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Full title: Hypercluster: a python package and SnakeMake pipeline for flexible, 24 

parallelized unsupervised clustering optimization 25 

Short title: Hypercluster: a tool for unsupervised clustering optimization 26 

 27 

Abstract 28 

Unsupervised clustering is a common and exceptionally useful tool for large 29 

biological datasets. However, clustering requires upfront algorithm and hyperparameter 30 

selection, which can introduce bias into the final clustering labels. It is therefore 31 

advisable to obtain a range of clustering results from multiple models and 32 

hyperparameters, which can be cumbersome and slow. To streamline this process, we 33 

present hypercluster, a python package and SnakeMake pipeline for flexible and 34 

parallelized clustering evaluation and selection. Hypercluster is available on bioconda; 35 

installation, documentation and example workflows can be found at: 36 

https://github.com/ruggleslab/hypercluster.   37 

 38 

Author summary 39 

 Unsupervised clustering is a technique for grouping similar samples within a 40 

dataset. It is extremely common when analyzing big data from patient samples, or high 41 

throughput techniques like single cell RNA-seq. When researchers use unsupervised 42 

clustering, they have to select parameters that affect the final result—for instance, how 43 

many groups they expect to find or what the smallest group is allowed to be. Some 44 

methods require setting even less intuitive parameters. For most applications, it is 45 

extremely challenging to guess what the values of these parameters should be; 46 
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therefore to prevent introducing bias into the final results, researchers should test many 47 

different parameters and methods to find the best groups. This process is cumbersome, 48 

slow and challenging to perform in a reproducible way. We developed hypercluster, a 49 

tool that automates this process, make it much faster, and presenting the results in a 50 

reproducible and helpful manner.  51 

 52 

Introduction 53 

Unsupervised clustering is commonly used for the interpretation of ‘omics 54 

datasets. It provides an objective and intuitive measure of similarity and difference 55 

between samples. Clustering can be used to determine biologically relevant subgroups 56 

of samples, find co-regulated molecular features, or provide objective support for the 57 

phenotypic similarity of biological perturbations. Moreover, clustering is a key step in the 58 

analysis of many emerging sequencing-based technologies. For example, a 59 

fundamental challenge in the analysis of single-cell measurement data, in particular 60 

single cell RNA-seq (scRNA-seq), is determining robust clusters of phenotypically 61 

similar cells (1–3). Clustering is also increasingly being used alongside traditional 62 

diagnostic techniques to establish new classifications of patient samples into disease-63 

relevant subgroups (4–7) and for patient subgroup classification and risk stratification 64 

(6,8–12). The near-future of personalized medicine relies on researchers identifying 65 

robust unsupervised clustering-based disease subtypes. Therefore, it is essential that 66 

high-quality clustering results are easily and robustly obtainable, without user-selected 67 

hyperparameters introducing bias and impeding rapid analysis.  68 
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Currently, researchers robustly employing unsupervised clustering must choose 69 

specific algorithms and hyperparameters that are appropriate to their experiment type 70 

and data. Although some efforts have been made to advise researchers on optimal 71 

selection of both (13), biological datasets vary between batches, days, labs and 72 

researchers, underlining the importance of context- and experiment-dependent analysis 73 

tuning. Software packages for automatic hyperparameter tuning and model selection for 74 

regression and classification machine learning techniques exist, notably auto-sklearn 75 

from AutoML (14), but there are not yet packages for automated unsupervised 76 

clustering optimization.  77 

Typically, the effect of hyperparameter choice on the quality of clustering results 78 

cannot be described with a convex function, meaning that when searching the 79 

landscape of hyperparameter choices there are often local maxima that may appear to 80 

be the optimal results if broad choices of hyperparameters are not considered. 81 

Therefore it is unlikely that a sequential approach using for instance, gradient descent 82 

from a single initialized set of hyperparameters, would be able to select the optimal 83 

parameters for the majority of clustering challenges (15). Exhaustive (i.e. grid) search is 84 

the most likely to obtain optimal results from unsupervised clustering. However, grid 85 

search can be slow and cumbersome to perform for the multiple hyperparameters and 86 

clustering algorithms that are available from most clustering packages.  87 

Here we present hypercluster, a python package and SnakeMake pipeline for 88 

parallelized clustering calculations and comparison. The hypercluster package allows 89 

users to calculate results from multiple hyperparameters using one or many algorithms, 90 

then easily calculate and visualize evaluation metrics for each result (16). The 91 
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accompanying SnakeMake pipeline allows parallelization on a single computer, across 92 

a high performance computing cluster, or on cloud based services (17,18), speeding up 93 

optimization, especially for large datasets. In addition, our pipeline has all the 94 

advantages of the SnakeMake framework, e.g. easily adding new datasets to analyze, 95 

keeping track of progress and simplified bug tracking. Currently, hypercluster can 96 

compare all clustering algorithms and evaluation metrics from scikit-learn (19), as well 97 

as non-negative matrix factorization (NMF) (20), Louvain and Leiden clustering (21,22). 98 

In addition, hypercluster can be extended to employ user-supplied clustering algorithm 99 

or evaluation metrics. Given a metric to maximize, hypercluster identifies “best” labels 100 

and optionally provides comparisons of labeling results. Even if no single metric can be 101 

used to select the best hyperparameters, hypercluster provides several visualizations 102 

that help users pick labels by balancing many metrics or picking the most reproducible 103 

clusters. Hypercluster provides researchers with a python package and pipeline for 104 

flexible, parallelized, distributed and user-friendly algorithm selection and hyper-105 

parameter tuning for unsupervised clustering.  106 

 107 

Design and Implementation 108 

Requirements and structure 109 

The hypercluster package uses scikit-learn (19), python-igraph (23), leidenalg 110 

(24) and louvain-igraph (25) to assign cluster labels and uses scikit-learn and custom 111 

metrics to compare clustering algorithms and hyperparameters to find optimal clusters 112 

for any given input data (Fig. 1). Hypercluster requires python3, pandas (26), numpy 113 

(27), scipy (28), matplotlib (29), seaborn (30), scikit-learn (19), python-igraph (23), 114 
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leidenalg (24), louvain-igraph (25) and SnakeMake (17). Hypercluster can be run 115 

independently of SnakeMake, as a standalone python package. Inputs, outputs and an 116 

example workflow are described below, but additional example workflows are provided 117 

at https://github.com/ruggleslab/hypercluster/tree/master/examples. 118 
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 119 

Fig. 1 Hypercluster workflow schematic 120 
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a) Clustering algorithms and their respective hyperparameters are user-specified. 121 

Hypercluster then uses those combinations to create exhaustive configurations, and if 122 

selected a random subset is chosen. 123 

b) Snakemake is then used to distribute each clustering calculation into different jobs.  124 

c) Each set of clustering labels is then evaluated in a separate job by a user-specified 125 

list of metrics.  126 

d) All clustering results and evaluation results are aggregated into tables. Best labels 127 

can also be chosen by a user-specified metric.  128 

 129 

Modes 130 

Hypercluster takes pandas DataFrames as input. For local running, 131 

AutoClusterer and MultiAutoClusterer objects can be instantiated with default or user-132 

defined values. To run through hyperparameters for a dataset, users simply provide a 133 

pandas DataFrame to the “fit'' method on either object. Users evaluate the labeling 134 

results by running the “evaluate” method.  135 

config.yml 136 

SnakeMake allows users to parallelize clustering calculations. To configure the 137 

SnakeMake pipeline, users edit a config.yml file (Table 1). In that file, users can specify 138 

input and output directories and files (Table 1, lines 1-3, 5-7) and the hyperparameter 139 

search space (Fig 1A, Table 1, line 18). Users can specify whether to use exhaustive 140 

grid search or random search; if random search is selection, they can specify probability 141 

weights for each hyperparameter (Table 1, line 9). Snakemake then schedules 142 

performing each clustering algorithm and evaluating the results as a separate job (Fig. 143 
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1B). Users can specify which evaluation metrics to apply (Fig. 1C, Table 1, line 10) and 144 

add keyword arguments to tune several steps in the process (Table 1, lines 4, 8-9, 11-145 

16). Clustering and evaluation results are then aggregated into final tables (Fig. 1D). 146 

Other than the location and names of the input files, everything has a predefined default 147 

that allows the pipeline to be used “out of the box.” Users can reference the 148 

documentation and examples for more information.  149 

Table 1 Parameters in SnakeMake configuration file 

 
config.yml parameter Explanation Example 

1 input_data_folder 
Path to folder in which 
input data can be found. /input_data 

2 input_data_files 
List of prefixes of data 
files. 

['input_data1', 
'input_data2'] 

3 gold_standard_file 

File name of 
gold_standard_file, must 
be in input_data_folder 

{'input_data': 
'gold_standard_file.txt'} 

4 read_csv_kwargs 
pandas.read_csv keyword 
arguments for input data. 

{'test_input': 
{'index_col':[0]}} 

5 output_folder 
Path to folder into which 
results should be written. /results 

6 intermediates_folder 
Name of subfolder to put 
intermediate results. clustering_intermediates 

7 clustering_results 
Name of subfolder to put 
aggregated results. clustering 

8 clusterer_kwargs 
Additional arguments to 
pass to clusterers. 

KMeans: 
{'random_state':8}} 

9 generate_parameters_addtl_kwargs 

Additonal keyword 
arguments for the 
hypercluster.AutoClusterer 
class. 

{‘KMeans’: 
{'random_search': true) 

10 evaluations 
Names of evaluation 
metrics to use. 

['silhouette_score', 
'number_clustered'] 

11 eval_kwargs 
Additional kwargs per 
evaluation metric function. 

{'silhouette_score': 
{'random_state': 8}} 

12 metric_to_choose_best 
Which metric to maximize 
to choose the labels. silhouette_score 

13 metric_to_compare_labels Which metric to use to adjusted_rand_score 
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compare label results to 
each other. 

14 compare_samples 

Whether to made a table 
and figure with counts of 
how often each two 
samples are in the same 
cluster. "true" 

15 output_kwargs 

pandas.to_csv and 
pandas.read_csv keyword 
arguments for output 
tables. 

{'evaluations': 
{'index_col':[0]}, 'labels': 
{'index_col':[0]}} 

16 heatmap_kwargs 

Arguments for 
seaborn.heatmap for 
pairwise visualizations. {'vmin':-2, 'vmax':2} 

17 optimization_parameters 

Which algorithms and 
corresponding 
hyperparameters to try.  

{'KMeans': {'n_clusters': 
[5, 6, 7]}} 

 150 

Table 1 Line-by-line explanation of the config.yml for SnakeMake 151 

 152 

Input data and execution 153 

After specifying the config.yml file, users provide a data table with samples to be 154 

clustered as the rows and features as the columns, with the location specified in the 155 

config.yml file (Table 1, line2). Users can then simply run “snakemake -s 156 

hypercluster.smk --configfile config.yml” in the command line, with any additional 157 

SnakeMake flags appropriate for their system. Applying the same configuration to new 158 

files or adjusting algorithms and hyperparameter options simply requires editing the 159 

config.yml file and rerunning SnakeMake.  160 

Extending hypercluster 161 

Currently, hypercluster can optimize any clustering algorithm and calculate any 162 

evaluation available in scikit-learn (19,31), as well as NMF, Louvain and Leiden 163 
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clustering. Additional clustering classes and evaluation metric functions can be added 164 

by users in the additional_clusterer.py and additional_metrics.py files, respectively, if 165 

written to accommodate the same input, outputs and methods (see 166 

additional_clusterers.py and additional_metrics.py for examples).  167 

Outputs 168 

By default, hypercluster outputs a yaml file containing all configurations of the 169 

clustering algorithms and hyperparameters that are being searched. For each set of 170 

labels, it generates a file containing labels and a file containing evaluations. It also 171 

outputs aggregated tables of all labels and evaluations. Finally, given a metric to 172 

maximize, hypercluster writes files containing the optimal labels. Optionally, 173 

hypercluster will also output a table and heatmap of pairwise comparisons of labeling 174 

similarities with a user-specified metric (Figure S1). This figure is particularly useful for 175 

finding labels that are robust to differences in hyperparameters. It can also optionally 176 

output a table and heatmap showing how often each pair of samples were assigned the 177 

same cluster (Figure S2). 178 
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 179 

Figure S1 Pairwise label comparisons 180 

Automatically generated heatmap showing pairwise comparison of labeling 181 

automatically generated using hypercluster of breast cancer samples. Colors represent 182 

adjusted rand index between labels.  183 
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 184 

Figure S2 Pairwise sample comparisons 185 

Automatically generated pairwise comparison of breast cancer samples. Color indicates 186 

the number of times two samples were assigned the same cluster.  187 

 188 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 14

Results 189 

Unsupervised clustering of RNA-seq on breast cancer patient samples 190 

To illustrate the utility of hypercluster in a disease-relevant context, we applied 191 

our method to RNA-seq data from 526 breast cancer patient samples from the Cancer 192 

Genome Atlas (TCGA) (32), a dataset that has been previously used for benchmarking 193 

clustering algorithms (33). As demonstrated, RNA-seq can be used to classify breast 194 

cancer patients into four major PAM50 subtypes (Basal-like, LuminalA, LuminalB, and 195 

Her2-enriched), which are based on the expression of 50 specific genes (7,34,35). We 196 

removed genes with any missing values and subset to the 500 most variable genes as 197 

input for all available algorithms with ranges of hyperparameter conditions. We then 198 

compared the sample clustering results from our 500 gene clustering compared with 199 

subtypes defined by the PAM50 classifier. This workflow is available on the github 200 

examples folder (https://github.com/liliblu/hypercluster/tree/dev/examples).  201 

Hypercluster automatically outputs a visualization of evaluation metrics for all 202 

hyperparameter combinations (Fig. 2A), which allows users to quickly see how 203 

changing hyperparameters affects clustering result quality. These results highlight how 204 

evaluation metrics are not generally convex over ranges of hyperparameters (e.g. 205 

silhouette score as n_clusters changes with the KMeans algorithm (Fig. 2A) 206 

demonstrating the utility of the exhaustive grid search approach. In addition, our pipeline 207 

optionally creates a pairwise comparison of labeling, with a specified user metric (Figure 208 

S1) to make it easier to understand how robust and consistent labeling is across 209 

algorithms and parameters. 210 

 211 
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 212 

Fig. 2 Visualizations of clustering metrics from breast cancer RNA-seq 213 

a) Example automatic output from hypercluster, showing z-scored evaluation values of 214 

evaluation metrics for each clustering algorithm and hyperparameter set, including 215 

those in 2E. Evaluations applied to clustering from TCGA breast cancer samples.  216 

b) Effect of varying resolution (left) and k for shared nearest neighbor matrix (right) on 217 

silhouette score, an inherent metric measuring clustering quality, for Louvain clustering.  218 

c) Effect of resolution and choice of k on various evaluation metrics for both Louvain 219 

(top) and Leiden (bottom) clustering.  220 

 221 

Labels and evaluation results are easily accessible for further custom analyses. 222 

To demonstrate a possible downstream workflow that hypercluster facilitates, we 223 

investigated results from Louvain and Leiden clustering, which  are commonly used in 224 

scRNA-seq analysis, on the same breast cancer RNA-Seq dataset (36)).  Louvain and 225 

Leiden clustering are community detection algorithms for networks, usually generated 226 

from shared K-nearest-neighbor adjacency matrices. We varied resolution, which 227 

affects the number of members in final communities, and the k defining how many 228 
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nearest neighbors are measured for constructing the adjacency graph (Fig. 2B, C). 229 

Resolution and k have significant effects on labeling results and their corresponding 230 

evaluations. Interestingly, increasing resolution appears to have opposite effects on 231 

clustering quality (e.g. as measured by silhouette score) depending on k, with a large 232 

spread of silhouette scores dependent on k at low resolution, converging to similar 233 

silhouette scores at higher resolution (Fig. 2B, C). These results highlight the 234 

importance of simultaneous tuning of multiple hyperparameters. Plots like those in Fig. 235 

2B, showing the effect of varying each parameter individually on evaluation metrics, can 236 

be automatically generated by the visualize_for_picking_best_labels function or listing 237 

evaluations in the “screeplot_evals” section of a config.yml file.  238 

To observe if clustering on 500 variable genes can recapitulate PAM50 239 

classification, we identified results that best match PAM50 subtypes according to the 240 

adjusted rand score while labeling all samples (Fig. 3). By this metric, the best labels 241 

were generated by NMF clustering (37) with n_clusters=4 (Fig. 3A-C). These labels that 242 

do diverge from the PAM50 classification correspond to a subset of Luminal A samples 243 

that cluster with Luminal B samples (Fig. 3D). Hypercluster allows researchers to 244 

compare different algorithms and hyperparameter combinations in a reproducible and 245 

convenient way.  246 
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Fig. 3 Exploration of NMF clustering results on breast cancer RNA-seq 248 

a) Automatically generated heatmap of evaluation metrics for NMF clustering results.  249 

b) PCA projection of 200 random samples colored by labels assigned by NMF 250 

clustering. Background color indicates similarity to PAM50 labeling calculated by 251 

adjusted rand index.  252 

c) PCA projection of samples colored by PAM50 subtypes and most similar NMF 253 

clustering labels.  254 

d) Heatmap of 125 most variable genes with PAM50 and NMF;n_cluster=4 labels 255 

indicated on the top.  256 

 257 

Exploration of bone marrow microenvironment scRNA-seq 258 

 To demonstrate hypercluster’s utility for analysis of single cell data sets, we 259 

analyzed scRNA-seq from a study investigating the hematopoietic stem cell 260 

microenvironment (38) and performed comparative analysis of several clustering 261 

algorithms in parallel on a high performance computing cluster utilizing a Slurm 262 

scheduler (39). We used normalized expression data from untreated cells sorted for 263 

mesenchymal stromal and vascular endothelial, and osteoblast markers, subset to the 264 

2000 most variable genes from the seurat object containing the data (36,38). We then 265 

used hypercluster to explore the labeling results from all available clustering algorithms 266 

and ranges of relevant hyperparameters. Hypercluster was then used to evaluate labels 267 

with every available metric, including metrics that measure inherent labeling quality, as 268 

well as comparing new labels to cell types identified in the original study (Fig. 4A). The 269 

approach that best recapitulated the published labels was clustering with 270 
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MiniBatchKMeans with 12 clusters (Fig. 4B-D). These labels differed from published 271 

labels largely from swapping cells in the P1 and P2 groups (Fig. 4B), which are both 272 

LEPR+ subgroups, that were shown to be very similar in the original paper (38). While 273 

the original labels were generated using community detection methods like Louvain and 274 

Leiden clustering, those methods performed poorly compared to others (Figure S3), 275 

likely due to differences in data pre-processing. Varying the number of clusters has 276 

variable effects on evaluation results (Fig. 4A, 4C, Figure S3), again highlighting the 277 

importance of an exhaustive approach. 278 
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Fig. 4 Clustering and evaluation of scRNA-seq data 280 

a) Evaluation metrics for clustering conditions, automatically generated by hypercluster 281 

for single cell RNA-seq data.  282 

b) Comparison of published labels with best matching calculated labels, 283 

MiniBatchKMeans;n_clusters=12. Legend shows mismatched clusters for the best 284 

labels on top and clusters with high correspondence to published clusters in the bottom 285 

section.  286 

c) PCA projection of 700 random cells labeled by MiniBatchKMeans across 287 

hyperparameters.  288 

d) PCA projection of cells colored by published labels.  289 
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 290 

Figure S3 Full evaluations of scRNA-seq clustering 291 

Automatically generated full evaluation metric table from clustering of scRNA-seq stem 292 

cell niche cells.  293 
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 294 

Discussion 295 

Defining groups of molecularly similar patient samples is key to personalizing 296 

medical prognosis, diagnosis and treatment strategies, making unsupervised clustering 297 

a workhorse for researchers advancing personalized medicine. It is therefore essential 298 

that unsupervised clustering is rigorous and not biased by arbitrary hyperparameter 299 

selection. While extremely high quality open-source tools such as scikit-learn make 300 

unsupervised clustering accessible to many, exhaustively and reproducibly comparing 301 

hyperparameters is still challenging; hypercluster solves these issues.  302 

Nearly every step in data analysis pipelines require hyperparameter selection, 303 

during which biased or arbitrary parameter selection can greatly impact results. Further, 304 

data preprocessing, involving the filtering of datasets to remove low quality or low 305 

coverage samples or features (e.g. removing genes with very few reads in RNA-seq), 306 

also greatly impacts downstream clustering results. Hypercluster provides a workflow to 307 

address the former issue, allowing for comprehensive evaluation of multiple 308 

hyperparameters and clustering algorithms simultaneously. The package auto-sklearn 309 

(14) provides functionality for automating pre-processing of data tables, which could 310 

easily be incorporated upstream of hypercluster to automate the latter. In addition to the 311 

simple command line functions, we have also employed SnakeMake for parallelization, 312 

a workflow management system already widely used for pipeline optimization (40–46).  313 

If unsupervised clustering is a downstream analytic method of interest, 314 

determining which parameters to select can be cumbersome, and possibly inaccurate, 315 

without a clustering optimization tool like hypercluster. While it is not always clear how 316 
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to choose hyperparameters or algorithms in a consistent way (e.g. when two different 317 

conditions optimize for different metrics), it is essential to at least understand if the 318 

labels one obtains are robust to small changes in algorithm or hyperparameter choice 319 

(e.g. as shown in Figure S1). Our package greatly improves the ability of researchers to 320 

gain this understanding. In addition to assisting researchers in choosing 321 

hyperparameters, hypercluster aids computational biologists who are benchmarking 322 

new clustering algorithms, evaluation metrics and pre- or post-processing steps (3). In 323 

conclusion, hypercluster streamlines the use of unsupervised clustering to derive 324 

biologically relevant structure within data. Most importantly, it eases the prioritization of 325 

rigor and reproducibility for researchers using these techniques.  326 

 327 

Acknowledgements 328 

We thank the members of Ruggles and Fenyö labs for their helpful discussions and 329 

input. We would like to thank MacIntosh Cornwell for his advice with the SnakeMake 330 

pipeline. We would also like to thank Joseph Copper Devlin for his help and advice with 331 

implementing Louvain and Leiden clustering.  332 

Availability of data and materials 333 

Hypercluster is released on pip (pip install hypercluster) and conda (conda install -c 334 

bioconda hypercluster). Development versions and installation instructions can be found 335 

at our github (https://github.com/liliblu/hypercluster/), tutorials and examples, including 336 

all of the code used to create the figures in this paper, can be found here: 337 

https://github.com/ruggleslab/hypercluster/tree/master/examples, and documentation 338 

can be found here: https://hypercluster.readthedocs.io/en/latest/. Hypercluster is written 339 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 25

in python and was developed and tested on MacOS and Linux. Requirements are listed 340 

on the github and in the documentation. Hypercluster is available with the MIT licence. 341 

 342 

Financial Disclosure 343 

This work has been supported by the National Cancer Institute (NCI) through CPTAC 344 

award U24 CA210972. The funders had no role in study design, data collection and 345 

analysis, decision to publish, or preparation of the manuscript. 346 

 347 

Authors' contributions 348 

Conceptualization, Project Administration, Writing: LB and KVR. Data Curation, Formal 349 

analysis, Investigation, Methodology, Software, Validation, Visualization: LB. Funding 350 

acquisition, Resources, Supervision: KVR. 351 

 352 

Competing interests 353 

The authors declare no competing interests.  354 

 355 

Related manuscripts 356 

The authors do not have other related or duplicate manuscripts.  357 

 358 

References 359 

1.  Kiselev VY, Andrews TS, Hemberg M. Publisher Correction: Challenges in 360 

unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. 2019 361 

May;20(5):310. 362 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 26

2.  Sun S, Zhu J, Ma Y, Zhou X. Accuracy, robustness and scalability of dimensionality 363 

reduction methods for single-cell RNA-seq analysis [Internet]. Vol. 20, Genome 364 

Biology. 2019. Available from: http://dx.doi.org/10.1186/s13059-019-1898-6 365 

3.  Liu X, Song W, Wong BY, Zhang T, Yu S, Lin GN, et al. A comparison framework 366 

and guideline of clustering methods for mass cytometry data. Genome Biol. 2019 367 

Dec 23;20(1):297. 368 

4.  Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al. 369 

Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 370 

2009 Mar 10;27(8):1160–7. 371 

5.  Ohnstad HO, Borgen E, Falk RS, Lien TG, Aaserud M, Sveli MAT, et al. Prognostic 372 

value of PAM50 and risk of recurrence score in patients with early-stage breast 373 

cancer with long-term follow-up. Breast Cancer Res. 2017 Nov 14;19(1):120. 374 

6.  Ali HR, Rueda OM, Chin S-F, Curtis C, Dunning MJ, Aparicio SA, et al. Genome-375 

driven integrated classification of breast cancer validated in over 7,500 samples. 376 

Genome Biol. 2014 Aug 28;15(8):431. 377 

7.  Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular 378 

portraits of human breast tumours. Nature. 2000 Aug 17;406(6797):747–52. 379 

8.  Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA 380 

methylation-based classification of central nervous system tumours. Nature. 2018 381 

Mar 22;555(7697):469–74. 382 

9.  Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, et al. New Brain 383 

Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 2016 384 

Feb 25;164(5):1060–72. 385 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 27

10.  Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin 386 

Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of 387 

Cancer. Cell. 2018 Apr 5;173(2):291–304.e6. 388 

11.  Aure MR, Vitelli V, Jernström S, Kumar S, Krohn M, Due EU, et al. Integrative 389 

clustering reveals a novel split in the luminal A subtype of breast cancer with impact 390 

on outcome. Breast Cancer Res. 2017 Mar 29;19(1):44. 391 

12.  Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The 392 

genomic and transcriptomic architecture of 2,000 breast tumours reveals novel 393 

subgroups. Nature. 2012 Apr 18;486(7403):346–52. 394 

13.  Jaskowiak PA, Costa IG, Campello RJGB. Clustering of RNA-Seq samples: 395 

Comparison study on cancer data. Methods. 2018 Jan 1;132:42–9. 396 

14.  Feurer M, Klein A, Eggensperger K, Springenberg J, Blum M, Hutter F. Efficient and 397 

Robust Automated Machine Learning. In: Cortes C, Lawrence ND, Lee DD, 398 

Sugiyama M, Garnett R, editors. Advances in Neural Information Processing 399 

Systems 28. Curran Associates, Inc.; 2015. p. 2962–70. 400 

15.  Barber RF, Ha W. Gradient descent with non-convex constraints: local concavity 401 

determines convergence. Inf Inference. 2018 Dec 11;7(4):755–806. 402 

16.  Van Craenendonck T, Blockeel H. Using internal validity measures to compare 403 

clustering algorithms. Benelearn 2015 Poster presentations (online). 2015;1–8. 404 

17.  Köster J, Rahmann S. Snakemake--a scalable bioinformatics workflow engine. 405 

Bioinformatics. 2012 Oct 1;28(19):2520–2. 406 

18.  Cluster and cloud execution — Snakemake 5.9.1+0.g138720f.dirty documentation 407 

[Internet]. [cited 2020 Jan 5]. Available from: 408 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 28

https://snakemake.readthedocs.io/en/stable/executing/cluster-cloud.html 409 

19.  Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-410 

learn: Machine Learning in Python. J Mach Learn Res. 2011;12(Oct):2825–30. 411 

20.  Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-412 

negativity-constrained least squares for microarray data analysis [Internet]. Vol. 23, 413 

Bioinformatics. 2007. p. 1495–502. Available from: 414 

http://dx.doi.org/10.1093/bioinformatics/btm134 415 

21.  Traag VA, Waltman L, van Eck NJ. From Louvain to Leiden: guaranteeing well-416 

connected communities. Sci Rep. 2019 Mar 26;9(1):5233. 417 

22.  Traag VA, Krings G, Van Dooren P. Significant scales in community structure. Sci 418 

Rep. 2013 Oct 14;3:2930. 419 

23.  Csardi G, Nepusz T, Others. The igraph software package for complex network 420 

research. InterJournal, complex systems. 2006;1695(5):1–9. 421 

24.  Traag V. leidenalg [Internet]. Github; [cited 2020 Jan 27]. Available from: 422 

https://github.com/vtraag/leidenalg 423 

25.  Traag V. louvain-igraph [Internet]. Github; [cited 2020 Jan 27]. Available from: 424 

https://github.com/vtraag/louvain-igraph 425 

26.  McKinney W, Others. Data structures for statistical computing in python. In: 426 

Proceedings of the 9th Python in Science Conference. Austin, TX; 2010. p. 51–6. 427 

27.  Walt S van der, Colbert SC, Varoquaux G. The NumPy Array: A Structure for 428 

Efficient Numerical Computation. Comput Sci Eng. 2011 Mar 1;13(2):22–30. 429 

28.  Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. 430 

SciPy 1.0--Fundamental Algorithms for Scientific Computing in Python [Internet]. 431 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 29

arXiv [cs.MS]. 2019. Available from: http://arxiv.org/abs/1907.10121 432 

29.  Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007 May 433 

1;9(3):90–5. 434 

30.  Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, Gemperline DC, et al. 435 

mwaskom/seaborn: v0.8.1 (September 2017) [Internet]. 2017. Available from: 436 

https://zenodo.org/record/883859 437 

31.  2.3. Clustering — scikit-learn 0.22 documentation [Internet]. [cited 2019 Dec 23]. 438 

Available from: https://scikit-learn.org/stable/modules/clustering.html 439 

32.  Cancer Genome Atlas Network. Comprehensive molecular portraits of human 440 

breast tumours. Nature. 2012 Oct 4;490(7418):61–70. 441 

33.  Chalise P, Fridley BL. Integrative clustering of multi-level ’omic data based on non-442 

negative matrix factorization algorithm. PLoS One. 2017 May 1;12(5):e0176278. 443 

34.  Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated 444 

observation of breast tumor subtypes in independent gene expression data sets. 445 

Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8418–23. 446 

35.  Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene 447 

expression patterns of breast carcinomas distinguish tumor subclasses with clinical 448 

implications. Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10869–74. 449 

36.  Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. 450 

Comprehensive Integration of Single-Cell Data. Cell. 2019 Jun 13;177(7):1888–451 

902.e21. 452 

37.  Tang J, Ceng X, Peng B. New Methods of Data Clustering and Classification Based 453 

on NMF [Internet]. 2011 International Conference on Business Computing and 454 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 30

Global Informatization. 2011. Available from: 455 

http://dx.doi.org/10.1109/bcgin.2011.114 456 

38.  Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, et al. 457 

The bone marrow microenvironment at single-cell resolution. Nature. 2019 458 

May;569(7755):222–8. 459 

39.  Yoo AB, Jette MA, Grondona M. SLURM: Simple Linux Utility for Resource 460 

Management. In: Job Scheduling Strategies for Parallel Processing. Springer Berlin 461 

Heidelberg; 2003. p. 44–60. 462 

40.  Wang D. hppRNA—a Snakemake-based handy parameter-free pipeline for RNA-463 

Seq analysis of numerous samples. Brief Bioinform. 2018 Jul 20;19(4):622–6. 464 

41.  Pranzatelli TJF, Michael DG, Chiorini JA. ATAC2GRN: optimized ATAC-seq and 465 

DNase1-seq pipelines for rapid and accurate genome regulatory network inference. 466 

BMC Genomics. 2018 Jul 31;19(1):563. 467 

42.  Abdelaal T, Michielsen L, Cats D, Hoogduin D, Mei H, Reinders MJT, et al. A 468 

comparison of automatic cell identification methods for single-cell RNA sequencing 469 

data [Internet]. Vol. 20, Genome Biology. 2019. Available from: 470 

http://dx.doi.org/10.1186/s13059-019-1795-z 471 

43.  Dirmeier S, Emmenlauer M, Dehio C, Beerenwinkel N. PyBDA: a command line tool 472 

for automated analysis of big biological data sets. BMC Bioinformatics. 2019 Nov 473 

12;20(1):564. 474 

44.  single-cell-rna-seq [Internet]. Github; [cited 2020 Jan 8]. Available from: 475 

https://github.com/snakemake-workflows/single-cell-rna-seq 476 

45.  Lun ATL, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis 477 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/


 

 31

of single-cell RNA-seq data with Bioconductor [Internet]. Vol. 5, F1000Research. 478 

2016. p. 2122. Available from: http://dx.doi.org/10.12688/f1000research.9501.2 479 

46.  Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential 480 

expression analysis. Nat Methods. 2018 Apr;15(4):255–61. 481 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.01.13.905323doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.13.905323
http://creativecommons.org/licenses/by/4.0/

