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1 Abstract27

Forecasting how the risk of pathogen spillover changes over space is essential28

for the effective deployment of interventions such as human or wildlife vacci-29

nation. However, due to the sporadic nature of spillover events, developing30

robust predictions is challenging. Recent efforts to overcome this obstacle have31

capitalized on machine learning to predict spillover risk. A weakness of these32

approaches has been their reliance on human infection data, which is known33

to suffer from strongly biased reporting. We develop a novel approach that34

combines sub-models for reservoir species distribution, pathogen distribution,35

and transmission into the human population. We apply our method to Lassa36

virus, a zoonotic pathogen with a high threat of emergence in West Africa. The37

resulting model predicts the distribution of Lassa virus spillover risk and allows38

us to revise existing estimates for the annual number of new human infections.39

Our model predicts that between 961,300 – 4,037,400 humans are infected by40

Lassa virus each year, an estimate that exceeds current conventional wisdom.41

Our model also predicts that Nigeria accounts for more than half of all new42

Lassa cases in humans, making it a high-risk area for Lassa virus to become an43

emergent pathogen.44

2 Keywords45

Lassa, Machine learning, zoonotic pathogen, emerging infectious disease, spillover,46

risk map47

3 Introduction48

Emerging infectious diseases (EIDs) pose a deadly threat to mankind. Approx-49

imately 40% of EIDs are caused by pathogens that circulate in a non-human50
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wildlife reservoir (i.e., zoonotic pathogens) [1]. Prior to full scale emergence, in-51

teraction between humans and wildlife creates opportunities for the occasional52

transfer, or spillover, of the zoonotic pathogen into human populations [2].53

These initial spillover cases, in turn, can give an animal-borne pathogen a54

foothold for genetic mutations that allow increased transmission among hu-55

mans [2, 3]. Consequently, a key step in preempting the threat of EIDs is56

careful monitoring of when and where spillover into the human population is57

occurring. However, because the majority of EIDs from wildlife originate in low58

and middle income regions with limited health system infrastructure, accurately59

estimating the rate and geographical range of pathogen spillover, and therefore60

the risk of new EIDs, is a major challenge [1].61

Machine learning techniques have shown promise at predicting the geograph-62

ical range of spillover risk for several zoonotic diseases including Lassa fever [4–63

6], Ebola [7], and Leishmaniases [8]. Generally, these models are trained to64

associate environmental features with the presence or absence of case reports65

in humans or the associated reservoir. Once inferred from the training process,66

the learned relationships between disease presence and the environment can be67

extended across a region of interest. Using these techniques, previous studies of68

Lassa fever (LF) have derived risk maps that classify areas as high or low risk69

[4, 5]. Though useful, these forecasts do not explicitly quantify the spillover rate70

of a pathogen into humans, and, as a consequence, do not reveal the relative71

risk of inter-species pathogen-host transmission. Furthermore, in the case of LF,72

due to modern transportation and the longevity of Lassa virus antibodies in hu-73

mans, a general concern is that the reported location of human disease or Lassa74

virus antibody detection is not the site at which the infection occurred [9–11].75

Herein, we develop a multi-layer machine learning framework that accounts76

for the differences between how data involving a wildlife reservoir, and data77
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from human cases, inform spillover risk in people. Our approach uses machine78

learning algorithms that, when trained on data from the wildlife reservoir alone,79

estimate the likelihood of the reservoir and the zoonotic pathogen being present80

in an area. These predictions are combined into a composite estimate of spillover81

risk to humans. Estimates of human Lassa virus seroprevalence, as well as82

estimates of human population density, are then used to translate the composite83

estimate into a realized rate of zoonotic spillover into humans. We apply our84

framework to Lassa virus (formally Lassa mammarenavirus [LASV]), a negative85

sense, bi-segmented, single-stranded ambisense RNA virus in the Arenaviridae86

family and the causative agent of LF in West Africa [10, 12]. Though LASV can87

transmit directly between humans and often does so in hospital settings [13],88

rodent-to-human transmission is believed to account for the majority of new89

LASV infections [10, 14]. LASV spreads to humans from its primary reservoir,90

the multimammate rat Mastomys natalensis, through food contaminated with91

infected rodent feces and urine, as well as through the hunting of rodents for92

food consumption [15]. Because M. natalensis have limited dispersal relative to93

humans, direct LASV detection in the rodents is likely to indicate actual areas94

of spillover risk.95

We use our model to update estimates of the annual rate of LASV spillover96

into humans. Data from longitudinal serosurveys has been used to estimate97

that between 100000 and 300000 LASV infections occur each year, and that98

between 74 – 94% of LASV infections result in sub-clinical febrile illness or99

are asymptomatic [16]. Though these estimates are often used to describe the100

magnitude of LASV spillover into humans [10, 17, 18], their generality is unclear101

because they are based on extrapolation from serosurveys conducted in the102

1980’s in Sierra Leone [16]. More recent estimates indicate that as many as 13103

million LASV infections may occur each year [19]. Using our machine learning104
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framework to account for data from both rodents and humans, we endeavored105

to refine these estimates of total LASV spillover into humans.106

4 Methods107

We developed a model that predicts the rate of LASV infection in humans108

within individual 0.05◦x0.05◦ areas (i.e., pixels) of a gridded region of West109

Africa. This focal region is chosen as the intersection of West Africa and the110

International Union for Conservation of Nature (IUCN) range map for Mastomys111

natalensis [20]. Our M. natalensis capture data, as well as all of the LASV112

survey data, originate from within this region, thus providing a discrete bound113

on the area of West Africa in which the learned relationships of the model apply.114

Outputs from the model are generated in two stages. The first stage uses115

environmental features to estimate different layers of LASV spillover risk (see116

Appendix for a complete list of environmental variables). The layers of risk, in117

turn, are described by: 1) DM , a classification score indicating the likelihood118

that a pixel contains the primary rodent reservoir, M. natalensis, and 2) DL,119

a score indicating the likelihood that LASV circulates within the M. natalen-120

sis population. Depending on the layer, the response variable for this stage is121

generated from documented occurrences of M. natalensis (DM layer), or evi-122

dence of past LASV infection in M. natalensis (DL layer). More details on the123

data-sets can be found in the Appendix. The second stage of our framework124

uses a generalized linear model to regress the estimates of human LASV sero-125

prevalence onto a composite layer made from DM and DL. Lastly, we used a126

susceptible-infected-recovered model to derive human incidence from the pre-127

dictions of LASV seroprevalence.128
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4.1 LASV risk layers129

Each risk layer of the first stage is generated by a separate boosted classification130

tree (BCT). The BCT, in turn, uses environmental features within a pixel to131

infer a classification score, between zero and one, that indicates how likely it is132

that the pixel is positive for M. natalensis (DM layer) or LASV in M. natalensis133

(DL layer). BCTs use a stage-wise learning algorithm that, at each stage,134

trains a new tree model to the residuals of the current model iteration. Each135

newly fitted tree is added to the ensemble model, thereby reducing the residual136

deviance between the model predictions and a training set [21]. Boosted trees137

are commonly used in species and disease distribution models because they are138

simultaneously resistant to over-fitting in scenarios where many feature variables139

are implemented and are also able to model complex interactions of the features140

[22].141

In the DM layer, fitting the BCT model requires supplementing the presence-142

only data with background points, also called pseudo-absences [23, 24]. Back-143

ground points serve as an estimate of the distribution of sampling effort for144

the organism being modeled [25]. We used background points chosen from145

capture locations of members within the Muridae family (i.e., rodents) in West146

Africa [26]. We only included background points that: 1) document the location147

of a species other than M. natalenis, 2) fall outside of any pixel that contains148

a documented M. natalensis capture, and 3) are within the study region. Be-149

cause our data-set contains locations in which LASV was present in sampled150

M. natalensis populations, as well as locations in which LASV was not found,151

background points were not used in the DL layer. For both layers, each pixel in152

the data-set was assigned a value of zero (for background or survey absences)153

or one (presences). To help the models reliably discriminate between locations154

of presence and absence, each model was fit with an equal number of absences155
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and presences [24].156

For a given training set, we fit the BCT model using the gbm.step function157

of the “dismo” package in the statistical language R [27]. This specific function158

uses 10-fold cross-validation to determine the number of successive trees that159

best model the relationship between response and features without over-fitting160

the data [27]. The learning rate parameter, which determines the weight given to161

each successive tree, was set to small values (DM : 10−2, DL: 10−3) that encour-162

age a final model that is composed of many small incremental improvements.163

A smaller learning rate was used in the DL layer because the corresponding164

data-set was smaller. The parameter that describes the maximum number of165

allowable trees was set to a large value (107) to ensure that the cross-validation166

fitting process was able to add trees until no further improvement occurred [21].167

Each fitted model assigns a score between zero and one that indicates whether168

a given set of environmental features describes a presence or absence. To ensure169

that the relationships the model finds are robust, we bootstrapped the fitting170

procedure 25 times, sampling a different set of training points each time.171

4.2 Connection to human seroprevalence and incidence172

We combined the DM and DL layers into a composite feature, denoted by DX ,173

that is indicative of whether a pixel simultaneously has environmental features174

that are suitable for M. natalensis, as well as LASV in M. natalensis. The175

combined feature is defined as DX = DM × DL and summarizes the realized176

risk of LASV spillover to humans within the local environment.177

To connect the new risk parameter DX to human LASV seroprevalence,178

we assume that the seroprevalence measures that were obtained from histori-179

cal serosurveys describe LASV infection at steady-state (i.e. are unchanging in180

time). We then regressed counts of seropositive humans on the DX layer, as181
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well as an intercept, and included an offset term that accounts for the number182

of individuals tested. We used negative binomial regression because preliminary183

analyses indicated significant over-dispersion of the residuals under Poisson re-184

gression [28].185

Finally, a susceptible-infected-recovered (SIR) model was used to estimate186

the combined number of asymptomatic and symptomatic human LASV infec-187

tions per year (i.e., incidence). This estimate was derived from the predicted188

human LASV seroprevalence described above (details in Appendix). For ref-189

erence, we also calculated human LASV incidence from a simpler null model190

that assumes a spatially homogeneous distribution of seroprevalence. Though191

the epidemiological characteristics of LASV infection in humans are still being192

clarified, at least some longitudinal data indicates that loss of seropositivity193

and subsequent reinfection with LASV is possible [16]. In the SIR setting, this194

implies a nonzero rate of recovered individuals becoming susceptible. We used195

the SIR model to explore the implications of a range of possible seroreversion196

rates on our estimates of LASV incidence. Specifically, we compared the pre-197

dicted incidence of LASV given no seroreversion, to the predicted incidence when198

seroreversion occurs at a rate λ = 0.064 per year, as estimated by McCormick,199

Webb, Krebs (1987).200

5 Results201

5.1 LASV risk layers202

Figure 1a shows each of the fitted risk layers (top row), as well as the com-203

bined layer of realized risk, DX . The risk layers were produced by averaging 25204

bootstrapped predictions. As indicated by the IUCN range map for M. natal-205

ensis [20], all West Africa countries likely harbor this primary rodent reservoir206
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of LASV (Figure 1a). Figure 1b shows the predicted classification score for the207

occurrence of LASV in M. natalensis, averaged over 25 bootstrapped predic-208

tions. Similar to other Lassa risk maps [4, 5], our map indicates that the risk of209

LASV in rodents is primarily concentrated in the eastern and western extremes210

of West Africa. The combined risk, shown in Figure 1c, indicates that environ-211

mental features suitable for rodent-to-human LASV transmission are primarily212

located in Sierra Leone, Guinea, and Nigeria. Regions of central West Africa213

are also at moderate risk.214

(a) (b)

(c)

Figure 1: (a) map shows the likelihood that each 0.05◦ pixel in West Africa con-
tains the primary reservoir of Lassa virus, M. natalensis. Purple dots indicate
locations of captures that were confirmed using molecular techniques and were
used to train the model. Black line indicates the IUCN M. natalensis range
map. (b) predicted distribution of Lassa virus in M. natalensis. Dots indicate
locations in which M. natalensis were surveyed for the virus. (c) combined risk,
defined as the product of the above two layers.
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5.2 Connection to human seroprevalence and incidence215

We found a significant, positive association between the combined LASV risk216

predictor DX , and the human LASV seroprevalence measured in serosurveys217

(p = 0.0145). The fitted model has a McFadden’s pseudo r-squared value of218

0.18, indicating a moderate ability to explain variation in human seroprevalence219

data. By applying the general linear model to the combined LASV risk layer, we220

extrapolate the human LASV seroprevalence across West Africa (Fig 2). Our221

results indicate that human LASV seroprevalence is greatest in the eastern and222

western regions of West Africa, with especially high seroprevalence in central223

Guinea, Sierra Leone, and Nigeria.224

Furthermore, by assuming that our predictions are representative of LASV225

infection at steady-state, we derived the number of LASV cases per year in226

humans (see Appendix for derivation). If the human LASV seroprevalence is227

assumed homogeneous in the study region, and equal to the average seropreva-228

lence across all available serosurveys (18.4%), our model implies 1,380,400 LASV229

infections occur in humans each year. When LASV reinfection (i.e., LASV in-230

fection following seroreversion) is included in the model, the estimate increases231

to 5,797,600 cases per year. In contrast, if LASV seroprevalence in humans232

is spatially heterogeneous, and spatial heterogeneity is described by the LASV233

spillover risk layer DX , our model estimates that 961,300 – 4,037,400 new human234

infections occur each year. Table 1 shows the number of LASV infections per235

year by country, ordered by number of cases, when reinfection is assumed not236

to occur. Inclusion of reinfection does not change the ranking of countries. Our237

results indicate that more than half of new human LASV infections (531,500)238

in West Africa will occur in Nigeria (Fig 3). This distribution of LASV in-239

fection is largely due to the greater population size within Nigeria, as the per240

person incidence rates do not differ dramatically between countries (Table 1).241

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.05.979658doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.979658
http://creativecommons.org/licenses/by-nc-nd/4.0/


After Nigeria, Ghana (73,700 cases per year) and the Ivory Coast (64,400 cases242

per year), respectively, are predicted to have the highest incidence of human243

LASV infections. Guinea and Sierra Leone are predicted to have the highest244

per-capita rates of LASV infection (Table 1), but because of their relatively245

small population sizes, these countries are predicted to have relatively few total246

cases.247

Figure 2: Predicted human seroprevalence of Lassa virus in West Africa, aver-
aged over 25 bootstrap iterations.
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Figure 3: Predicted annual number of Lassa virus infections in humans, aver-
aged over 25 bootstrap iterations. Red areas show regions with high population
density that are also predicted to have high Lassa virus seroprevalence in hu-
mans.

Country 1000’s of Cases Rate
Nigeria 531.5 2.6
Ghana 73.7 2.4

Ivory Coast 64.4 2.5
Niger 55.6 2.4

Burkina Faso 51.5 2.5
Mali 49.3 2.5

Guinea 46.4 3.3
Benin 30.4 2.5

Sierra Leone 22.8 3.2
Togo 20.5 2.5

Liberia 12.8 2.5
Mauritania 1.3 2.4

Senegal 1.1 2.5

Table 1: Predicted annual number of asymptomatic and symptomatic Lassa
virus cases in the study region, as well as infection rate (No. cases per year per
1000 people). Estimates in the table are derived assuming seroreversion and
reinfection do not occur.
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6 Discussion248

Machine learning approaches that forecast the risk of emerging infectious disease249

have shown promise for revealing geographical ranges of emerging pathogens.250

Our forecasting framework ties together data from different aspects of spillover251

risk posed by the primary rodent reservoir of LASV, to the seroprevalence mea-252

sured in human serosurveys across West Africa. Using this approach, we are253

able to generate predictions of the number of new cases of LASV infection within254

different regions of West Africa. Our results indicate that Nigeria contributes255

the greatest number of new human cases each year, and that the magnitude of256

new cases in Nigeria is driven primarily by its greater human population den-257

sity, rather than an increased per-capita risk. If these predictions are correct,258

Nigeria is likely to represent the greatest risk of LASV emergence because the259

large number of annual spillover events allows for extensive sampling of viral260

strain diversity and repeated opportunities for viral adaptation to the human261

populations [29].262

In addition to identifying the countries most at risk for viral emergence, our263

model provides updated estimates for the rate of LASV spillover across West264

Africa. Previous estimates of 100,000 – 300,000 cases per year were based on lon-265

gitudinal studies from communities in Sierra Leone conducted in the 1980’s [16].266

Using seroprevalence data from studies across West Africa, our model predicts267

between 961,300 – 4,037,400 LASV infections in humans occur each year. Where268

the true value lies within this range depends on whether or not seroreversion and269

subsequent LASV reinfection are regular features of human LASV epidemiology,270

and reinforces the need to better understand the scope for LASV reinfection.271

It is important to realize that our predictions include both symptomatic and272

asymptomatic cases. Thus, because many human LASV infections result in mild273

flu-like symptoms or are asymptomatic, it is unsurprising that our predicted val-274
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ues exceed the reported number of confirmed LF cases in Nigeria [30, 31].275

Several factors contribute to the discrepancy between previous estimates276

of LASV spillover, and our revised estimates. McCormick, Webb, and Krebs277

(1987) used seroconversion data from a 15 month period to infer a rate of LASV278

infection across West Africa. However, the population of West Africa has in-279

creased by a factor of 2.4 since that time, making these estimates outdated [32].280

Later estimates that were partially based on the same longitudinal serosurveys281

derived an upper bound of 13 million LASV infections, but only considered the282

number of cases in Nigeria, Guinea, and Sierra Leone [19]. Furthermore, these283

later estimates are derived from the maximum observed human LASV serocon-284

version rate in the Sierra Leone study, which likely does not apply across West285

Africa. In contrast, our estimates are based on human seroprevalence data that286

comes from six countries in West Africa and spans a 35 year time period. Be-287

cause our data-set was obtained from a broader spatial and temporal range, our288

estimates are less likely to be biased by sporadic extremes in LASV spillover.289

By integrating spatial heterogeneity in Lassa risk and human density across290

West Africa our model allows us to predict which countries have the highest291

per-capita risk of LASV infection (e.g., Guinea, Sierra Leone) and those that292

have the highest number of human cases because of their large human popula-293

tion size (e.g., Nigeria). Clarifying and distinguishing these two different types294

of risk helps to plan and manage risk-reduction and behavior-change communi-295

cation campaigns, countermeasures such as rodent population management or296

vaccination of rodent reservoir hosts, and travel advisories to high risk areas.297

In addition to intervention strategies such as vaccination or management of ro-298

dent populations, both of these areas of West Africa should be prioritized for299

surveillance of LASV emergence in rodents and at-risk human populations.300

Our modeling framework has the benefit of being extendable, thereby giving301
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structured insight into how other attributes of LASV risk translate into ob-302

served human seroprevalence. Future iterations of this framework could include303

the contributions of 1) more detailed life history of M. natalensis; 2) additional304

LASV animal reservoirs; and 3) genomic variability in LASV strains. For exam-305

ple, the first stage of these advanced models could include the temporal probabil-306

ity of a rodent being inside a domestic dwelling. The incidence of LF is generally307

believed to peak in the dry season, when M. natalensis migrate into domestic308

settings [33]. Temporal fluctuations in population density, due to seasonal rain-309

fall, would provide another important insight into the seasonal burden of human310

LF cases [10]. Understanding this ecological connection is important because311

distributing vaccines at seasonal population lows in wildlife demographic cycles312

can, in theory, substantially increase the probability of pathogen elimination313

[34, 35]. Incorporating these temporal layers will become more feasible as more314

time-series data on population density in the focal reservoir species becomes315

available.316

Other potentially important risk layers that could be added are geographic317

distributions for other known reservoirs of LASV. Specifically, several species of318

rodents are known to be capable of harboring the virus [36]. Though M. natal-319

ensis is believed to be the primary reservoir that contributes to human infection,320

it is unknown whether this holds across all regions of West Africa. Understand-321

ing the relationship between the habitat suitability of different rodent reservoirs322

and human LF burden may also help determine whether M. natalensis is the323

host at which intervention strategies should always be directed. Finally, addi-324

tional virus sequence data could be used to train a risk layer that forecasts the325

presence or absence of specific genomic variants that are more likely to cause326

either severe disease or more efficient human-to-human transmission cycles.327

Although the methods we have used here make efficient use of available data,328
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the accuracy of our risk forecasts remains difficult to rigorously evaluate due to329

the limited availability of reliable data from human populations across West330

Africa. The sparseness of human data arises for two reasons: 1) the lack of ro-331

bust surveillance and testing across much of the region where LASV is endemic332

and 2) the absence of publicly available databases reporting human cases in those333

countries that do have sophisticated surveillance in place. Improving surveil-334

lance for LASV across West Africa and developing publicly available resources335

for sharing the resulting data would allow more robust risk predictions to be336

developed and facilitate targeting effective risk reducing interventions. Despite337

these limitations of existing data, the structured machine-learning models we338

develop here provide insight into what aspects of environment, reservoir, and339

virus, contribute to spillover, and the potential risk of subsequent emergence340

into the human population. By understanding these connections, we can design341

and deploy more effective intervention and surveillance strategies that work in342

tandem to reduce disease burden and enhance global health security.343
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