this 246 

manner across layers (Figure 3C). For the later layers we observed a nearly monotonic 247 

decrease in the slopes, approaching the levels observed in monkey high-level visual 248 

areas (Figure 3C). We conclude that deep networks exhibit multiple object 249 

normalization.  250 

  251 

Experiment 5: Do deep networks show selectivity across multiple dimensions?  252 

In a recent study we showed that neurons in the monkey inferior temporal cortex have 253 

intrinsic constraints on their selectivity that manifests in two ways (Zhivago and Arun, 254 

2016). First, neurons that respond to fewer shapes have sharper tuning to parametric 255 

changes in these shapes. To assess whether units in the deep network VGG-16 show 256 

this pattern, we calculated the sparseness of each unit across a reference set of 257 

disparate shapes (Figure 3D), and its sparseness for parametric changes between 258 

pairs of these stimuli (an example morph line is shown in Figure 3D). This revealed a 259 

consistently high correlation across units of each layer in the VGG-16 network (Figure 260 

3E). Second, we found that neurons that are sharply tuned across textures are also 261 

sharply tuned to shapes. To assess this effect across layers, we calculated the 262 

correlation across units between sparseness on textures with the sparseness on 263 

shapes.  Although there was no such consistently positive correlation in the early 264 

layers, we did find a positive correlation in the later (conv5 & fc) layers (Figure 3F). 265 

We conclude that deep networks show selectivity along multiple dimensions just like 266 

neurons in high-level visual cortex.  267 
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 268 

Figure 3: Single unit properties of deep networks  269 
(A) Schematic illustrating a general principle observed in neurons in high-level 270 

visual areas of the brain. The response of a neuron to multiple objects is 271 
typically the average of its responses to the individual objects at those locations.    272 

(B) Response to multiple object displays plotted against the sum of the individual 273 
object responses for two-object displays (black) and three-object displays (red), 274 
across 10,000 units randomly selected from Layer 37 of the VGG-16 network.  275 

(C) Normalization slope plotted across layers for two object displays (black) and 276 
three-object displays (red). 277 

(D) Stimuli used to compare selectivity across multiple dimensions in a previous 278 
study of IT neurons (Zhivago and Arun, 2016).   279 

(E) Correlation between sparseness on the reference set and maximum 280 
sparseness along morphlines across units of each layer in the VGG-16 network. 281 

(F) Correlation between sparseness along textures and sparseness along shapes 282 
plotted across layers of the VGG-16 network.  283 

 284 

Experiment 6: Do deep networks show Weber’s law?   285 

 Next we asked whether deep networks are sensitive to relational properties in 286 

visual displays. The first and most widely known of these is Weber’s law, which states 287 

that sensitivity to changes in any sensory quantity is proportional to the baseline level 288 

being used for comparison. Weber’s law for line length is illustrated in Figure 4A. This 289 

in turn predicts that the distance between any two lines differing in length should be 290 

proportional to the relative but not absolute change in length. In a previous study, we 291 
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showed that this is true for humans in visual search for both length and intensity 292 

changes (Pramod and Arun, 2014).  293 

We therefore asked for the deep network VGG-16, whether pairwise distances 294 

between lines of varying length are correlated with absolute or relative changes in 295 

length. Specifically, if the correlation between pairwise distances and relative changes 296 

in length is larger than the correlation with absolute changes in length, we deemed 297 

that layer to exhibit Weber’s law. This difference in correlation is positive for humans 298 

in visual search, and we plotted this difference across layers of the VGG-16 network 299 

(Figure 4B). The correlation difference was initially negative in the early layers of the 300 

network, meaning that the early layers were more sensitive to absolute changes in 301 

length. To our surprise, however, distances in the later layers were sensitive to relative 302 

changes in length in accordance to Weber’s law (Figure 4B).  303 

We conclude that deep networks exhibit Weber’s law for length.  304 

 305 

Experiment 7: Do deep networks encode relative size?  306 

We have previously shown that neurons in high-level visual areas are sensitive 307 

to the relative size of items in a display (Vighneshvel and Arun, 2015). Specifically, we 308 

found that, when two items in a display undergo congruent changes in size, the neural 309 

response is more similar than expected given the two individual changes in size. This 310 

pattern was present only in a small fraction (7%) of the neurons. This effect is 311 

illustrated in Figure 4C. To explore whether this effect can be observed in a given layer 312 

of the deep network VGG-16, we performed a similar analysis. We selected units in a 313 

given layer with the strongest interactions (see Methods) and calculated a relative size 314 

index of the form (d1-d2)/(d1+d2) where d1 is the distance between stimuli with 315 

incongruent changes in size, and d2 is the distance between stimuli with congruent 316 
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size changes (i.e. where both items or parts are scaled up or down in size by the same 317 

factor). The relative size index was calculated for each tetrad as to replicate the same 318 

analysis done in the previous study(Vighneshvel and Arun, 2015). The relative size 319 

index for the VGG-16 network remained close to zero in the initial layers and increased 320 

modestly to a positive level in the later layers (Figure 4D). However the size of this 321 

effect was far smaller than that observed in IT neurons, but in the same direction. We 322 

conclude that the deep network VGG-16 encodes relative size.  323 

 324 

Experiment 8: Do deep networks decouple pattern shape from surface shape?  325 

 A recent study showed that IT neurons respond more similarly when a pattern 326 

and a surface undergo congruent changes in curvature or tilt (Ratan Murty and Arun, 327 

2017). This effect is illustrated for a pattern surface pair in Figure 4E, where it can be 328 

seen that the distance between incongruent pattern-surface pairs (where the pattern 329 

and surface change in opposite directions) is larger than the distance between 330 

congruent pairs where the pattern and surface undergo congruent changes. To assess 331 

whether the deep network VGG-16 shows this property, we identified units with 332 

increased interactions (see Methods) and calculated a surface invariance index of the 333 

form (d1-d2)/(d1+d2), where d1 is the distance between incongruent pairs, and d2 is 334 

the distance between congruent pairs. A positive value of this index for a given layer 335 

implies that the layer shows surface invariance. However the surface invariance index 336 

was consistently below zero across layers for the VGG-16 network (Figure 4F). We 337 

conclude that the VGG-16 network does not show surface invariance. 338 

 339 
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 340 

Figure 4: Relational properties in deep networks  341 

(A) Example illustrating the Weber’s law for line length. Although the original 342 
statement of Weber’s law is that the just-noticeable difference in length will 343 
depend on the baseline length, it also applies to perceptual distances between 344 
any two stimuli (Pramod and Arun, 2014). In this formulation, the perceptual 345 
distance between two lines differing in length will be proportional to the relative 346 
change in length rather than the absolute change.  347 

(B) To calculate a single quantity that measures adherence to Weber’s law, we 348 
calculated the difference in correlation between pairwise distances between 349 
lines with the relative and absolute differences in line length. A positive 350 
difference indicates adherence to Weber’s law (indicated by the gray shading). 351 
This difference in correlation is plotted across layers for line length.  352 

(C) Schematic of the relative size encoding observed in monkey IT neurons 353 
(Vighneshvel and Arun, 2015). For a fraction of neurons, the distance between 354 
two-part objects when both parts covary in size is smaller than the distance 355 
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when they show inconsistent changes in size. Thus, these neurons are 356 
sensitive to the relative size of items in a display.  357 

(D) Relative size index across units with interaction effects (averaged across top 358 
7% tetrads  tetrads, error bars representing s.e.m) across layers of the VGG-359 
16 network. Dotted lines show the strength of the relative index estimated from 360 
monkey inferior temporal neurons (Vighneshvel and Arun, 2015).  361 

(E) Schematic of the surface invariance index observed in monkey IT neurons 362 
(Ratan Murty and Arun, 2017). For a fraction of neurons, the distance between 363 
two stimuli with congruent changes in pattern and surface curvature is smaller 364 
than between two stimuli with incongruent pattern/surface changes. Thus, 365 
these neurons decouple pattern shape from surface shape.  366 

(F) Surface invariance index across units with interaction effects (averaged across  367 
top 9% pattern/surface tetrads, error bars representing s.e.m) across layers of 368 
the VGG-16 network. Dotted lines show the strength of the surface invaraince 369 
index estimated from monkey inferior temporal neurons (Ratan Murty and Arun, 370 
2017). 371 

 372 

Experiment 9: Do deep networks show 3d processing?  373 

 We are sensitive to three-dimensional shape and not simply two-dimensional 374 

contours in the image. This was demonstrated in an elegant experiment in which 375 

search for a target differing in 3d structure is easy whereas search for a target with the 376 

same difference in 2d features is hard (Enns and Rensink, 1990, 1991). This effect 377 

can be recast as a statement about distances in perceptual space as illustrated in 378 

Figure 5A. All three pairs of shapes depicted in Figure 5A differ in the same Y-shaped 379 

feature, but the two cuboids are more dissimilar because they differ also in 3d shape. 380 

To assess whether units in a given layer of the deep network show this effect, we 381 

calculated a 3d processing index of the form (d1-d2)/(d1+d2) where d1 is the distance 382 

between the cuboids and d2 is the distance between the two equivalent 2d conditions. 383 

A positive 3D processing index indicates an effect similar to human perception. 384 

However we found that the 3D processing index was consistently near zero or 385 

negative across all layers of the VGG-16 network (Figure 5B). We conclude that deep 386 

networks are not sensitive to 3d shape. We speculate that explicit training of deep 387 

networks on 3d shape processing may be required for the network to exhibit this effect.  388 
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Experiment 10: Do deep networks understand occlusions?  389 

A classic finding in human perception is that we automatically process occlusion 390 

relations between objects (Rensink and Enns, 1998). Specifically, search for a target 391 

containing occluded objects among distractors that contain the same objects 392 

unoccluded is hard, whereas searching for the equivalent 2d feature difference is 393 

much easier (Figure 5C, top row). Likewise, searching for a target that is different in 394 

the order of occlusion is hard, whereas searching for the equivalent 2d feature 395 

difference is easy (Figure 5C, bottom row). These observations demonstrate that our 396 

visual system has a similar representation for occluded and unoccluded objects.  397 

We therefore asked whether similar effects could be observed in the VGG-16 398 

network, by calculating an occlusion index of the form (d2-d1)/(d2+d1) where d1 is the 399 

distance between two displays that are equivalent except for occlusion, and d2 is the 400 

distance between equivalent displays with the same 2d feature difference. A positive 401 

occlusion index implies an effect similar to human perception. The occlusion index 402 

remained consistently below across all layers of the VGG-16 network, for both the 403 

occlusion effect and occlusion ordering (Figure 5D). We conclude that deep networks 404 

do not understand occlusions.  405 

 406 
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 407 
Figure 5: 3D processing in deep networks  408 

(A) Schematic demonstrating sensitivity to 3d shape in our perception (Enns and 409 
Rensink, 1991). Three equivalent image pairs are shown in perceptual space. 410 
The first image pair (with distance marked d1) consists of two cuboids at 411 
different orientations, and corresponds to an easy visual search i.e. the two 412 
objects are less similar. The second pair (marked with distance d2) contains 413 
the same feature difference as in the first pair, but represents a hard search i.e. 414 
is perceived as much more similar. Likewise, the third pair, with the same 415 
feature difference as the other two, is a hard search i.e. perceived as similar.   416 

(B) 3D processing index for the VGG-16 network across layers, for condition 1 (d1 417 
vs d2, blue) and condition 2 (d1 vs d3, red). Dotted lines of the corresponding 418 
color represent the estimated human effect size.  419 

(C) Schematic showing processing of occlusions in perception. Top: A square 420 
alongside a disk is perceptually similar to a display with the same objects but 421 
occluded, but dissimilar to a 2d control image with an equivalent feature 422 
difference. Bottom: A square occluding a disk or disk occluding square are 423 
perceptually similar, but dissimilar to an equivalent 2d control with the same set 424 
of feature differences.  425 

(D) Occlusion index for both basic occlusion (blue) and depth ordering (red) for 426 
each layer of the VGG-16 network. 427 
 428 

  429 
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Experiment 11: Do deep networks understand object parts?  430 

  We not only recognize objects but are able to easily describe their parts. We 431 

conducted two related experiments to investigate part processing in deep networks. 432 

In Experiment 11A, we compared deep network feature representations for whole 433 

objects and for the same object broken down into either natural or unnatural parts. In 434 

perception, searching for an object broken into its natural parts with the original object 435 

as distractors is much harder than searching for the same object broken at an 436 

unnatural location (Xu and Singh, 2002). This result is depicted schematically in terms 437 

of the underlying distances (Figure 6A). To assess whether the VGG-16 network also 438 

shows this part decomposition, we calculated a part processing index of the form (du 439 

– dn)/(du + dn) where du is the distance between the original object and the object 440 

broken at an unnatural location, and dn is the distance between the original object and 441 

the same object broken at a natural location. A positive part processing index implies 442 

an effect similar to that seen in perception. The part processing index across layers of 443 

the VGG-16 network is depicted in Figure 6B. We found that the index becomes 444 

positive in the intermediate layers, but becomes negative in the subsequent layers 445 

(conv4/conv5 onwards).  446 

 In Experiment 11B, we asked what happens to objects that can be decomposed 447 

into two possible ways without introducing a break (Figure 6C). In visual search, 448 

search between pairs of whole objects is better explained by breaking the object down 449 

into its natural parts compared to its unnatural parts (Pramod and Arun, 2016b). To 450 

capture this effect, we defined the natural part advantage as the difference in model 451 

correlation (see Methods) between natural and unnatural parts. A positive value 452 

indicates effects similar to perception. This natural part advantage is shown across 453 

layers of the VGG-16 network in Figure 6D. It can be seen that there is little or no 454 
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advantage for natural parts in most layers except temporarily in the later layers 455 

(conv5/fc).  456 

  Based on Experiments 11A & 11B, we conclude that the VGG-16 network 457 

shows no systematic part processing.  458 

  459 

Experiment 12: Do deep networks show a global shape advantage?  460 

 In perception a classic finding is that we see the forest before the trees, i.e. we 461 

can detect global shape before local shape (Navon, 1977; Kimchi, 1994). We can 462 

recast this effect into a statement about distances in perception: the distance between 463 

two hierarchical stimuli differing only in global shape will be larger than the distance 464 

between two such stimuli differing only in local shape. This is depicted schematically 465 

in Figure 6E. To calculate a single measure for this effect, we defined a global 466 

advantage index as (dglobal – dlocal)/(dglobal + dlocal), where dglobal is the average distance 467 

between all image pairs differing only in global shape and dlocal is the average distance 468 

between all image pairs differing only in local shape. A positive global advantage index 469 

implies an effect similar to perception. The global advantage index is depicted across 470 

layers of the VGG-16 network in Figure 6F. While there is a slight global advantage in 471 

the initial layers, the network representation swings rapidly in the later layers towards 472 

the opposite extreme, which is a local advantage. Thus, deep networks see the trees 473 

and not the forest.   474 
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 475 
Figure 6: Part-whole relations in deep networks   476 

(A) Schematic showing the perceptual representation of objects with a break 477 
introduced either at natural or unnatural parts.  478 

(B) Part processing index across layers of the VGG-16 network. The shaded gray 479 
bar represents effects similar to human perception, and the dotted line 480 
represents the effect size estimated from human visual search (Xu and Singh, 481 
2002). 482 

(C) Schematic showing how the same object can be broken into either natural or 483 
unnatural parts. 484 

(D) Natural part advantage across layers of the VGG-16 network. The shaded gray 485 
bar represents effects similar to human perception, and the dotted line 486 
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represents the effect size estimated from human visual search (Pramod and 487 
Arun, 2016b).  488 

(E) Schematic showing the perceptual representation of hierarchical stimuli. The 489 
left and middle images differ only in global shape whereas the middle and right 490 
images differ only at the local level.  491 

(F) Global Advantage index across layers of the VGG-16 network. The shaded gray 492 
bar represents effects similar to human perception, and the dotted line 493 
represents the effect size estimated from human visual search (Jacob and 494 
Arun, 2019).   495 
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DISCUSSION 496 

Because object representations in deep networks match coarsely with the 497 

brain, it is widely believed that any remaining differences between brains and deep 498 

networks must be of degree but not of kind. Here, we show that this is not always the 499 

case: In some respects, deep networks do see the way we do. They exhibit perceptual 500 

phenomena such as the Thatcher effect, mirror confusion, scene incongruence and 501 

Weber’s law. Their units show multiple object normalization, sparseness along multiple 502 

dimensions and encode relative size. Yet in other ways, they don’t see the way we do. 503 

They fail to encode relational properties such as surface invariance, do not show 504 

processing of 3d features, occlusions or natural parts and do not show a global 505 

advantage.  506 

These findings are important for several reasons. First, they describe the 507 

similarities and differences between our vision and deep networks, and challenge the 508 

prevailing belief that they can be treated as accurate models for biological vision. 509 

Second, they show that object recognition training alone is sufficient to produce some 510 

emergent properties but not others, thereby elucidating the computational problem of 511 

vision itself. Finally, the missing properties could be incorporated as training or 512 

architecture constraints on deep networks to yield better or more robust performance. 513 

Below we discuss our findings in the context of the existing literature.  514 

We begin by discussing some general concerns regarding our findings. First 515 

and foremost, it could be argued that our results are based on testing with artificial 516 

objects or images, and that it is unreasonable to expect deep networks to respond 517 

sensibly to unnatural images. However, these concerns apply equally to humans as 518 

well, who in fact do respond sensibly to these artificial displays despite no prior 519 

exposure. Indeed, there is a long tradition in psychology and neuroscience of using 520 
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artificial images to elucidate visual processing (Rust and Movshon, 2005). Second, it 521 

could be argued that deep networks could potentially be trained to report all the tested 522 

properties. However, such a finding would only be circular if the network did indeed 523 

exhibit the property it was trained for. We do note however that it would be interesting 524 

if deep networks were unable to learn certain properties. Indeed, certain relational 525 

properties have been reported as difficult to learn by computer vision algorithms 526 

(Fleuret et al., 2011b), although this study did not evaluate deep neural networks. By 527 

contrast, we consider our experiments to be far more interesting, since they reveal 528 

that deep networks trained for specific other purposes show emergent properties that 529 

they were not explicitly trained for, such as Weber’s law.  530 

Our finding that deep networks trained for object recognition exhibit Weber’s 531 

law or encode relative size is puzzling at first glance. Why would the demands of 532 

recognizing objects require sensitivity to relative changes? One possibility is that 533 

object recognition requires a representation invariant to changes in size, position, 534 

viewpoint and even illumination of objects in the image, which in turn requires 535 

processing all object features relative to the surrounding features. This could be tested 536 

by training deep networks on controlled sets of images with variations of one kind but 537 

not the other. We note that there could be other visual task requirements that could 538 

also give rise to Weber’s law (Pardo-Vazquez et al., 2019).  539 

Our finding that deep networks exhibit the Thatcher effect, mirror confusion and 540 

scene incongruence are consistent with them being sensitive to image regularities in 541 

scenes. In fact, the VGG-16 network may be over-reliant on scene context, because 542 

it showed a larger drop in accuracy for incongruent scenes compared to humans 543 

(Figure 2F). This is consistent with a previous study in which human scene 544 

expectations benefited deep network performance (Katti et al., 2019). However, the 545 
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VGG-16 network did not exhibit 3d processing, occlusions and surface invariance, 546 

suggesting that these properties might emerge only with additional task demands such 547 

as extracting 3d shape from the image. Likewise, the absence of any part processing 548 

or global advantage in the network suggests that these too are properties that might 549 

emerge with additional task demands, such as part recognition or global form 550 

recognition (Belongie et al., 2002).  551 

We have found that deep networks do not show a global advantage effect but 552 

instead seem to process local features. This finding is surprising considering that units 553 

in later layers receive convergent inputs from the entire image. However, our finding 554 

is consistent with reports of a bias towards local object texture in deep networks  555 

(Geirhos et al., 2018a). It is also consistent with the large perturbations in classification 556 

observed when new objects are added to a scene (Rosenfeld et al., 2018), which 557 

presumably change the distribution of local features. Our finding that deep networks 558 

experience large scene incongruence effects is therefore likely to be due to 559 

mismatched local features rather than global features. Indeed, incorporating scene 560 

expectations from humans (presumably driven by global features) can lead to 561 

substantial improvements in object recognition (Katti et al., 2019). Finally, a reliance 562 

on processing local features is probably what makes deep networks detect 563 

incongruously large objects in scenes better than humans (Eckstein et al., 2017). We 564 

speculate that training on global shape could make deep networks more robust and 565 

human-like in their performance.  566 

Comparing human vision and deep neural networks depends critically on the 567 

choice of network architecture, learning algorithm, dataset and the task learned. An 568 

important but neglected finding is that even a randomly initialized network can 569 

generate features useful for certain tasks. For tasks like texture generation and 570 
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discrimination, even a randomly initialized network can yield reliable features (Jarrett 571 

et al., 2009; Mongia et al., 2016). Likewise, a significant amount of explainable 572 

variance in the early visual responses of MEG signals in humans can be predicted 573 

using features extracted from a randomly initialized and untrained deep neural network 574 

(Cichy et al., 2016). By contrast, we have found that most perceptual effects are absent 575 

in randomly initialized networks, except for global advantage (Section S2). Thus, 576 

training on object classification abolishes the global advantage and introduces 577 

sensitivity to local features.  578 

How can deep networks be made to match neural and perceptual 579 

representations? There could be several ways of doing so. The first and perhaps most 580 

promising direction would be to explicitly train deep networks to produce such 581 

properties in addition to categorisation (Ruder, 2017). Another alternative would be to 582 

train deep networks on tasks such as navigation or agent-object interaction rather than 583 

(or in addition to) object recognition as this is ostensibly what humans also do (Haber 584 

et al., 2018; Yang et al., 2019).  585 

Finally, we note that deep networks are notorious for their susceptibility to 586 

adversarial attacks. State-of-the-art deep neural networks have been shown to fail 587 

catastrophically when input images are subjected to carefully constructed changes 588 

that are barely perceivable to human eyes (Szegedy et al., 2013; Su et al., 2019). 589 

Likewise, deep networks can give erroneous predictions on completely nonsensical 590 

images (Nguyen et al., 2015). Finally, realistic multi-part 3D objects are consistently 591 

misclassified by deep networks across viewpoint changes (Athalye and Carlini, 2018). 592 

What could underlie such unusual behaviour? One possible reason could be the 593 

tendency for deep networks to prioritize local features as described earlier. We 594 

speculate that training deep networks to exhibit all the perceptual and neural 595 
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properties described in this study might not only improve their performance but also 596 

make them more robust to adversarial attacks.   597 
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METHODS 598 

VGG-16 network architecture & training 599 

All experiments were performed on the VGG-16 network, a feedforward pre-600 

trained deep convolutional neural network trained for object classification on the 601 

ImageNet dataset(Deng et al., 2009). We briefly describe the network architecture 602 

here, and the reader is referred to the original paper for more details (Simonyan and 603 

Zisserman, 2014). The input to the network is an RGB image of size 224 x 224 x 3 604 

and the final output is a vector of confidence scores across 1000 categories.  We 605 

subtracted the mean RGB value across all images (mean values across all images: 606 

R=123.68, G=116.78, B=103.94). The image is passed through a stack of 607 

convolutional filters (Figure 1C), where the initial layers have small receptive field (3x3) 608 

and later layers are fully connected. A non-linear rectification (ReLu) operation is done 609 

after each convolution operation. Five max-pooling layers are present to spatial pool 610 

the maximum signal over a 2x2 window of neurons. We used the MATLAB-based 611 

MatConvNet software platform (Vedaldi and Lenc, 2014) to extract features and do 612 

the analysis. In addition to VGG-16, we also used VGG-face which has the same 613 

architecture but trained instead on face identification (Parkhi et al., 2015).   614 

 615 

Feature Extraction  616 

For each image, we passed it as input into the network, stored the activations 617 

of each layer as a column vector. Hence, a single image we will have 37 feature 618 

vectors (one column vector from each layer). To calculate the distance between 619 

images A and B, we calculated the Euclidean distance between the corresponding 620 

activation vectors.  621 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2020. ; https://doi.org/10.1101/860759doi: bioRxiv preprint 

https://doi.org/10.1101/860759
http://creativecommons.org/licenses/by-nc-nd/4.0/


In all the experiments, we define specific measure based on distances and this 622 

quantity is plotted across layers with a specific chain of symbols as shown in Figure 623 

1C. Symbols used indicates the underlying mathematical operations done in that layer: 624 

unfilled circle for convolution, filled circle for ReLu, diamond for maxpooling and 625 

unfilled square for fully connected layers. Broadly, filled symbols denote linear 626 

operations and unfilled ones indicate non-linear operations.       627 

 628 

Experiment 1: Thatcher effect 629 

The stimuli comprised 20 co-registered Indian faces (19 male, 1 female) from 630 

the IISc Indian face dataset (Katti and Arun, 2019). All faces were grayscale, upright 631 

and front-facing. To Thatcherize a face, we inverted the eyes and mouth while keeping 632 

rest of the face intact. We implemented inversion by first registering facial landmarks 633 

on frontal faces using an Active appearance model-based algorithm (Cootes et al., 634 

2001). Briefly, this method models face appearance as a two-dimensional mesh with 635 

76 nodes, each node represents local visual properties of stereotyped locations such 636 

as corners of eyes, nose, and mouth. We then defined bounding boxes for left and 637 

right eye as well as mouth, by identifying landmarks that correspond to the four corners 638 

of each box. We then locally inverted eye and mouth shape by replacing the top row 639 

of eye or mouth image pixels by the last row and likewise repeating this procedure for 640 

each pair of equidistant pixels rows above and below the middle of the local region. 641 

The inversion procedure was implemented as a custom script written in MATLAB. The 642 

full stimulus set is shown in Section S3.  643 

To calculate a single measure for the Thatcher effect, we calculated a Thatcher 644 

index defined as  
𝑑𝑢𝑝𝑟𝑖𝑔ℎ𝑡− 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑

𝑑𝑢𝑝𝑟𝑖𝑔ℎ𝑡+  𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑
 , where 𝑑𝑢𝑝𝑟𝑖𝑔ℎ𝑡 is the distance between an normal 645 

face and Thatcherized face in upright orientation and 𝑑𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑑 is the distance between 646 
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a normal face and Thatcherized face in inverted orientation. We estimated the 647 

Thatcher index for humans from the similarity ratings reported from humans albeit on 648 

a different set of faces (Bartlett and Searcy, 1993). We calculated Thatcher index after 649 

converting the similarity rating (humans gave a rating between 1 to 7 on pair of images) 650 

into a dissimilarity rating (dissimilarity rating = 7- similarity rating).  651 

 652 

Experiment 2: Mirror Confusion 653 

The stimuli consisted of 100 objects (50 naturalistic objects and 50 versions of 654 

these objects made by rotating each one by 90°). This was done to avoid any effect 655 

due to the objects own axis of elongation. We created a horizontal and vertical mirror 656 

image of each object. We then gave as input the original image and the two mirror 657 

images to the VGG-16 network and calculated for each layer the distance between the 658 

object and two mirror images. The full stimulus set is shown in Section S3. 659 

To calculate a single measure for mirror confusion, we defined a mirror 660 

confusion index of the form 
𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙− 𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙+  𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
 , where 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 is the distance 661 

between an object and its horizontal mirror image and 𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the distance between 662 

an object and its vertical mirror image. We estimated the strength of mirror confusion 663 

index in the brain using previously published data from monkey IT neurons 664 

(Rollenhagen and Olson, 2000). Specifically, we took 𝑑ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 to be the reported 665 

average firing rate difference between the original objects and its horizontal mirror 666 

image, and analogously for 𝑑𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙.   667 

 668 

Experiment 3: Scene Incongruence 669 

The stimuli consisted of 40 objects which was taken from previous studies: 17 670 

objects were from the Davenport study (Davenport and Potter, 2004) and the 671 
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remaining 33 from the Munneke study (Munneke et al., 2013). We discarded a few 672 

objects from each set since they did not have a matching category in the ImageNet 673 

database. Each object was embedded against a congruent and an incongruent 674 

background. The full stimulus set is shown in Section S3. 675 

We measured the classification accuracy (Top-1 and Top-5) of the VGG-16 676 

network for the objects pasted onto congruent and incongruent scenes. The final layer 677 

of VGG-16 (Layer 38) returns a probability score for all 1000 categories in the 678 

ImageNet database. The top-1 accuracy is calculated as the average accuracy with 679 

which the object class with the highest probability matches the ground-truth object 680 

label. The top-5 accuracy is calculated as the average accuracy with which the ground-681 

truth object is present among the object classes with the top 5 probability values. We 682 

report the human (object naming) accuracy on the same dataset from previous studies 683 

(Davenport and Potter, 2004; Munneke et al., 2013).  684 

 685 

Experiment 4: Multiple object normalization  686 

The stimuli consisted of forty-nine natural grayscale images and placed them 687 

at three different locations in the image (Figure 4A). We have 147 (49 x 3 = 147) 688 

singletons and randomly selected 200 pairs and 200 triplet composites. We extracted 689 

features for all images (singletons, pairs and triplets) from every layer of the CNN. We 690 

selected a unit for further analysis only if the unit responded differently to at least one 691 

of the images in all the three positions. We then plotted the sum of activations of 692 

selected units in a layer to the singleton images against the activation for the 693 

corresponding pairs (or triplets). The slope of this scatterplot across layers was used 694 

to infer the nature of normalization in CNNs – a slope of 0.5 for pairs and 0.33 for 695 
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triplets indicated divisive normalization matching that observed in high-level visual 696 

cortex. The full stimulus set is shown in Section S3. 697 

 698 

Experiment 5: Selectivity along multiple dimensions 699 

Here we used the stimuli used in a previous study to assess the selectivity of 700 

IT neurons along multiple dimensions (Zhivago & Arun, 2016). These stimuli consisted 701 

of 8 reference shapes (Figure 3D; top row) and created intermediate parametric 702 

morphs between pairs of these shapes (Figure 3D; example morph between camel to 703 

cat). In addition, to compare texture and shape selectivity, we used 128 natural 704 

textures and 128 silhouette shapes. The full stimulus set is shown in Section S3. 705 

As before we calculated the activation of every layer of the VGG-16 network  to 706 

each of the above stimuli are input. Visually active neurons were selected by finding 707 

units with a non-zero variance across this stimulus set. We found the visually active 708 

neurons for each set separately and we selected a unit for further analysis only if that 709 

unit is visually active for both sets. The response of each unit was normalized between 710 

0 and 1. We then calculated the sparseness of each unit across different stimulus sets: 711 

the reference set, the four morphlines, shape set and texture set. For a given stimulus 712 

set with responses r1, r2, r3, . . .  rn, where n is the number of stimuli, the sparseness is 713 

defined as follows: 𝑆 = (1 −
(

∑ 𝑟𝑖
𝑛

)
2

∑
𝑟𝑖

2

𝑛

)/ (1 −
1

𝑛
)  (Vinje et al., 2000; Zhivago and Arun, 714 

2016). We then calculated the correlation across neurons between the sparseness on 715 

one stimulus set versus another stimulus set.  716 

 717 

 718 

 719 
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Experiment 6: Weber’s Law 720 

To test for the presence of Weber’s law in the deep network, we manipulated 721 

two elementary features: length and intensity. We created two sets of images, one 722 

varying in the length and the other varying in brightness of a rectangular bar. We chose 723 

the values of lengths and brightness’s such that the feature difference computed on 724 

pairs of images spanned a wide range both in terms of absolute as well as relative 725 

differences. The full stimulus set is shown in Section S3. 726 

For each layer of the neural network, we extracted the pattern of activations for 727 

each image and then computed the pairwise activation pattern dissimilarity for all pairs 728 

of images. We then computed the correlation between pattern dissimilarities and 729 

actual feature differences (i.e, difference between the actual lengths or brightnesses 730 

of the rectangular bars in the two images). We computed this correlation for both 731 

absolute (denoted by rabs) as well as for relative feature differences (denoted as rrel). 732 

A positive value for the difference between the two correlation coefficients (rrel – rabs) 733 

indicated that the Weber’s law was present in a given layer of the neural network.  734 

We also analysed deep networks for the presence of Weber’s law for image 735 

intensity, but found highly inconsistent and variable effects. Specifically, the pre-736 

trained VGG-16 network showed Weber’s law for low image intensity levels but not for 737 

high intensity levels.  738 

 739 

Experiment 7: Relative Size 740 

We used the stimuli used in a previous study to test whether units in the VGG-741 

16 network encode relative size (Vighneshvel and Arun, 2015). This stimulus set 742 

consisted of 24 tetrads. A sample tetrad is shown in Figure 2D, with the stimuli 743 
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arranged such that images that elicit similar activity are closer. The full stimulus set is 744 

shown in Section S3. 745 

  In our previous study (Vighneshvel and Arun, 2015), only a small fraction of 746 

neurons (around 7%) encoded relative size. To identify similar neurons in the deep 747 

network, we first identified the visually responsive units by taking all units with a non-748 

zero variance across the stimuli. For each unit and each tetrad, we calculated a 749 

measure of size interactions of the form abs(r11 + r22 – r12 – r21), where r11 is the 750 

response to both parts at size 1, r12 is the response to part 1 at size 1 and part 2 at 751 

size 2 etc. We then selected the top 7% of all tetrads with the largest interaction effect. 752 

Note that this step of selection does not guarantee the direction of the relative size 753 

effect. For the selected tetrads, we calculated the relative size index, defined as 
𝑑1− 𝑑2

𝑑1+  𝑑2
 754 

where 𝑑1 and 𝑑2 are distances between the incongruent and congruent stimuli 755 

respectively.  756 

 757 

Experiment 8: Decouple pattern shape from surface shape 758 

The stimuli consisted of six patterns superimposed on four surfaces. Each 759 

pattern-surface pair was used to create a tetrad of stimuli as depicted in Figure 4E. 760 

The full stimulus set consisted of 24 tetrads, which were a subset of those tested in 761 

our previous study (Ratan Murty and Arun, 2017). The full stimulus set is shown in 762 

Section S3. 763 

In each VGG-16 layer, we selected visually responsive neurons and normalized 764 

their responses across all stimuli as before in Experiment 5. We then selected the top 765 

9% of all tetrads with an interaction effect calculated as before, as with the previous 766 

study (Ratan Murty and Arun, 2017).  For all the selected tetrads we calculated the 767 
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surface invariance index, defined as 
𝑑1− 𝑑2

𝑑1+  𝑑2
 where 𝑑1 and 𝑑2 are distances between 768 

incongruent and congruent stimuli. 769 

  770 

Experiment 9: 3D processing  771 

We investigated 3D processing in the VGG-16 network by comparing line 772 

drawing stimuli used in a previous perceptual study (Enns and Rensink, 1991). We 773 

compared three pairs of shapes: cuboid, cube and frustum of square in isometric view 774 

with the corresponding Y junctions. The full stimulus set is shown in Section S3. For 775 

each shape, we calculated three distances between equivalent shape pairs with the 776 

same feature difference (Figure 5A). We calculated a 3D processing index, defined as 777 

𝑑1− 𝑑2

𝑑1+  𝑑2
 where 𝑑1 and 𝑑2 are distances between the 3D shape and control conditions 778 

respectively.  779 

 780 

Experiment 10: Occlusions 781 

  We recreated the stimulus set used in a previous study (Rensink and Enns, 782 

1998) as depicted in Figure 5C. The full stimulus set is shown in Section S3. As before 783 

we compared the distance between two pairs of shapes: a pair that differed in 784 

occlusion status (occluded vs unoccluded, or two images that differed in their order of 785 

occlusion), and an equivalent 2D feature control containing the same feature 786 

difference. We then calculated an occlusion index defined as 
𝑑1− 𝑑2

𝑑1+  𝑑2
 where 𝑑1 and 𝑑2 787 

are the distances between the occluded and control conditions respectively.  788 

 789 

 790 

 791 
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Experiment 11: Object Parts  792 

We performed two experiments to investigate part processing in deep networks. 793 

In Experiment 11A, we tested what happens when a break is introduced into an object 794 

at a natural cut or an unnatural cut (Xu and Singh, 2002). The full stimulus set is shown 795 

in Section S3. The critical comparison is shown in Figure 6A. For each layer of the 796 

CNN, we extracted features for the three objects and computed the distance of the 797 

intact object with each of the broken objects (dn and du denote distances to the broken 798 

objects with natural and unnatural parts respectively). We then computed a part 799 

processing index, defined as 
𝑑𝑢− 𝑑𝑛

𝑑𝑢+  𝑑𝑛
.  800 

In Experiment 11B, we asked whether whole object dissimilarities computed on 801 

CNN feature representations could be understood as a linear combination of 802 

dissimilarities between their natural or unnatural part decompositions as reported 803 

previously for visual search (Pramod and Arun, 2016b). We considered seven whole 804 

objects that could be broken down into either natural or unnatural parts and 805 

recombined the parts to form other objects. That is, we created two sets each 806 

containing 49 objects made either from natural or unnatural parts of the original seven 807 

objects. The full stimulus set is shown in Section S3. We then selected 492 pairs of 808 

objects from each set (including all 21 pairs from the common set) and calculated the 809 

feature distances from each layer of the CNN. We fit a part summation model to 810 

explain pairwise whole-object distances as a function of pairwise part relations, as 811 

described previously (Pramod and Arun, 2016b). We then compared model 812 

performance on the 21 pairwise distances between the common objects. We denoted 813 

by rnatural the correlation between observed and predicted distances assuming natural 814 

part decomposition and by runnatural the model correlation assuming unnatural part 815 
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decomposition. The natural part advantage was computed as (rnatural – runnatural). The 816 

same measure was computed for human perception. 817 

 818 

Experiment 12: Global Shape Advantage 819 

   We created a set of 49 hierarchical stimuli by combining seven shapes at global 820 

scale and the same seven shapes at the local scale (Jacob and Arun, 2019). The full 821 

stimulus set is shown in Section S3. We extracted features from all layers of CNNs 822 

and calculated the Euclidean distance between all pairs of hierarchical shapes. We 823 

calculated the global distance as the mean distance between image pairs having only 824 

global change.  Similarly, we calculated the local distance as the mean distance 825 

between image pairs having only local change. A sample global/local change pair is 826 

shown in Figure 6E. We calculated a global advantage index as  
𝑑𝐺𝑙𝑜𝑏𝑎𝑙− 𝑑𝐿𝑜𝑐𝑎𝑙

𝑑𝐺𝑙𝑜𝑏𝑎𝑙+  𝑑𝐿𝑜𝑐𝑎𝑙
.  827 
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SECTION S1. RESULTS WITH OTHER FEED FORWARD NETWORKS 

 
 The results in the main text were based on testing a specific feedforward network, 1 
namely VGG-16. Here, we investigated other feedforward network architectures for the 2 
presence of the same perceptual and neural phenomena. We did not test the recurrent 3 
networks since unfolding recurrent networks over time make them equivalent to a deep 4 
feedforward network (LeCun, Bengio and Hinton, 2015; Liang and Hu, 2015). 5 
 6 
Methods  7 
 We selected four popular pre-trained feedforward networks, all trained on the 8 
ImageNet ILSVRC challenge data (Deng et al., 2009; Russakovsky et al., 2014). We 9 
selected architectures that are shallower and deeper than VGG-16, to investigate whether 10 
the depth of the network influences the emergence of the perceptual and neural 11 
properties. All networks were implemented using MatConvNet framework in MATLAB, 12 
and their performance is summarized in Table S1.   13 
 14 
Network 1: AlexNet. This network won the ILSVRC 2012 challenge by a large margin 15 
(Krizhevsky, Alex, Ilya Sutskever, 2012). The network consists of five convolutional layers 16 
and three fully-connected layers. Drop-out technique is used fully connected layers to 17 
reduce overfitting. The architecture of this network is shallower compared to VGG-16.  18 
 19 
Network 2: GoogLeNet. This network follows the inception architecture which is well 20 
known for better utilization of computing resources inside the network. This network won 21 
the classification track of the ILSVRC 2014 challenge (Szegedy et al., 2015).  22 
 23 
Network 3: ResNet-50. ResNet-50 is a shallower variant of the ResNet-152 detailed 24 
below.  25 
 26 
Network 4: ResNet-152. The network uses a residual learning principle which make them 27 
capable of training deeper networks without the problem of vanishing gradients (He et al., 28 
2016). The ResNet architecture won three tracks (classification, detection and 29 
localization) of the ILSVRC 2015 challenge and two tracks (detection and segmentation) 30 
of the COCO 2015 challenge.  31 
 32 

Name of network Performance  

Top-1 error (%) Top-5 error (%) 

AlexNet 42.6 19.6 

VGG-16 28.5 9.9 

GoogLeNet 34.2 12.9 

ResNet-50 24.6 7.7 

ResNet-152 23.0 6.7 

Table S1. Performance of deep networks on the ILSVRC 2012 validation dataset 33 
(accuracy reported from MatConvNet website, accessed on 27th November 2019).  34 
 35 
 36 
 37 
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Results 38 
 39 
Experiment 1: Thatcher effect. The Thatcher index for each network across layers is 40 
shown in Figure S1A. It can be seen that the Thatcher index is negative for all networks 41 
in their final layers except for GoogLeNet which showed a small positive level in the final 42 
layers. For the networks with higher classification performance (GoogLeNet, ResNet-50, 43 
ResNet-152), we observed an interesting pattern whereby the Thatcher index is positive 44 
in the intermediate layers. This is true even for the VGG-16 network (Figure 2B).  45 
 46 
Experiment 2: Mirror Confusion. The mirror confusion index for each network is shown in 47 
Figure S1B. All networks exhibited an increasing mirror confusion index across layers, 48 
just as we observed for VGG-16 (Figure 2D).  49 
 50 
Experiment 3: Scene incongruence. The classification accuracy for objects in congruent 51 
and incongruent scenes is shown for each network in Figure S1C. It can be seen that the 52 
deeper architectures show smaller incongruence effects.  53 
 54 
Experiment 4: Multiple object normalization. The normalization slope for pairs and triplets 55 
for all networks is shown in Figure S1C. It can be seen that there is increased 56 
normalization in the later layers in all networks.  57 
 58 
Experiment 5: Selectivity across multiple dimensions. The correlation between 59 
sparseness of units in each layer for textures and shapes is shown in Figure S1E. It can 60 
be seen that all networks show an increasing trend in later layers. We obtained 61 
qualitatively similar results for comparing sparseness on the reference shape set and 62 
morph lines (not shown for brevity).  63 
 64 
Experiment 6. Weber’s law. The Weber’s law measure (difference in correlation for 65 
relative vs absolute length) for all networks is shown in Figure S1F. It can be seen that 66 
the Weber’s law arises in the later layers for all the networks.  67 
 68 
Experiment 7. Relative size. The relative size effect for each network across layers is 69 
shown in Figure S2A. It can be seen that the relative size effect is extremely weak and 70 
variable across networks, and never approaches the levels observed in the brain (relative 71 
size index = 0.39).  72 
 73 
Experiment 8: Decoupling patterns from surfaces. The surface invariance index for each 74 
network across layers is shown in Figure S2B. It can be seen that the index is consistently 75 
negative for all networks, as observed for VGG-16.  76 
 77 
Experiment 9: 3D processing. The 3D processing indices (for Condition 1 & 2) for each 78 
network across layers is shown in Figure S2C. It can be seen that the 3D processing 79 
indices are generally negative for all networks, and even if the index is positive, the levels 80 
are much smaller than observed in humans.  81 
 82 
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Experiment 10: Occlusions. The occlusion indices for each network across layers is 83 
shown in Figure S2D. It can be seen that both indices are consistently negative across 84 
layers, as observed for VGG-16.  85 
 86 
Experiment 11: Object parts. The natural part advantage for Experiment 11B is shown for 87 
each network across layers in Figure S2E. It can be seen that the natural part advantage 88 
is highly variable across networks, with GoogLeNet showing levels comparable to 89 
humans in the later layers.  90 
 91 
Experiment 12: Global shape advantage. The global advantage index for each network 92 
across layers is shown in Figure S2F. Across all networks, there is a slight global 93 
advantage in the intermediate layers, which reverses into a local advantage in the later 94 
layers. Thus, it appears that all the feedforward networks are using local features for 95 
classification.  96 
 97 
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 98 
 99 
Figure S1: Experiments 1-6 with other feed-forward networks. Each column 100 
represents a deep network (from left to right: AlexNet, GoogLeNet, ResNet-50 and Reset-101 
152) and each row represents an experiment (A-F: experiment 1-6). In each subplot an 102 
experiment specific index or measure is plotted across layers.  103 
  104 
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 105 
Figure S2: Experiments 7-12 for other feedforward networks. All conventions as in 106 
Figure S1.   107 
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SECTION S2. RESULTS WITH RANDOMLY INITIALIZED NETWORKS 
 
 We have shown that deep neural networks trained for object-recognition show 108 
some perceptual phenomena but not others, but we wondered whether any of these 109 
phenomena can be observed even in an untrained network, simply as a consequence of 110 
the architecture. To address this issue, we repeated Experiments 1-12 on an untrained 111 
VGG-16 architecture with randomly initialized weights.  112 
 113 
Methods 114 
 We estimated the probability distribution functions of the weights in each layer of 115 
the pre-trained VGG-16 network and picked the weights randomly from this estimated 116 
distribution. This process was done layer-wise to obtain the randomly initialized network. 117 
We then performed all Experiments on this network except for Experiment 3 (scene 118 
incongruence) since this experiment requires object classification. We then performed all 119 
data analyses exactly as before.  120 
 121 
Results 122 
 The results for the random network and the pre-trained VGG-16 network are 123 
shown together in Figure S3. In most cases (Experiments 1, 2, 6-11), we observed no 124 
specific trend for the random network towards or away from human/neural levels, which 125 
is what would be expected since the random network has no specific bias or training. We 126 
observed systematic and interesting differences for the other experiments, which we 127 
discuss in detail below.  128 
 129 
Experiment 4: Multiple Object normalization. The divisive normalization slope for the 130 
random network is shown in Figure S3C-D. Here, the random network showed perfect 131 
divisive normalization, in that the net response to AB is exactly the average of the 132 
responses to A & B separately. To investigate this puzzling observation further, we looked 133 
at the unit activations in the random network. We found that the activations for any pair 134 
of natural images was highly correlated (correlation of layer-37, mean ± sd: r = 0.98 ± 135 
0.01), suggesting that these units were not very selective for images. This means that 136 
every image activates the network in the same way. As a result, the response to AB and 137 
the response to A & B separately would be identical, giving rise to a perfect slope of 0.5 138 
in the relationship between the response AB and the sum of responses A + B. Thus, the 139 
divisive normalization observed in the random network is a trivial outcome of its lack of 140 
image selectivity.  141 
 142 
Experiment 5: Selectivity across multiple dimensions. Here too the random network 143 
shows a high correlation between shape and texture selectivity (Figure S3E). We suspect 144 
that this too is a consequence of the very low selectivity for images in the random network, 145 
whereby some units have zero selectivity (and therefore respond equally to all images) 146 
and others have weak selectivity (and therefore show slight differences in the response 147 
across images).  148 
 149 
Experiment 12: Global shape advantage. Here we observed an interesting pattern: the 150 
random network showed a global advantage that increased across layers. This is likely 151 
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due to increased pooling in the higher layers, but interestingly the pre-trained VGG-16 152 
network shows the opposite pattern. Thus, it appears that object classification training 153 
abolishes the global advantage that is intrinsic to the network architecture. We speculate 154 
that this local advantage might arise because of the demands of distinguishing between 155 
highly similar categories present in the ImageNet dataset (e.g. there are 90 categories of 156 
dogs among the total of 1000 categories in ImageNet). Testing this possibility will require 157 
training the VGG-16 architecture on highly distinctive object classes.  158 

 159 
  160 
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 161 
Figure S3. Experiments 1-12 for randomly initialized networks. Results for 162 
Experiments 1-12 (except for #3) are shown. In each panel, the corresponding 163 
experiment-specific index is plotted for the randomly initialized VGG-16 (red) with the pre-164 
trained VGG-16 (blue). All other conventions are as in the main text.  165 
  166 
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SECTION S3. STIMULI USED IN EXPERIMENTS 1-12 
 
 167 

 168 
Figure S4. Stimulus set used for Experiments 1 & 2.  
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169 
Figure S5. Stimulus set used for Experiment 3. Each pair of images depicts an object 170 
against a congruent and incongruent background. Stimulus set reproduced with consent.  171 
 172 
  173 
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 174 
Figure S6. Stimulus set used for Experiments 4 & 5 175 
Plots A-D shows the images used for experiment 4 and plots E-G shows the images 176 
used in experiment-5. 177 
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A) 49 natural images used for experiment-4 178 
B) Singletons are formed by placing the 49 objects either at top, middle or bottom. 179 

34 selected singletons are shown from 147 singletons used in this experiment.  180 
C) 34 selected pairs are shown from 200 pairs used in experiment-4. 181 
D) 34 selected triplets are shown from 200 triplets used in experiment-4. 182 
E) Shows all four morphlines used in experiment-5. 183 
F) Shown 51 selected shapes of the total set of 120 shapes.  184 
G) Shown 51 selected textures out of the total set of 120 textures.  185 

 186 
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 187 
Figure S7. Stimulus set used for Experiments 6-8 

A) Shows the images used in Weber’s law experiment. There are two baselines and 188 
each column is an image pairs which has equal length difference from the 189 
baseline.  190 

B) Shows 24 tetrads used in Relative Size experiment.  191 
C) Shows 24 tetrad used in surface invariance experiments. Tetrads are made by 192 

transforming eight shapes onto five different surfaces.  193 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 5, 2020. ; https://doi.org/10.1101/860759doi: bioRxiv preprint 

https://doi.org/10.1101/860759
http://creativecommons.org/licenses/by-nc-nd/4.0/


 194 
Figure S8. Stimulus set used for Experiments 9-10 

A) Two sets of images used to compare the 3D perception in the CNNs. Images 
in top row have 3D effect whereas the images in the bottom row have an 
equivalent same feature difference without a perceived 3D difference. 

B) Two sets of images used to compare the 3D perception in the CNNs. Images 
in top row have 3D effect whereas the images in the bottom row has the same 
feature difference and an additional common outer shape but not the 3D 
perception.  

C) Each row shows a set of images used for testing basic occlusion effect. 
D) Each row shows a set of images used for testing depth ordering effect. 

 
 195 
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196 
Figure S9. Stimulus set used for Experiments 11 197 

A) Shows the images used to check part processing in experiment-11 
B) Shows the images used to check part advantage in experiment-11. The seven 

shapes in the diagonal position of both Unnatural and natural set are the same.  
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Figure S10. Stimulus set used for Experiments 12. A total of 49 images used to check 198 
global advantage. These images are formed by all combinations of seven shapes are 199 
global and local scales. 200 
  201 
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