Improved stability of an engineered function using adapted bacterial strains

Supplementary Figure 1: Maps of plasmids used in this study. (a) Plasmid pRPU encoded fluorescence function into E. coli. Plasmid pRPU contains the YFP coding DNA sequence (CDS) under control of the constitutive promoter $\mathrm{P}_{\mathrm{J} 23101}$. The mRNA transcript from $\mathrm{P}_{\mathrm{J} 23101}$ is insulated with the riboJ insulator and terminated downstream of the YFP CDS with the transcriptional terminator $\mathrm{T}_{\mathrm{L} 352 \mathrm{P} 21}$. The plasmid contains the p15A origin of replication and the kanamycin resistance marker. (b) Plasmid pRPU-neg, used for competitive fitness assays, was constructed by inactivated the $\mathrm{P}_{\mathrm{J} 23101}$ promoter and corresponding RBS.

Improved stability of an engineered function using adapted bacterial strains

Supplementary Figure 2: Growth curves of E. coli strains at generation 0 and generation 250 of stability assays. E. coli strains containing pRPU and grown in M9 media with kanamycin. Growth curves were measured from samples of each culture at generation 0 (gray curves) and generation 250 (black curves). Each biological replicate (A, B, C) was measured in technical triplicate. Some curves overlap.

Improved stability of an engineered function using adapted bacterial strains

Supplementary Figure 3: Growth curves of E. coli strains at generation 0 and generation 250 of competitive fitness assays. E. coli strains containing pRPU and grown in M9 media with kanamycin. Growth curves were measured from samples of each culture at generation 0 (gray curves) and generation 250 (black curves). Each biological replicate (A, B, C) was measured in technical triplicate. Some curves overlap.

Supplementary Figure 4: Growth curves show increased growth rates after adapting E. coli strains to M9 media. Growth curves of NEB Turbo (left column) and DH5 (right column) before adaptation (gray curves) and after 100 generations of adaptation (black curves). Growth curves were measured in LB media (upper plots) and M9 media (lower plots). Measured in biological triplicate.

Supplementary Figure 5: Automated gating to isolate single cell event in flow cytometry. Cytometry data was gated by automating the subtraction of background events. Left, control blank sample to identify background events. Center, raw data from cytometer containing background and cell events. Right, gated results show cell events with background events removed.

Improved stability of an engineered function using adapted bacterial strains

Supplementary table 1: Variability (geometric standard deviation, σ_{g}) of YFP expression from pRPU in different strains of E. coli.

Strain	Variability $\left(\sigma_{g}\right)$
MG1655	1.14
O157:H7	1.20
TOP10	1.06
DH5 α	1.34
eDH5 α	1.16
NEB Turbo	1.12
eTurbo	1.08

Supplementary table 2: Growth rate (as doublings per hour) with standard deviation of seven E. coli strains at generation $0\left(\mu_{0}\right)$ and generation $250\left(\mu_{250}\right)$ of the stability assays and competitive fitness assays.

Stability Assay

	μ_{0}	μ_{250}	$\mathrm{~N}_{0}$	$\mathrm{~N}_{250}$	μ_{0}	μ_{250}	$\mathrm{~N}_{0}$	$\mathrm{~N}_{250}$
MG1655	1.36 ± 0.08	1.65 ± 0.11	9	8	1.26 ± 0.14	1.52 ± 0.17	8	9
O157:H7	1.47 ± 0.12	1.60 ± 0.06	9	9	1.52 ± 0.07	1.60 ± 0.06	9	9
TOP10	1.15 ± 0.22	1.27 ± 0.24	9	9	1.25 ± 0.14	1.25 ± 0.15	9	9
DH5a	0.71 ± 0.09	1.26 ± 0.12	9	9	0.77 ± 0.08	1.15 ± 0.15	9	9
eDH5	1.16 ± 0.23	1.12 ± 0.16	9	8	1.17 ± 0.03	1.36 ± 0.10	9	9
NEB Turbo	0.65 ± 0.06	1.26 ± 0.08	9	8	0.63 ± 0.07	1.25 ± 0.08	9	9
eTurbo	1.12 ± 0.10	1.13 ± 0.05	9	9	1.04 ± 0.08	1.14 ± 0.04	9	9

Supplementary table 3: Growth rate (as doublings per hour) with standard deviation of NEB Turbo and eTurbo in LB and M9 growth media. The change in growth rate $(\Delta \mu)$ calculated using $\mu_{\text {eTurbo }} / \mu_{\text {NEB Turbo }}$.

Growth Rate $\left(\mathrm{hr}^{-1}\right)$			
Media	NEB Turbo	eTurbo	$\Delta \mu$
LB	1.87 ± 0.19	1.92 ± 0.23	1.03 ± 0.16
M9	0.62 ± 0.08	1.01 ± 0.16	1.63 ± 0.34

Supplementary Table 4: Growth rate (as doublings per hour) with standard deviation of DH5 α and eDH5 α in LB and M9 growth media. The change in growth rate $(\Delta \mu)$ calculated using $\mu_{\text {eDH5 }} / \mu_{\text {DH5 }}$.

	Growth Rate $\left(\mathrm{hr}^{-1}\right)$	
Media	$\mathrm{DH} \alpha$	$\mathrm{eDH} \alpha$
LB	$\Delta \mu$	
M9	1.63 ± 0.07	$1.54 \pm .04$
0.70 ± 0.11	$1.23 \pm .10$	$1.75 \pm 0.3 \pm$

Supplementary Table 5: Minimum Information Standard for Engineered Organism Experiments (MIEO).

MIEO Category	Factor	Level	Supplier Part
Media components(M9)	KH2PO4	$3 \mathrm{~g} / \mathrm{L}$	BD (248510)
	Na2HPO4	$6.78 \mathrm{~g} / \mathrm{L}$	BD (248510)
	NaCl	$0.5 \mathrm{~g} / \mathrm{L}$	BD (248510)
	NH4Cl	$1.0 \mathrm{~g} / \mathrm{L}$	BD (248510)
	D-glucose	$0.721 \mathrm{~g} / \mathrm{L}$	Sigma (G8270)
	Casamino acids	$2 \mathrm{~g} / \mathrm{L}$	Calbiochem(2240)
	CaCl 2	$0.011 \mathrm{~g} / \mathrm{L}$	Sigma (21115)
	MgSO4	$0.241 \mathrm{~g} / \mathrm{L}$	Sigma (83266)
	Vitamin B1 (Thiamine)	$3.40 \times 10-4 \mathrm{~g} / \mathrm{L}$	Sigma-Aldrich (T4625)
Media properties	pH	7.4	
	LB-Miller	25g/L	Fisher BioReagents (BP1426)
	Bacto-agar	15g/L'	BD (214010)
Container geometry	Type	"Culture" tube	Falcon (352059)
	Container shape	Round	
	Container bottom	Round	
	Container volume	14 mL	
	Fill volume	3 mL	
	Cover	Snap cap	
Container shaking	Shaking speed	200 rpm	
	Shaking diameter	2.5 cm	
	Shaking mode	Orbital	
Time	Growth time	24h	
Environment	Temperature	$37^{\circ} \mathrm{C}$	
	Relative humidity	Not measured	
Selective Agents	Antibiotic type	Kanamycin	gibco (11815-32)
	Antibiotic concentration	$50 \mathrm{ug} / \mathrm{mL}$	
Inoculum	Type	Single colony	
	Concentration at inoculation	N/A	
	Age of inoculum at inoculation	N/A	

Improved stability of an engineered function using adapted bacterial strains

Passage	Volume of inoculum	$3 \mu \mathrm{~L}$	
	Age of inoculum at inoculation	24 hours	
	Concentration at inoculation	$10^{\wedge}-3$	
Flow Cytometry	Device	Cytometer	
	Device	Autosampler	
	PBS		Invitrogen (AM9625)
	Focusing Fluid		Attune Focusing Fluid (4488621)
	Calibration Beads		Spherotech (RCP-30-5A)
	Chloramphenicol		Sigma(C1919)

pRPU Plasmid Sequence:

L3S3P21 - red text
P_{123101} - green highlighted text
RiboJ - gray highlighted text
RBS - green emboldened text
eYFP - yellow highlighted text
TL3S2P21 - gray highlighted red text
P15A - cyan highlighted text
Kanamycin resistance - underlined text
>plasmid pRPU
CCAATTATTGAAGGCCTCCCTAACGGGGGGCCTTTTTTTGTTTCTGGTCTCCCGCTTGATAAGT СССТAACTTTTACAGCTAGCTCAGTCCTAGGTATTATGCTAGCCTGAAGCTGTCACCGGATGTG CTTTCCGGTCTGATGAGTCCGTGAGGACGAAACAGCCTCTACAAATAATTTTGTTTAATACTAG AGAAAGAGGGGAAATACTAGATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCAT CCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGC GATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACAGGCAAGCTGCCCGTGCCCT GGCCCACCCTCGTGACCACCTTCGGCTACGGCCTGCAATGCTTCGCCCGCTACCCCGACCACAT GAAGCTGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC TTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGA ACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGA GTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTG AACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGA ACACCCCAATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTTAGCTACCAGTCCGC CCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCC GGGATCACTCTCGGCATGGACGAGCTGTACAAGTAACTCGGTACCAAATTCCAGAAAAGAGGCC TCCCGAAAGGGGGGCCTTTTTTCGTTTTGGTCCGATCCTCTACGCCGGACGCATCGTGGCCGGC ATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATC

Improved stability of an engineered function using adapted bacterial strains

GGGCTCGCCACTTCGGGCTCATGAGCAAATATTTTATCTGAGGTGCTTCCTCGCTCACTGACTC GCTGCACGAGGCAGACCTCAGCGCTAGCGGAGTGTATACTGGCTTACTATGTTGGCACTGATGA GGGTGTCAGTGAAGTGCTTCATGTGGCAGGAGAAAAAAGGCTGCACCGGTGCGTCAGCAGAATA TGTGATACAGGATATATTCCGCTTCCTCGCTCACTGACTCGCTACGCTCGGTCGTTCGACTGCG GCGAGCGGAAATGGCTTACGAACGGGGCGGAGATTTCCTGGAAGATGCCAGGAAGATACTTAAC AGGGAAGTGAGAGGGCCGCGGCAAAGCCGTTTTTCCATAGGCTCCGCCCCCCTGACAAGCATCA CGAAATCTGACGCTCAAATCAGTGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTT CCCCCTGGCGGCTCCCTCGTGCGCTCTCCTGTTCCTGCCTTTCGGTTTACCGGTGTCATTCCGC TGTTATGGCCGCGTTTGTCTCATTCCACGCCTGACACTCAGTTCCGGGTAGGCAGTTCGCTCCA AGCTGGACTGTATGCACGAACCCCCCGTTCAGTCCGACCGCTGCGCCTTATCCGGTAACTATCG TCTTGAGTCCAACCCGGAAAGACATGCAAAAGCACCACTGGCAGCAGCCACTGGTAATTGATTT AGAGGAGTTAGTCTTGAAGTCATGCGCCGGTTAAGGCTAAACTGAAAGGACAAGTTTTGGTGAC TGCGCTCCTCCAAGCCAGTTACCTCGGTTCAAAGAGTTGGTAGCTCAGAGAACCTTCGAAAAAC CGCCCTGCAAGGCGGTTTTTTCGTTTTCAGAGCAAGAGATTACGCGCAGACCAAAACGATCTCA AGAAGATCATCTTATTAAGGGGTCTGACGCTCAGTGGAACGAAAAATCAATCTAAAGTATATAT GAGTAAACTTGGTCTGACAGTTACCTTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTT ATTCATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAAC TCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAA CATCAATACAACCTATTAATTTCCCCTCGTCAAAAATAAGGTTATCAAGTGAGAAATCACCATG AGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGCATTTCTTTCCAGACTTGTTCAACA GGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATTCATTCGTGATT GCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATG CAACCGGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCT AATACCTGGAATGCTGTTTTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTAC GGATAAAATGCTTGATGGTCGGAAGAGGCATAAATTCCGTCAGCCAGTTTAGTCTGACCATCTC ATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCAGAAACAACTCTGGCGCATCGGGC TTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCCCATTTATACC CATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTGGAGCAAGACGTTTCCCGTTGAAT ATGGCTCATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGAT ATATTTTTATCTTGTGCAATGTACATCAGAGATTTTGAGACACAA

