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Full-length SMART-Seq single-cell RNA-seq can be used to measure gene expression at isoform 
resolution, making possible the identification of isoform markers for cell types and for an 
isoform atlas. In a comprehensive analysis of 6,160 mouse primary motor cortex cells assayed 
with SMART-Seq,  we find numerous examples of isoform specificity in cell types, including 
isoform shifts between cell types that are masked in gene-level analysis. These findings can be 
used to refine spatial gene expression information to isoform resolution. Our results highlight 
the utility of full-length single-cell RNA-seq when used in conjunction with other single-cell 
RNA-seq technologies.  

Introduction 
Transcriptional and post-transcriptional control of individual isoforms of genes is crucial 
for neuronal differentiation​1–5​, and isoforms of genes have been shown to be specific to 
cell-types in mouse and human brains​6–11​. It is therefore not surprising that 
dysregulation of splicing has been shown to be associated with several 
neurodevelopmental and neuropsychiatric diseases​3,12,13​. As such, it is of interest to 
study gene expression in the brain at single-cell and isoform resolution. 
 
Nevertheless, current single-cell studies aiming to characterize cell types in the brain via 
single-cell RNA-seq (scRNA-seq) have relied mostly on gene-level analysis. This is, in 
part, due to the nature of the data produced by the highest throughput single-cell 
methods. Popular high-throughput assays such as Drop-seq, 10x Genomics’ Chromium, 
and inDrops, produce 3’-end reads which are, in initial pre-processing, collated by gene 
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to produce per-cell gene counts. The SMART-Seq scRNA-seq method introduced in 
2012​14​ is a full-length scRNA-seq method, allowing for quantification of individual 
isoforms of genes with the expectation-maximization algorithm​15​. However, such 
increased resolution comes at the cost of throughput; SMART-Seq requires cells to be 
deposited in wells limiting the throughput of the assay. In addition SMART-Seq requires 
one to two orders of magnitude more sequencing per cell. 
 
These tradeoffs are evident in scRNA-seq data from the primary motor cortex (MOp) 
produced by the BRAIN Initiative Cell Census Network (BICCN). An analysis of 6,160 
(filtered) SMART-Seq v4 cells and 90,031 (filtered) 10x Genomics Chromium (10xv3) 
cells (Figure 1a,b and Supplementary Figure 1) shows that while 10xv3 and 
SMART-Seq are equivalent in defining broad classes of cell types, 3’-end technology 
that can assay more cells can identify some rare cell types that are missed at lower cell 
coverage  (Supplementary Figure 2). Overall 125 clusters with gene markers could be 
identified in the 10xv3 data but not in the SMART-Seq data while only 40 clusters with 
gene markers could be identified in the SMART-Seq data and not the 10xv3 data, and 
this differential is consistent with prior comparisons of the technologies​16​. However, 
while SMART-Seq has lower throughput than some other technologies, it can in some 
cases refine cell type classifications due to better sensitivity, and it can be used to 
discover important isoform expression markers that are missed at the gene-level. This is 
because SMART-Seq can be used to quantify individual isoforms of genes, even when 
they share 3’ ends, whereas such isoforms cannot be distinguished with 3’-end 
scRNA-seq technology (Supplementary Figures 3 and 4).  
 
By leveraging the isoform resolution of SMART-Seq, we are able to identify 
isoform-specific markers for dozens of cell types characterized by the BICCN 
consortium​17​, and find isoform switches between cell types that are masked in standard 
analyses. Our work thus highlights another tradeoff in the race to identify cell types. The 
focus on high-throughput in terms of number of cells, comes at a cost in terms of the 
biology that can be detected. In addition to revealing extensive isoform dynamics in the 
MOp, our work highlights the complementary value of full-length scRNA-seq to droplet 
based and spatial transcriptomic methods, and provides an open-source, reproducible, 
easy-to-use and effective workflow for leveraging full-length scRNA-seq data. 
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Results  
Isoforms markers for cell types 
 
To identify isoform markers of cell types, we first sought to visualize our SMART-Seq 
data using gene derived cluster labels from the BICCN analysis​17​. Rather than layering 
cluster labels on cells mapped to 2-D with an unsupervised dimensionality reduction 
technique such as t-SNE​18​ or UMAP​19​, we projected cells with neighborhood component 
analysis (NCA). NCA takes as input not just a collection of cells with their associated 
abundances, but also cluster labels for those cells, and seeks to find a projection that 
minimizes leave-one-out k-nearest neighbor error​20​. Thus, while the method outputs a 
dimension reducing linear map much like principal component analysis (PCA), it takes 
advantage of cluster labels to find a biologically relevant representation. Visualization 
with this approach produces meaningful representation of the global structure of the 
data (Figure 1b), without overfitting (Supplementary Figure 5). Moreover, unlike t-SNE 
applied to PCA (Supplementary Figure 6) which scrambles the proximity of 
Glutamatergic and GABAergic cell types, t-SNE of NCA of the data appears to respect 
its global structure. While UMAP applied to PCA of the data (Supplementary Figure 7) 
appears to be better than t-SNE in terms of preserving global structure, it still does not 
separate out the cell types as well as NCA (Supplementary Figure 8). 
 
Next, motivated by the discovery of genes exhibiting differential exon usage between 
Glutamatergic and GABAergic neurons in the primary visual cortex​11​, we performed a 
differential analysis between these two classes of neurons, searching for significant 
shifts in isoform abundances in genes whose expression was stable across cell types 
(for details see Methods). We discovered 312 such isoform markers from among 260 
genes (Supplementary Table 1, [​Code​]). Figure 1c shows an example of such an 
isoform from the H3 histone family 3b (H3f3b) gene. The gene has an isoform that is 
highly expressed in Glutamatergic neurons, but the gene undergoes an isoform shift in 
GABAergic neurons where the expression of the H3f3b-204 isoform is much lower. A 
gene-level analysis is blind to this isoform shift (top panel, right). 
 
We hypothesized that there exist genes exhibiting isoform specificity by cell types at all 
levels of the MOp cell ontology. However, detection of such genes and their associated 
isoforms requires meaningful cell type assignments and accurate isoform 
quantifications. To assess the reliability of the SMART-Seq clusters produced by the 
BICCN ​21​, we examined the correlation in gene expression by cluster with another 
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single-cell RNA-seq method, the 10xv3 3’-end assay. 90,031 10xv3 cells, also derived 
from the MOp (see Methods), were clustered using the same method as the 
SMART-Seq cells (see Methods). We found high correlation of gene expression 
between the two assays at the subclass and cluster levels (Supplementary Figures 
9--12). However, in one case, the L5 IT subclass, we noted a lower correlation. The low 
correlation was corroborated in a comparison between SMART-Seq and MERFISH 
gene expression data (Supplementary Figure 13), and 10xv3 and MERFISH data 
(Supplementary Figure 14). We hypothesize that this lower correlation is due to distinct 
cell types being clustered together (Supplementary Figure 15), but regardless of the 
technical cause we decided not to search for isoform markers for the L5 IT subclass. 
 
To validate the SMART-Seq isoform quantifications we examined correlations between 
SMART-Seq and 10xv3 for isoforms containing some unique 3’ UTR sequence. This 
allowed for a validation of isoform quantifications with a different technology (see 
Methods). To extract isoform quantifications from 10xv3 data in cases where there was 
a unique 3’ sequence, we relied on transcript compatibility counts​22​ produced by 
pseudoalignment with kallisto​23​. We were able to validate the SMART-Seq isoform shift 
predictions at both the subclass and cluster levels (Supplementary Figures 16--19). The 
isoform abundance correlations are slightly lower than those of gene abundance 
estimates (Supplementary Figures 9--12), but sufficiently accurate to identify significant 
isoform shifts, consistent with benchmarks showing that isoforms can be quantified 
accurately from full-length bulk RNA-seq​24​. This is surprisingly accurate considering the 
underlying differences in the 10xv3 and SMART-Seq technologies. For example, unlike 
10xv3, SMART-Seq does not barcode molecules with UMIs, which are useful for 
adjusting abundance estimates to account for PCR duplication. On the other hand, gene 
sensitivity is lower for 10xv3 than for SMART-Seq​16​. 
 
Having validated the cluster assignments and isoform abundance estimates, we 
therefore tested for isoform switches for 17 cell subclasses (example in Figure 1d), and 
then for 54 distinct clusters (example in Figure 1e); see Methods. At the higher level of 
17 cell subclasses, we found a total of 913 genes exhibiting isoform shifts among the 18 
cell subclasses despite constant gene abundance (Supplementary Table 2, [​Code​]). We 
found 40 genes exhibiting isoform shifts among clusters within the L6 CT subclass 
despite constant gene abundance (Supplementary Table 3, [​Code​]).  
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Figure 1: Isoform specificity in the absence of gene specificity ​. a) Overview of data 
analyzed. b) A t-SNE map of 10 neighborhood components of 6,160 SMART-Seq cells colored 
according to cell type. c) The H3f3b gene abundance distribution across cells (left), H3f3b-204 
isoform distribution across cells (middle), and violin plots of the gene and isoform distributions. 
d) Example of a gene with an isoform specific to the L5/6 NP subclass. The Unc5c-208 isoform 
is highly expressed in L5/6 NP relative to the other subclasses. e) Example of a gene with an 
isoform specific to the Grp_1 cluster of the L6 CT subclass. The Homer1-204 isoform is highly 
expressed in L6 CT Grp_1 relative to the other subtypes of L6 CT. [​Code a ​, ​Code b ​, ​Code c​, 
Code d ​]  
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Figure 2: Isoform atlas ​. A sample from an isoform atlas displaying isoform markers differential 
with respect to subclasses. Each row corresponds to one subclass, and each column 
corresponds to one isoform. SMART-Seq isoform abundance estimates are in TPM units, and 
each column is scaled so that the maximum TPM is 4 times the mean of the isoform specific for 
that row’s cluster. [​Code ​] 
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Along with isoforms detectable as differential between cell types without change in gene 
abundance, we identified isoform markers for the classes, subclasses, and clusters in 
the MOp ontology that are differential regardless of gene expression. We found 3,911 
isoforms from among 3,120 genes that are specific to the Glutamatergic and GABAergic 
classes (Figure 2, Supplementary Table 4, [​Code​]), 2,480 isoforms from among 2,146 
genes exhibiting isoform shifts specific to subclasses (Supplementary Table 5, [​Code​]), 
and for the cluster shown in Figure 1d, L6 CT, 324 isoforms from among 286 genes 
exhibiting isoform shifts in clusters (Supplementary Table 6, [​Code​]). Together, these 
form an isoform atlas for the MOp. 
 
Spatial isoform specificity 
 
While spatial single-cell RNA-seq methods are not currently well-suited to directly 
probing isoforms of genes due to the number and lengths of probes required, spatial 
analysis at the gene-level can be refined to yield isoform-level results by extrapolating 
SMART-Seq isoform quantifications.  
 
Figure 3a,b shows an example of a gene, Pvalb, where the SMART-Seq quantifications 
reveal that of the two isoforms of the gene, only one, Pvalb-201, is expressed. Moreover 
it can be seen to be specific to the Pvalb cell subclass (Supplementary Figure 20). 
MERFISH spatial single-cell RNA-seq, obtained from 64 slices from the MOp region 
(Supplementary Figure 21), does not probe the isoforms of genes, and for the case of 
Pvalb can show only where the gene is expressed (Figure 3b). However extrapolation 
from the SMART-Seq quantifications can be used to refine the MERFISH result to 
reveal the spatial expression pattern of the Pvalb-201 isoform. This extrapolation can be 
done systematically. To build a spatial isoform atlas of the MOp, we identified 
differentially expressed genes from the MERFISH data (Supplementary Table 7, [​Code​]) 
and for each of them checked whether there were SMART-seq isoform markers (from 
Supplementary Table 5, [​Code​]). An example of the result is shown in Supplementary 
Figure 22, which displays one gene for each cluster, together with the isoform label 
specific to that cluster.  
 
While direct measurement of isoform abundance may be possible with spatial RNA-seq 
technologies such as SEQFISH​25​ or MERFISH​26​, such resolution would require dozens 
of probes to be assayed per gene (Supplementary Figure 23), each of which is typically 
tens of base-pairs in length. Thus, while isoforms can in theory be detected in cases 
where they contain large stretches of unique sequence, the technology is prohibitive for 
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assaying most isoforms, making the extrapolation procedure described here of practical 
relevance. 

 
Figure 3: Spatial extrapolation of isoform expression ​. a) Spatial expression of the Pvalb-201 
isoform across 64 slices from the MOp, as extrapolated from probes for the Pvalb gene. b) 
Expression of the Pvalb-201 isoform and c) expression of the Pvalb-202 isoform. [​Code a ​, ​Code 
b/c​] 
 
Splicing markers 
 
Isoform quantification of RNA-seq can be used to distinguish shifts in expression 
between transcripts that share transcriptional start sites, and shifts due to the use of 
distinct transcription start sites. Investigating such differences can, in principle, shed 
light on transcriptional versus post-transcriptional regulation of detected isoform 
shifts​27,28​. Figure 4 shows an example of a gene, Rtn1, in which both GABAergic and 
Glutamatergic classes exhibit similar preferential expression of transcripts at a specific 
start site. However when examining the expression profile for the two isoforms within 
the highly expressed transcription start site (Supplementary Figure 24), we observe that 
the Glutamatergic class exhibits preferential expression of Rtn1-201, previously shown 
to be expressed in grey matter​29​, whereas the GABAergic class does not. We identified 
29 isoforms that are preferentially expressed in either GABAergic, Glutamatergic and 
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Non-Neuronal classes, even when the expression of isoforms grouped by the same 
transcription start sites is constant among them (Supplementary Table 8, [​Code​]). Such 
cases are likely instances where the isoform shifts between cell types are a result of 
differential splicing, i.e. the result of a post-transcriptional program. 

 
 
 

 
Figure 4: Isoform shifts reflecting splicing changes ​. a) expression patterns of groups of 
transcript sharing the same TSS from the reticulon 1 (Rtn1) gene. b) expression patterns of 
isoforms within TSS groups from the Rtn1 gene. [​Code ​] 

Discussion 
 
Comparisons of different scRNA-seq technologies have tended to focus on throughput, 
cost​30​, and accuracy at the gene-level. Our results shed some light on the latter: first, we 
examined the impact of estimation of gene abundance from isoform quantification with 
the expectation-maximization algorithm versus naïve aggregation of counts for 
SMART-Seq data. It has been previously shown that quantification of isoform 
abundance is necessary for gene-level estimates​31​. We found many examples of both 
false positive (Supplementary Figure 25) and false negative (Supplementary Figure 26) 
gene marker predictions at the subclass level (Supplementary Table 9, [​Code​] and 
Supplementary Table 10, [​Code​]). This highlights the importance of isoform 
quantification of SMART-Seq data, even for gene-centric analysis. In terms of accuracy 
compared to other technologies, we found slightly better agreement between 
SMART-Seq and MERFISH, two very different technologies, than between 10xv3 and 
MERFISH, for cell types where SMART-Seq assayed more than a handful of cells 
(Supplementary Figure 27). This suggests that perhaps the “full-length” measurements 
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of MERFISH and SMART-Seq confer an advantage over 3’-end based quantification, 
although more investigation is warranted. 
 
While cost, throughput, and accuracy are important, we found the resolution of different 
technologies to be more fundamental in assessing their comparative advantages. Our 
results confirm that 10xv3 3’-end technology is better at detecting small cell populations 
than SMART-Seq (Supplementary Figure 2) due to the higher number of cells assayed. 
However SMART-seq has other advantages. The higher sensitivity of SMART-Seq 
leads to the identification of some cell types not detected by 10xv3, and we find that 
SMART-Seq’s full-length capture facilitates the identification of cell markers that cannot 
be detected from gene expression estimates produced with 3’-end methods (Figure 1, 
Supplementary Figures 3 and 4). Similarly, while spatial single-cell RNA-seq methods 
are, for the most part, currently limited to gene detection, refinement of expression 
signatures is possible by extrapolating SMART-Seq isoform quantification. In addition, 
isoform expression may result from transcriptional and post-transcriptional regulation 
within specific cell-types that would be otherwise masked at the gene level.Thus, 
SMART-Seq is an important and powerful assay that can provide unique information not 
accessible with gene-centric technologies.  Moreover, the recent development of a 
SMART-Seq protocol (SMART-Seq3), which can produce full-length and 5’-end reads 
simultaneously from single-cells​32​ may further improve the ability to register 
SMART-Seq cells with cells assayed using other technologies, thereby further 
increasing the possibilities for combining SMART-Seq with our scRNA-seq data. This 
perspective argues for using SMART-Seq data beyond naïve integration with other 
modalities at the gene level. The technology should be viewed as a complement, rather 
than competitor, to droplet or spatial single-cell RNA-seq. Our analyses suggest that a 
workflow consisting of droplet-based single-cell RNA-seq to identify cell types, then 
SMART-seq for isoform analysis, and finally spatial RNA-seq with a panel based on 
isoform-specific markers identified by SMART-seq, would effectively leverage different 
technologies’ strengths. 
 
Our approach should be useful not only prospectively, but also for studies such as Kim 
et al. 2019 ​25​ which collected data using multiple scRNA-seq technologies but focused 
primarily on cell type identification using gene-level analyses. Our quantification of 
6,160 SMART-Seq cells with kallisto​23​ shows that it is straightforward to produce 
accurate, reproducible quantifications efficiently for any SMART-Seq dataset. Moreover, 
our analysis, fully reproducible via python notebooks, can be used for a comprehensive 
analysis of any 10x Genomics Chromium, SMART-Seq and spatial scRNA-seq data. 
This should be useful not only for biological discovery of isoform functions related to cell 
types, but also as a form of validation of the clusters, since isoform markers are unlikely 
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to be discovered within a cluster of cells by chance. Similarly, isoform markers can 
validate isoform quantification, because it is unlikely by chance that highly expressed 
isoforms, if produced by error, would cluster in a single group of cells. 
 
The next step after assembling a single-cell isoform atlas as we have done here for the 
primary motor cortex, is to probe the functional significance of cell type isoform 
specificity. Recently developed experimental methods for this purpose such as isoforms 
screens ​33​, are a promising direction. This approach is an example of methods that will 
be key to understanding the significance of the vast isoform diversity in the brain​34​, 

Data and Software Availability 

The software used to generate the results and figures of the paper is available at 
https://github.com/pachterlab/BYVSTZP_2020​. The single-cell RNA-seq data used in 
this study was generated as part of the BICCN consortium​17​. The 10xv3 and 
SMART-Seq data can be downloaded from 
http://data.nemoarchive.org/biccn/lab/zeng/transcriptome/scell/​. The MERFISH data 
was generated as part of the BICCN consortium but is not currently available due to 
restrictions by Xiaowei Zhuang; requests for the data can be made directly to her by 
emailing ​zhuang@chemistry.harvard.edu​. 
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Methods 
All of the results and figures in the paper are reproducible starting with the raw reads using 
scripts and code downloadable from ​https://github.com/pachterlab/BYVSTZP_2020 ​. The 
repository makes the method choices completely transparent, including all parameters and 
thresholds used. 

Tissue collection and isolation of cells 
Mouse breeding and husbandry: All procedures were carried out in accordance with            
Institutional Animal Care and Use Committee protocols at the Allen Institute for Brain             
Science. Mice were provided food and water ad libitum and were maintained on a              
regular 12-h day/night cycle at no more than five adult animals per cage. For this study,                
we enriched for neurons by using Snap25-IRES2-Cre mice ​35 (MGI:J:220523) crossed to           
Ai14 ​36 (MGI: J:220523), which were maintained on the C57BL/6J background          
(RRID:IMSR_JAX:000664). Animals were euthanized at 53−59 days of postnatal age.          
Tissue was collected from both males and females (scRNA SMART, scRNA 10x v3). 

Single-cell isolation: We isolated single cells by adapting previously described          
procedures​11,21​. The brain was dissected, submerged in ACSF​21​, embedded in 2%           
agarose, and sliced into 250-μm (SMART-Seq) or 350-μm (10x Genomics) coronal           
sections on a compresstome (Precisionary Instruments). The Allen Mouse Brain          
Common Coordinate Framework version 3 (CCFv3, RRID:SCR_002978)​37 ontology was         
used to define MOp for dissections.  

For SMART-Seq, MOp was microdissected from the slices and dissociated into single            
cells with 1 mg/ml pronase (Sigma P6911-1G) and processed as previously described​5​.            
For 10x Genomics, tissue pieces were digested with 30 U/ml papain (Worthington            
PAP2) in ACSF for 30 mins at 30 °C. Enzymatic digestion was quenched by exchanging               
the papain solution three times with quenching buffer (ACSF with 1% FBS and 0.2%              
BSA). The tissue pieces in the quenching buffer were triturated through a fire-polished             
pipette with 600-µm diameter opening approximately 20 times. The solution was           
allowed to settle and supernatant containing single cells was transferred to a new tube.              
Fresh quenching buffer was added to the settled tissue pieces, and trituration and             
supernatant transfer were repeated using 300-µm and 150-µm fire polished pipettes.           
The single cell suspension was passed through a 70-µm filter into a 15-ml conical tube               
with 500 ul of high BSA buffer (ACSF with 1% FBS and 1% BSA) at the bottom to help                   
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cushion the cells during centrifugation at 100xg in a swinging bucket centrifuge for 10              
minutes. The supernatant was discarded, and the cell pellet was resuspended in            
quenching buffer. 

All cells were collected by fluorescence-activated cell sorting (FACS, BD Aria II, RRID: 
SCR_018091) using a 130-μm nozzle. Cells were prepared for sorting by passing the 
suspension through a 70-µm filter and adding DAPI (to the final concentration of 2 
ng/ml). Sorting strategy was as previously described​21​, with most cells collected using 
the tdTomato-positive label. For SMART-Seq, single cells were sorted into individual 
wells of 8-well PCR strips containing lysis buffer from the SMART-Seq v4 Ultra Low 
Input RNA Kit for Sequencing (Takara 634894) with RNase inhibitor (0.17 U/μl), 
immediately frozen on dry ice, and stored at −80 °C. For 10x Genomics, 30,000 cells 
were sorted within 10 minutes into a tube containing 500 µl of quenching buffer. Each 
aliquot of 30,000 sorted cells was gently layered on top of 200 µl of high BSA buffer and 
immediately centrifuged at 230xg for 10 minutes in a swinging bucket centrifuge. 
Supernatant was removed and 35 µl of buffer was left behind, in which the cell pellet 
was resuspended. The cell concentration was quantified, and immediately loaded onto 
the 10x Genomics Chromium controller. 

Genomic library preparation and sequencing 

For SMART-Seq library preparation, we performed the procedures with positive and 
negative controls as previously described​21​. The SMART-Seq v4 (SSv4) Ultra Low Input 
RNA Kit for Sequencing (Takara Cat# 634894) was used to reverse transcribe poly(A) 
RNA and amplify full-length cDNA. Samples were amplified for 18 cycles in 8-well strips, 
in sets of 12–24 strips at a time. All samples proceeded through Nextera XT DNA 
Library Preparation (Illumina Cat# FC-131-1096) using Nextera XT Index Kit V2 
(Illumina Cat# FC-131-2001) and a custom index set (Integrated DNA Technologies). 
Nextera XT DNA Library prep was performed according to manufacturer’s instructions, 
with a modification to reduce the volumes of all reagents and cDNA input to 0.4x or 0.5x 
of the original protocol. 

For 10x v3 library preparation, we used the Chromium Single Cell 3’ Reagent Kit v3 
(10x Genomics Cat# 1000075). We followed the manufacturer’s instructions for cell 
capture, barcoding, reverse transcription, cDNA amplification, and library construction. 
We targeted sequencing depth of 120,000 reads per cell. 
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Sequencing of SMART-Seq v4 libraries was performed as described previously​21​.          
Briefly, libraries were sequenced on an Illumina HiSeq2500 platform (paired-end with           
read lengths of 50 bp). 

10x v3 libraries were sequenced on Illumina NovaSeq 6000 (RRID:SCR_016387). 

Pre-processing single-cell RNA-seq data 
The SMART-Seq data was processed using kallisto with the `kallisto pseudo` 
command​23​. The 10x Genomics v3 data was pre-processed with kallisto and bustools​38​. 
Gene count matrices were made by using the --genecounts flag and TCC matrices were 
made by omitting it. The mouse transcriptome reference used was GRCm38.p3 (mm10) 
RefSeq annotation gff file retrieved from NCBI on 18 January 2016 
( ​https://www.ncbi.nlm.nih.gov/genome/annotation_euk/all/​), for consistency with the 
reference used by the BICCN consortium​17​.  
 
Isoform and gene count matrices were generated for the Smart-seq2 data using the 
kallisto pseudo command. Cluster assignments were associated with cells using cluster 
labels generated by the BICCN consortium​17​. The labels are organized in a hierarchy of 
three levels: classes, subclasses and clusters. The cluster labels for the cells can be 
downloaded from ​https://github.com/pachterlab/BYVSTZP_2020​. 

Normalization and filtering 
Isoform counts were first divided by the length of transcript to obtain abundance 
estimates proportional to molecule copy numbers. We then removed isoforms that had 
fewer than one count and that were in fewer than one cell. We also removed genes and 
their corresponding isoforms that had a dispersion of less than 0.001.  
 
To generate the cell by gene matrix we summed the isoforms that correspond to the 
same gene. Cells with less than 250 gene counts and with greater than 10% 
mitochondrial content were removed. Cells were normalized to TPM by dividing the 
counts in each cell by the sum of the counts for that cell, then multiplying by 1,000,000. 
The count matrices were then transformed with log1p and the columns scaled to unit 
variance and zero mean. 
 
Highly variable isoforms and genes were identified by first computing the dispersion for 
each feature, and then binning all of the features into 20 bins. The dispersion for each 
feature was normalized by subtracting the mean dispersion and dividing by the variance 
of the dispersions within each bin. Then the top 5000 features were retained based on 
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the normalized dispersion. This was computed by using the 
scanpy.pp.highly_variable_genes with n_top_genes = 5000, flavor=seurat, and 
n_bins=20​39​. 

Visualization 
Neighborhood component analysis​20​ (NCA) was performed on the full scaled log(TPM 
+1) matrix using the subcluster labels, to ten components. t-distributed stochastic 
neighbor embedding (t-SNE)​18​ was then performed on the 10 NCA components. t-SNE 
was computed using sklearn.manifold. t-SNE with default parameters and random state 
42. Similarly uniform manifold approximation was performed on the 10 NCA 
components and the 50 truncated SVD components. Uniform Manifold Approximation 
and Projection (UMAP)​19​ was computed with the umap package with default 
parameters. 
 
For the Louvain clustering displayed in Supplementary Figure 8, truncated SVD was 
performed on the 5000 top highly variable features and the first 50 SVD components 
were retained for the clustering. The random seed for all sklearn functions was 42, and 
default parameters were used for scanpy.pp.neighbors and scanpy.tl.louvain. 

Differential analysis 
For each level of clustering: class, subclass, cluster, we performed a t-test for each 
gene/isoform between the cluster and its complement, on the log1p counts. To identify 
isoform enrichment that is masked at a gene level analysis, we looked for isoforms that 
were upregulated by checking that the gene containing that isoform was not significantly 
expressed in that cluster, relative to the complement of that cluster. Isoforms that were 
expressed in less than 90% of the cells in that cluster were ignored. All statistical tests 
used a significance level of 0.01 and all p-values were corrected for multiple testing 
using Bonferroni correction. 

TSS matrix construction 
Using the transcripts to genes map and the filtered isoform matrix generated before, we 
grouped isoforms by their transcription start site into TSS classes and summed the raw 
counts for the isoforms within each TSS class to create a ​cell x TSS​ matrix. Differential 
analysis was then performed in exactly the same way as above. 
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Cross-technology cluster correlation 
The correlation between 10xv3-Smart-seq, 10xv3-MERFISH, and Smart-seq-MERFISH, 
was performed at the gene level and between cells grouped by subclasses for all three 
pairs of technologies, and at the isoform level and between cells grouped by cluster for 
only the 10xv3 and SMART-Seq. For each pair we started with two raw matrices and 
restricted to the set of genes/isoforms common to the two. Then we normalized the 
counts for each matrix per cell to one million, log1p transformed the entire matrix, and 
scaled the features to zero mean and unit variance. Within each cluster we restricted 
the features to those present in at least 50% of the cells. We then found the mean cell 
within the respective clusters in the two matrices, and computed the Pearson correlation 
between them. 

Software versions 
Anndata 0.7.1 
bustools 0.39.4 
awk (GNU awk) 4.1.4 
grep (GNU grep) 3.1 
kallisto 0.46.1 
kb_python 0.24.4 
Matplotlib 3.0.3 
Numpy 1.18.1 
Pandas 0.25.3 
Scanpy 1.4.5.post3 
Scipy 1.4.1 
sed (GNU sed) 4.4 
sklearn 0.22.1 
tar (GNU tar) 1.29 
umap 0.3.10 
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