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Genomic regions subject to purifying selection are of greater importance to the health and survival 

of an organism than regions not under such selection and therefore more likely to carry disease 

causing mutations in humans. Methods for identifying such regions can roughly be divided into 

those using cross species conservation and those using intolerance to standing genetic variation 

within a species.  Cross species conservation relies on identifying regions with fewer differences 

than expected given divergence times between species. This makes regions that are under 

purifying selection in only one species difficult to detect. In contrast, intolerance looks for depletion 

of variation relative to expectation within a given species, allowing species specific features to be 

identified. When investigating the intolerance of coding sequence, this depletion is often focused 

on variation that affects the amino acid sequence. However, in noncoding sequence, the 

functional consequence of variation is less well defined, and methods strongly leverage variant 

frequency distributions. As the expected distributions depend on demography, if not properly 

controlled for, ancestral population source may obfuscate signals of selection. We demonstrate 

that properly incorporating demography in intolerance estimation results in greatly improved 

variant classification (14% increase in AUC relative to comparison constraint test, CDTS; and 7% 

relative to conservation). We provide a genome-wide intolerance map that is condition on 

demographic history that is likely to be particularly valuable in variant prioritization.  
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Introduction 

Understanding the functional impact of noncoding sequence on protein coding sequence 

is one of the largest challenges in human genomics.  Our ability to call variation in noncoding 

sequence has greatly outpaced our ability to interpret that variation and, currently, even studies 

employing whole genome sequencing (WGS) often restrict analyses to coding sequence. 

Previously, cross-species conservation has been used to identify genomic regions of likely 

importance. These methods are effective at identifying genomic regions that retain their functional 

importance across different species,1–4 but  are not effective at identifying genomic regions that 

have emerged as important in a given species.5 However,  emerging WGS datasets present an 

opportunity to address this problem as they provide a mechanism for detecting signatures of 

purifying selection within noncoding sequence by looking for intolerance in large standing human 

populations,6,7 where up until recently this has been difficult to detect due to relatively small 

sample sizes.  

Methods for estimating genetic intolerance have previously been applied to noncoding 

sequence by either by comparing the observed local distribution of variation to expectation under 

neutrality given a sequence context informed mutation rate,6 or by comparing local sequence 

context dependent distributions of variation to genome-wide sequence context dependent 

distributions.7 One such method, Orion,6  was shown to be highly discriminative of known classes 

of regulatory elements and in a recent machine learning based classifier8, it was shown to be the 

most informative feature of variant pathogenicity among a set of features that characterize 

intolerance, conservation, 3D structure, expression, and other combined metrics. Here, we 

improve upon existing methods in several ways. First, instead of comparing the observed SFS to 

that expected under neutrality, we compute the expectation empirically, by stochastically sampling 

from putatively neutral regions making the method less sensitive to demographic factors that may 

distort the SFS, as these factors will affect both the observed SFS and its neutral expectation. 

Second, we stratify the analysis by ancestry, computing both the observed SFS and its 
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expectation within each ancestry and then combining these contrasts into the final Population 

Conditional Intolerance Test (PCIT). It is well known that genetic diversity varies across ancestries 

and natural selection drives population differences in disease response.9 By stratifying the 

analysis on ancestry we effectively eliminate variability in genetic diversity between human 

subpopulations in estimating intolerance, leading to greater precision, as we demonstrate below.   

Results 

Differences in Neutral SFS Across Ancestry  

We begin by investigating whether the neutral SFS varies across ancestry. Since our 

approach contrasts the observed SFS within a region to an empirical estimate of the neutral SFS, 

if there are differences in the neutral SFS across ancestry groups, stratifying on ancestry could 

eliminate an important source of variability leading to increased power. To this end, we used 

15,496 whole genome sequenced samples from the genome aggregation database (gnomAD)  

across 8 different ancestries,10 including: African, American Latino/Admixed American, Ashkenazi 

Jewish, East Asian, Finnish, Non-Finnish European, South Asian, and other.  

We estimate the neutral SFS by sampling variation from an intergenic sequence not 

annotated to be functional (see Quality Control, Defining Intergenic Regions, and Annotations). 

To test whether a given subpopulation’s neutral SFS differs significantly from another 

subpopulation we employ the following approach: begin by randomly sampled a million positions 

from neutral sequence and then randomly assigned a given position to be part of the SFS 

estimation for one of the two subpopulations being compared. This gives half a million positions 

on which to estimate the neutral SFS for each subpopulation, then quantify the difference between 

the two distributions using the log-rank test.  This process was repeated a thousand times, the 

subpopulation label was then randomly shuffled at each site and the log rank test was recalculated 

after assignment. This gives us a null distribution of SFS differences between subpopulation. This 

was done with each pairwise ancestry, within each ancestry, and using the entire combined 

gnomAD population (Fig. 1c).   
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  The African/African-American (AFR) SFS does not differ significantly from the pooled 

gnomAD SFS sample population (average logrank across thousand iterations: 0.8: p-value = 

0.21), whereas every other population demonstrates a significant difference in SFS relative to the 

full population. It is to be suspected that the AFR population’s neutral SFS would demonstrate the 

most genetic diversity (Fig. 1b).  When looking at the largest ancestries, 4,368 AFR and 7,509 

Non-Finish European (NFE) samples, there is a significant difference in their SFSs (average 

logrank test -34: p<1e-8). The differences observed between the neutral SFSs across gnomAD 

ancestry groups suggest that conditioning on ancestry in intolerance estimation may control an 

important source of variability, leading to improved precision. We investigate this approach in the 

next section.   

Ancestry Adjusted Intolerance Estimation 

We conducted a genome wide scan of regional intolerance by looking for differences in the SFS 

within a given genomic region with an ancestry specific estimate of the neutral SFS. Specifically, 

we estimated the neutral SFS from a million random intergenic positions that were stochastically 

sampled across the genome, within a given ancestry and across all ancestries. We then 

compared this neutral SFS to the SFS distribution estimated from a given hundred and one base 

pair window (fifty bases on each side of the index position) using a log-rank test. This contrast 

was applied within each population and then combined to get the population conditional 

intolerance test (PCIT). We also conducted an unadjusted analysis where both the neutral SFS 

and the observed SFS within window were estimated from a pooled sample comprised of all 

ancestries. We refer to this as the unadjusted intolerance test (UIT). We then slide the hundred 

base query window to cover every position across the genome, with the restriction that the regions 

considered pass coverage and QC criteria (see Quality Control, Defining Intergenic Regions, and 

Annotations section). Since the populations have different sample sizes and relative neutral 

distributions, the within ancestry scores are then standardized to mean zero variance one and 

then the average across these scores is used to create a population conditional test statistic. The 
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p-value is then empirically calculated for the population conditional intolerance test using 

permutation.  To improve computational efficiency, we take advantage of the fact that as you 

move from window to window very little of the data actually change and thus we can leverage our 

previous calculations in updating to a new window, avoiding the need to reload  and recalculate 

across all data elements.   

We investigated the performance of the various approaches by looking at how they 

classify non-coding ClinVar pathogenic variants versus a million randomly sampled common 

variants (MAF>5%) taken from 62,784 whole genome Trans-Omics for Precision Medicine 

(TOPMed projects) samples.  As can be seen from figure 1, areas under the receiver operator 

curves (AUCs) are significantly improved when ancestry is accounted for (PCIT: AUC=90%) 

relative to when it is not  (UIT: AUC=80%). PCIT also substantially outperforms two previously 

proposed approaches for measuring constraint and conservation in noncoding sequence (CDTS: 

AUC=76% and GERP: AUC=83%) (Fig. 2). Similar results are seen in classifying ClinVar coding 

variants. Specifically, we found with when ancestry is accounted for (PCIT: AUC=93%) relative to 

a similar unadjusted approach (UIT: AUC=85%). It also substantially outperforms a previously 

proposed approach for classifying noncoding sequence (CDTS: AUC=80% and GERP: 

AUC=90%) (Supp. Fig. 1).  The same comparison was done with Orion, which also uses a sliding 

window approach to compare the observed SFS with a theoretical expectation under neutrality, 

computed given the sequence context dependent mutation rate found within the window.  Orion 

slightly outperformed CDTS but underperformed relative to both the new population unadjusted 

intolerance test and the population conditional intolerance test (Orion non-coding AUC=78%, 

coding AUC =80%). Orion was run using a different quality control criteria and, as a result, used 

a significantly different set of variants. For this reason, we left it out of the comparisons found in 

the main text, but still note it in the supplementary materials (Supp. Fig. 2).  

We next investigated how sequences showing extreme PCIT scores (in the top 10%) are 

distributed across different genomic regions, such as exons: introns, enhancers, promotors, etc. 
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by comparing how often sequence with a given annotation lies in the top decile of PCIT relative 

to sequence found in common intergenic regions (details of annotations described in Quality 

Control, Defining Intergenic Regions, and Annotations).   We found that ultra-conserved regions 

have a 34.81 fold enrichment of extreme PCIT scores relative to common intergenic regions (Fig. 

3). Exons show a  21.07 fold enrichment ;16.19 for UTRs; 15.4 for introns; 14.99 for Hi-C 

experimental data that was taken from di Iulio used to validate CDTS,7 and 14.98 for enhancers 

(Supp Table 1). Non-coding RNA elements also showed an enrichment of intolerance relative to 

common intergenic regions (Fig. 3): miRNA showed a 14.99 fold enrichment;  and a 13.19 fold 

enrichment for lincRNA (Fig. 3).  

We then looked at how the intolerance of regulatory elements correlates with the genic 

intolerance of the genes they regulate. We began by connecting specific enhancer regions to the 

genes they regulate in various tissue types using  Roadmap 

(http://www.biolchem.ucla.edu/labs/ernst/roadmaplinking/).11–13 As the PCIT is a nucleotide level 

score, we took the average of such scores across each enhancer, to create a single score per 

enhancer. Using the roadmap links for a given cell line, we linked a target gene for each enhancer.  

We binned the intolerance scores for enhancers targeting genes in a given gene set into 20 equal 

sized bins and took the median enhancer score within each bin. We also computed median RVIS 

score for the genes being targeted by the enhancers within each bin.  Finally, we correlated the 

bins’ median enhancer and median target gene RVIS scores (Fig. 4). Consistent patterns of 

correlation between genic intolerance and regional regulatory intolerance were seen in OMIM 

genes (Fig. 4A-B correlation brain = 0.85, neurosphere  0.92), haploinsufficient genes (Fig. 

4C-D correlation brain = 0.78, neurosphere 0.53), and neurodevelopmental autosomal dominant 

genes (Fig. 4E-F correlation brain = 0.62, neurosphere 0.43). ).  

Interestingly, some of the gene sets (e.g., haploinsufficient genes with enhancers linked 

both via brain cells and via neurosphere cells) show non-monotonicity in the relationship between 

enhancer and target gene intolerance, with low enhancer scores corresponding to genes with 
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relatively high genic intolerance scores. One possible explanation is that small genes that are 

subject to purifying selection may have poorly estimated genic intolerance, due to their short 

coding sequence and limited potential for variation14. To investigate further, we computed the 

average length of the target genes of the enhancers found within each bin (Supp. Fig. 3). Indeed, 

those bins with relatively high RVIS scores but with very intolerant ehancers tend to be comprised 

of relatively short target genes.   

The strong correlations seen in the OMIM gene sets for brain and neurosphere linked 

enhancers were also seen when linked through other cell types with very strong correlations being 

seen when enhancers were linked via fibroblast lung (IMR90 correlation = 0.95) and muscle 

(Myosat correlation = 0.93, muscle correlation = 0.92) (Supp. Fig. 4).  

 

Discussion 

Clear patterns of correlation were observed between intolerant regulatory elements and 

the genic intolerance scores of the target genes those elements regulate. Interestingly, the most 

striking violations of this pattern, where enhancers were strongly intolerant but the target genes 

those enhancers regulated were relatively tolerant, were comprised of relatively short genes. A 

plausible explanation for this is that the genes’ coding and regulatory sequence is actually under 

relatively strong purifying selection but that the short coding sequence of the gene limits the genic 

intolerance signa we are able to observe, but this warrants further investigation. 

Sample size is a key factor in being able to precisely identify intolerant regions. Given the 

current limited number of publicly available whole genome sequences, some ancestries are 

under-represented in this sample. For example, there are only 151 Ashkenazi Jewish individuals 

represented in the current analysis. However, with emerging population-based sequencing 

programs such as All of Us15 and the UK biobank16 we expect the number of sequences to 

increase dramatically in the coming years and to better represent diverse ancestries. This, in turn, 

will allow more precise regional intolerance estimation of smaller and smaller subunits of the 
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genome. In the current study a sliding window of 100 bases was chosen to capture enough 

variation to precisely estimate intolerance while also balancing the localization of the scores. With 

larger and larger samples sizes, smaller windows will provide the same precision while better 

identifying finer and finer local structure in intolerance signal.  

An alternative to the sliding window approach is to use predefined regional definitions 

based on known biology, e.g., enhancers, promotors, exons, introns, etc. However, the sizes of 

such regions can vary dramatically and, as a result, the precision of intolerance estimates will 

vary dramatically as well, with smaller regions’ intolerance often being very poorly estimated. A 

possible solution to this is to develop hierarchical models in this context that allow borrowing of 

information across similar regions, potentially stabilizing estimates. Such an approach has been 

successfully applied to intolerance estimation of subregions in coding sequence.17  

Other methods for estimating regional intolerance consider sequence context variation 

rates, either to estimate an expected number of variants within a given region using a sequence 

context mutation rate,10,18,19 or by comparing a local rate of variation within a given sequence 

context to that observed in that context genome-wide.7 Though we found that our SFS-based 

approach outperformed CTDS, it is clear that two regions that are subject to the same level of 

purifying selection may have very different SFSs simply due to sequence context mutation rate 

differences between the regions. Thus, there is an opportunity to further refine the PCIT 

framework by developing sequence context informed SFS estimates within ancestry groups and 

to contrast that with an ancestry specific sequence context informed neutral SFS.  

We do not directly compare to other methods that aggregate annotations8,20–23  from other 

rich feature sets24–26; however, we are encouraged that the approach proposed here will be useful 

in this context by the fact that Orion, a previously proposed SFS-based approach for estimating 

genome-wide regional intolerance,  was recently demonstrated to be the most informative feature 

in a recent predictive model of variant pathogenicity.8   Improving such predictions, especially for 
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variants in non-coding sequence, has implications for the interpretation of variation across 

genetics studies from genetic discovery to the diagnostic interpretation of patient genomes. 

 

Online Resources 

https://github.com/tris-10/PopCondIntolTest 
 
https://macarthurlab.org/2017/02/27/the-genome-aggregation-database-gnomad/ 

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state 

https://www.nhlbi.nih.gov/science/trans-omics-precision-medicine-topmed-program 

http://www.biolchem.ucla.edu/labs/ernst/roadmaplinking/ 

 

Quality Control, Defining Intergenic Regions, and Annotations 

 

Variants included in SFS calculations for the PCIT had to meet gnomAD PASS criteria. In addition, 

indels were excluded and only autosomal chromosomes were used. Low coverage regions where 

all positions in a window did not have 10X coverage in 70% of samples,  SEGDUP regions, and 

recent repeat regions defined as having sequence < 10% diverged from the consensus in 

RepeatMasker27were  removed.  Aggarwala and Voight characterized sequence context and 

modeled heptamere mutation rates focusing on intergenic regions to explicitly avoid the potential 

impact of negative selection.9 We build on this definition to create an empirical sample of within 

ancestry intergenic SFS spectrums defined as the full set of genomic sequence filtering out 

centromeric, telomeric, repetitive regions, gene deserts of length greater than 2MB, sequence not 

present in the combined accessibility mask of 1000 genomes. Additionally, we restricted regions 

to be least 1KB away from any gene.  

The annotations in Fig. 3 were predominantly taken from Ensembl27 including: CDS exon, 

CDS intron, CCCTC-binding factor (CTCF), promoter flanking regions, open chromatin regions, 

transcription factor binding sites (TFBS), enhancer, promoter, untranslated regions (UTR), 
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transcript nonsense mediated decay, lincRNA, miRNA, snoRNA, miscRNA, rRNA, and snRNA. 

Additional annotations that were used  included: Human accelerated regions (HAR),28 ultra 

conserved elements (UCE) (https://www.ultraconserved.org/),29 Hi-C experimental data,7 DNase 

I hypersensitive (DHS),6 and a million randomly sampled variants from TOPMed 

(https://www.nhlbi.nih.gov/science/trans-omics-precision-medicine-topmed-program)30 with MAF 

greater than 1%.Cell specific enhancers were defined based on Roadmap Core 15-state model 

(5 marks, 127 epigenomes 

https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state).  

 

 

Online Methods 

 

We use a log rank test to test for differences between the SFS within a given query window 

and the SFS estimated from intergenic neutral sequence.  To estimate the intergenic neutral SFS,  

we sampled  a million random intergenic positions, and computed the SFS from the variation at 

those positions within each population. Our testing approach was optimized to take advantage of 

the fact that the data is sparse and does not change dramatically when moving from query window 

to query window. Thus, when moving from one window to another we can avoid fully reloading 

the data structures by simply removing the counts from the  old position and then adding those 

for the new position. This greatly increases computational efficiency. Since the different ancestries 

have different sample sizes, the log rank statistics across each population are standardized to 

have mean zero and variance one and then the average across the statistics are taken at each 

position to get a stratified analysis. We characterize an empirical null by sampling a million random 

intergenic positions, using the statistic calculated over the 101 base window at each of those 

positions, to generate an empirical distribution function.  The empirical p-value for each position 
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corresponds to any statistic that is as extreme or more extreme than that observed statistic in the 

query window.   
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Fig. 1 Characterizing cross population shifts in the site frequency spectrum.  Understanding cross population shifts in site 
frequency spectrum, first is an illustrative diagram a) adapted from Sawyer and Hartl 1992 Genetics (remove Hartl version and put in 
ours) showing how negative selection is expected to effect the SFS. Then an empirical sample of b) the cumulative SFS for million 
intergenic bases taken across the two largest populations in gnomAD and the combined cumulative SFS. In the lower plot is c) a 
heatmap of the average over a thousand random permutations of half a million intergenic positions in one population versus another 
half a million intergenic positions from another population.    
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Fig. 2 Predictive utility of population conditional constraint test relative to other constraint and conservation 
metrics for ClinVar non-coding variants. Non-coding ClinVar pathogenic variants versus a million randomly sampled 
variants from TOPMed with MAF greater than 5%. 
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Fig. 3 Relative constraint across different annotations from Ensembl27 and other resources.5,6,31,32  Decile break 
downs of PCIT scores across different functional annotations from and a million randomly sampled intergenic variants 
from TOPMed with MAF greater than 5%.  
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