
Extreme phenotypes define epigenetic and metabolic      
signatures in cardiometabolic syndrome. 
 
Denis Seyres* 1,2,3, Alessandra Cabassi 4, John Lambourne 1,2,3, Frances Burden 1,2,3, Samantha         
Farrow1,2,3, Harriet McKinney 2, Joana Batista 2, Carly Kempster 2, Maik Pietzner 5, Oliver          

Slingsby6,7, Thong Huy Cao 6,7, Paulene Quinn 6,7, Luca Stefanucci2,3,8, Matthew C Sims 2,3,9,           

Karola Rehnstrom 2, Claire Adams10, Amy Frary 2, Bekir Erguener 11, Roman Kreuzhuber2,12,          

Gabriele Mocciaro 13, Michael Allison14, Simona D’Amore14,15,16, Albert Koulman 5,17,18,19, Luigi         

Grassi 1,2,3, Julian L Griffin13, Leong Loke Ng 6,7, Adrian Park14, David B Savage10, Claudia             

Langenberg5, Christoph Bock11,20,21, Kate Downes 1,2,22, Michele Vacca10,13, Paul DW Kirk* 4,23,          

Mattia Frontini*1,3,8 

 

1. National Institute for Health Research BioResource, Cambridge University Hospitals,          

Cambridge Biomedical Campus, Cambridge, United Kingdom 

2. Department of Haematology, University of Cambridge, Cambridge, Cambridge Biomedical          

Campus, United Kingdom 

3. NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom 

4. MRC Biostatistics Unit, University of Cambridge, Cambridge, Cambridge Biomedical          

Campus, United Kingdom 

5. MRC Epidemiology Unit, University of Cambridge, Cambridge, UK. 

6. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital,          

Leicester, United Kingdom 

7. National Institute for Health Research Leicester Biomedical Research Centre, Glenfield           

Hospital, Leicester, United Kingdom 

8. British Heart Foundation Centre of Excellence,Cambridge Biomedical Campus, United          

Kingdom 

9. Oxford Haemophilia and Thrombosis Centre, Oxford University Hospitals NHS Foundation           

Trust, NIHR Oxford Biomedical Research Centre, Oxford, UK 

10. Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of          

Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK 

11. Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.           

cbock@cemm.oeaw.ac.at. 

12. European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK 

13. Department of Biochemistry and the Cambridge Systems Biology Centre, University of            

Cambridge, The Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK. 

14. Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust,         

Cambridge, United Kingdom 

15. Department of Medicine, Aldo Moro University of Bari, Piazza Giulio Cesare 11, 70124              

Bari, Italy. 

16. National Cancer Research Center, IRCCS Istituto Tumori 'Giovanni Paolo II', Viale Orazio             

Flacco, 65, 70124 Bari, Italy. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.06.961805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.961805


17. MRC Elsie Widdowson Laboratory, Cambridge, United Kingdom. 

18. National Institute for Health Research Biomedical Research Centres Core Nutritional           

Biomarker Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge, United         

Kingdom. 

19. National Institute for Health Research Biomedical Research Centres Core Metabolomics           

and Lipidomics Laboratory, University of Cambridge, Addenbrooke's Hospital, Cambridge,         

United Kingdom. 

20. CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences,             

Vienna, Austria. cbock@cemm.oeaw.ac.at. 

21. Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.           

cbock@cemm.oeaw.ac.at. 

22. East Midlands and East of England Genomic Laboratory Hub, Cambridge University            

Hospitals NHS Foundation Trust, Cambridge, UK 

23. Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey           

Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge,         

Puddicombe Way, Cambridge CB2 0AW, UK 

 

*To whom correspondence should be addressed. E-mail: Denis Seyres:         

ds777@medschl.cam.ac.uk, Paul DW Kirk: paul.kirk@mrc-bsu.cam.ac.uk, Matia Frontini:       

mf471@cam.ac.uk 

Abstract 
Providing a molecular characterisation of cardiometabolic syndrome (CMS) could         

improve our understanding of its pathogenesis and pathophysiology, and provide a           

step toward the development of better treatments. To this end, we performed a deep              

phenotyping analysis of 185 blood donors, 10 obese, and 10 lipodystrophy patients.            

We analysed transcriptomes and epigenomes of monocytes, neutrophils,        

macrophages and platelets. Additionally, plasma metabolites including lipids and         

biochemistry measurements were quantified.  

Multi-omics integration of this data allowed us to identify combinations of features            

related to patient status and to order the donor population according to their             

molecular similarity to patients. We also performed differential analyses on          

epigenomic, transcriptomic and plasma proteomic data collected from obese         

individuals before and six months after bariatric surgery. These analyses revealed a            

pattern of abnormal activation of immune cells in obese individuals and lipodystrophy            

patients, which was partially reverted six months after bariatric surgery.  
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Introduction 

Cardiovascular disease (CVD) is the primary cause of death worldwide (17.9 million            

deaths in 2016, 31% of all deaths) 1 and the ever increasing number of overweight or               

obese individuals places a burden of hundreds of billions of dollars on healthcare             

systems each year 2,3. Risk for CVD and type 2 diabetes (T2D) onset is increased by               

cardiometabolic syndrome (CMS) 4, a cluster of interrelated abnormalities (obesity,         

dyslipidemia, hyperglycemia, hypertension and non-alcoholic fatty liver disease5).        

These abnormalities have overlapping components which include abdominal obesity,         

high triglycerides, high LDL cholesterol, high fasting blood glucose, elevated blood           

pressure, decreased HDL cholesterol and low-grade inflammation6–8. Evidence of         

increased prevalence of peripheral vascular diseases, coronary artery disease9 and          

myocardial infarctions as well as cerebro-vascular arterial diseases and stroke 10 in           

individuals developing CMS has also been shown11. The therapeutic approaches to           

mitigate their effect include weight loss strategies 12, lipid lowering drugs 13, antiplatelet           

therapies14, glucose lowering medications15,16 and anti-inflammatory therapies17.       

Several criteria to evaluate CVD risk have appeared based on different parameters            

and are recommended by several organisations: National Cholesterol Education         

Program and Adult Treatment Panel III (NCEP/ATPIII), world health organization          

(WHO), American Association of Clinical Endocrinologists (AACE) and International         

Diabetes Foundation (IDF)18. Additionally, indexes based on insulin and fasting          

glucose (Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) 19) or free          

fatty acid and insulin (Adipose Tissue Insulin Resistance (AT-IR)20) indexes are used            

to evaluate insulin resistance. Fatty liver index21 and FIB-4 score 22 are used to             

evaluate liver health and several scores such as Framingham CVD score 23, JBS3            

CVD score and QRisk2 score 24 have been proposed to evaluate lifetime           

cardiovascular risk.  

The relationship between cardiometabolic health and body weight is complex25.          

Several studies have found that CVD risk varies between individuals of similar body             

mass index (BMI) and depends also on fat distribution and metabolic profile26–30.            

Adipose tissue (AT) plays a major role in metabolic disorders. AT acts as an active               
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endocrine organ31,32: it secretes lipids, adipokines and other metabolites and is           

central in whole-body homeostasis. Pathological AT remodelling (such as hypo or           

hypertrophia) causes hypoxia, fibrosis and low-grade inflammation33. The latter is          

accompanied by the production of cytokines and other pro-inflammatory signals34,35,          

which triggers pro-inflammatory responses of immune cells 31. Pathological AT is          

involved in cardiometabolic impairment36–39 and is an important mechanism for the           

adverse effects of adiposity on the vessel wall40. Whilst the participation of platelets             

and neutrophils in thrombosis and of macrophages in plaque formation are well            

established41–43, their role in the atherogenesis and CVD has begun to be            

appreciated only recently 44. As a consequence, macrophage recruitment in the AT is            

observed45, as well as changes in the ratio of pro-inflammatory and anti-inflammatory            

macrophages (M1 and M2, respectively)46. Furthermore, prolonged exposure to         

low-grade inflammation modifies cell functional phenotypes in monocytes, an effect          

named trained immunity 47, in platelets 48,49 and neutrophils50,51.  

Here, we present the results of applying multi-omic data integration approach to            

characterise the molecular hallmarks of CMS. We performed a deep phenotyping           

analysis of 185 blood donors, 10 obese, and 10 lipodystrophy patients.           

Lipodystrophy comprises heterogeneous disorders characterized by loss of fat                 

tissue, mainly from subcutaneous compartment and occasionally affecting visceral                 

fat which can be partial, localized, or generalized52. A generalized fat loss also leads                           

to metabolic disorders, including insulin resistance, T2D, hyperlipemia and hepatic                   

disease such as nonalcoholic fatty liver disease (NAFLD)53. Our group of                     

lipodystrophy patients have all inherited familial partial lipodystrophy: 2 had a                     

mutation in Peroxisome proliferator-activated receptor gamma (PPAR-γ) gene and 8                   

in Lamin A/C (LMNA) gene. The data sources included: (i) plasma biochemistry,                       

metabolomic and lipidomic; (ii) transcriptomic data from platelets, neutrophils,                 

monocytes and macrophages; (iii) active chromatin as measured by histone 3 lysine                   

27 acetylation (H3K27ac) in neutrophils, monocytes and macrophages); and (iv)          

DNA methylation by reduced representation bisulfite sequencing (RRBS) and         

Illumina HumanMethylation450 BeadChip in neutrophils, monocytes and       

macrophages. We used penalised logistic regression to define disease signatures          

comprising features from multiple layers of molecular data, which enabled individuals           
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with extreme phenotypes (obese referred for bariatric surgery and lipodystrophy          

patients) to be discriminated from lean, metabolically healthy individuals. Predictions          

made using the disease signatures were generally in good agreement with           

predictions made on the basis of plasma biochemistry markers only, although there            

was stark disagreement for some individuals. The approach was validated by           

training our classifier using data from one patient group, and making predictions for             

the other group. Moreover, we found that features identified in the lipidomic layer             

were associated with known risk factors in a large independent cohort. 

As a result of our integrative approach, we also obtained the molecular signatures at              

transcriptional, chromatin (H3K27ac), and DNA methylation levels. These helped to          

shed light on the molecular events that determine the changes in the functional             

phenotypes of platelet, neutrophils, monocytes and macrophages.  

Our approach was deployed to characterise the same individuals six months after            

bariatric surgery which is an effective therapy to reduce weight and improve            

wellbeing for morbidly obese individuals54,55. Major benefits are a substantial weight           

loss in the first year following the intervention, with maximum loss reached around             

6-8 months after surgery 56, and improvement of several clinical parameters (HbA1c,           

glucose and cholesterol levels, insulin resistance, and modulations of gut          

hormones57). It has also been shown that bariatric surgery modifies metabolite           

abundance in the first year following surgery 58. Moreover, bariatric surgery has been            

shown to affect DNA methylation patterns and gene expression59. Additionally, to           

reduce stomach size, bariatric surgery also reduces inflammatory markers 60,61. We          

investigated and determined the changes that occur in the neutrophils, monocytes,           

macrophages and platelets. While the gene expression showed dramatic changes,          

especially in neutrophils and platelets more modest differences were observed in           

regulatory elements and almost none in methylation profiles. Plasma proteome          

analysis allowed us to have some insight on the changes in other tissues and organs               

whilst neutrophils and platelets cell function assays results indicated reduced ability           

to adhere, the key initial step for their activation. 
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Results 
Metabolic signatures in obese individuals and lipodystrophy patients. 

To determine the metabolic health of the different groups, we collected           

anthropometric characteristics: age and body weight (BW) and performed plasma          

biochemistry assays for the following: leptin, adiponectin, insulin, free fatty acids           

(FFA), glucose (GLC), triglycerides (TG), total cholesterol (TC), high density          

lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL-C)), activity of alanine         

and aspartate amino-transferases (ALT and AST, respectively) and high-sensitivity         

C-reactive Protein (hsCRP). Additionally, we computed leptin-adiponectin ratio        

(LAR), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) and         

adipose tissue insulin resistance (AT-IR) indexes ( Table 1; Table S1). To investigate            

the combination of these parameters, we performed a principal component analysis           

(PCA) to reduce a large set of variables into a smaller set that still contains most of                 

the information of the larger set. PCA showed that obese and lipodystrophy patients             

and WP10 individuals are distributed over distinct but partially spanning          

dimensions(Fig. 1A ). The first two components (PC1 and PC2) distinguished well           

the different groups; in particular obese individuals were separated from WP10           

participants along PC1 and lipodystrophy patients were separated from WP10          

participants along PC2. Analysis of loading and contribution for each parameter           

analysed ( Fig. 1B) indicated that weight contributed to both global variance (59.2%,            

Fig. 1B color scale) and to PC1 ( Fig. 1B, arrow length and direction), as expected,               

followed by AGE (12.6%), LAR (7.4%) and HOMA-IR score (5.8%). ALT and AST             

explained most of the variance along PC2 (45.6% and 29.8% respectively), followed            

by HOMA-IR (8.6%) and AT-IR (4.2%) indexes, AGE (1.6%) and GLC (2.7%).            

Obesity has been shown to have a profound impact on plasma metabolites62,63.            

Previous studies have also shown that metabolite patterns were affected in patients            

suffering from lipodystrophy64,65. To determine which metabolites were present, all          

plasma samples were analysed on the Metabolon platform (Material and Methods).           

This led to the identification and quantification of 988 metabolites. To identify and             

characterise groups of metabolites whose levels were correlated across samples, we  
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WP10 

(n=185) 

Lipodystrophy 

(n=10) 
Obese  

(n=10) 
Post surgery 

(n=10) 

ALT (U/L) 34.5 (12) 56 (11.5) 35.7 (11.5) 36.1 (10.5) 

AST (U/L) 25.5 (7) 39 (15.5) 22.6 (3.5) 18.9 (5) 

hsCRP (mg/L) 1.9 (2) 2.3 (2.4) 7.3 (5.7) 2.9 (0.65) 

Insulin (pmol/L) 118.4 (101) 261.7 (198.5) 190.6 (95.2) 178.7 (58.8) 

GLC (mmol/L) 5.4 (1) 8.2 (6.3) 5.3 (0.6) 5.3 (0.95) 

Leptin (ng/ml) 14.2 (13.4) 7.5 (7.9) 74.1 (21.2) 29.9 (23.4) 

Adiponectin (µg/ml) 10.1 (5.6) 3.2 (1.6) 5.9 (2.1) 6.4 (2.3) 

FFA (µmol/L) 189.3 (154.5) 259.6 (273.3) 293.2 (143.9) 232.2 (235.3) 

TG (mmol/L) 1.5 (1) 5.6 (7.8) 1.8 (0.7) 1 (0.3) 

HDL-C (mmol/L) 1.5 (0.6) 0.8 (1) 1.2 (0.2) 1.3 (0.3) 

LDL-C (mmol/L) 2.9 (1.1) 1.7 (0.5) 2.4 (0.9) 2.5 (1) 

TC (mmol/L) 5.2 (1.5) 4.2 (1.6) 4.1 (1.3) 4.5 (1.1) 

BW (kg) 76 (18.8) NA 138 (33.5) NA 

BMI (kg/m 2) 26.3 (5) NA 45 (3.25) NA 

AGE(years) 57.2 (15) 43.2 (6) 46.3 (16) 44.4 (21) 

LAR 1.7 (1.6) 2.2 (1.4) 13.7 (6.8) 5.5 (5.6) 

HOMA-IR 4.2 (3.6) 13 (17) 7 (3.9) 8.6 (1.9) 

AT-IR 2.5 (2.3) 8.4 (9.4) 7.1 (2.7) 4.7 (5.2) 

 
Table 1 - Summary table of anthropometric and biochemical parameters.  

 

performed a weighted co-expression network consensus analysis (WGCNA) 66. Using         

the entire dataset, we identified 16 consensus modules (M1 to M16; Table S2 ). We              

did not identify a significant enrichment for a specific biological pathway for any of              
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these modules. Next, we determined if there were any associations between these            

modules and the results of the plasma biochemistry assays. Of the 208 tested             

associations, 11 showed significant correlation with the results of the plasma           

biochemistry assays in the combined patient group (FDR adjusted Fisher p values <             

5%; 6 were positively correlated, 5 were negatively correlated; Fig. 1C ) and 51             

showed correlation with the results of the plasma biochemistry assays in the WP10             

cohort (FDR adjusted Fisher p values < 5%; 27 were positively correlated, 24 were              

negatively correlated; Fig. 1D ). Of these, 3 were shared: M6 was positively            

correlated with module TG both in patients and donors. whereas module M2 was             

negatively correlated with TG and positively correlated with HDL-C in patients and            

reversely in donors. This suggests that, depending on the individual status, M2            

metabolites participate differently to TG and HDL-C concentrations.  

In order to determine which of these modules could be associated with disease             

status, we analysed the eigen-metabolites adjacencies. Using patient samples,         

consensus modules form two clusters, C1 and C2 ( Fig. 1E). To determine if these              

identify the two groups of patients, we represented the average eigen-metabolite           

value for each cluster together with the PC1 from Fig. 1A . This analysis showed that               

each group of patients could be identified by its distinct metabolic signature ( Fig.             

1F ). The metabolites found in cluster C1 were enriched in the following pathways:             

alanine, aspartate and glutamate metabolism (p value=4.3*10-5; FDR=3*10 -3; Fisher's         

Exact Test), phenylalanine metabolism (p value=2*10-2; FDR=3*10 -2), nitrogen        

metabolism (p value=9.5*10-5; FDR=3*10 -3), aminoacyl-tRNA biosynthesis (p       

value=2.3*10-4; FDR=6*10 -3) and citrate cycle (TCA cycle; p value=2*10-2;         

FDR=3*10-2). The metabolites found in cluster C2 were enriched in the following            

pathways: aminoacyl-tRNA biosynthesis (p value=1.5*10-4; FDR=1*10 -2), cysteine       

and methionine metabolism (p value=1*10-3; FDR=4*10 -2) and glycine, serine and          

threonine metabolism (p value=3*10-3; FDR=8*10 -2). No pathways were found         

enriched in metabolites forming cluster C3. Cluster C4 metabolites were enriched in            

aminoacyl-tRNA biosynthesis (p value=6.8*10-11; FDR=5.4*10 -9), nitrogen      

metabolism (p value=2.6*10-6; FDR=1*10 -4), alanine, aspartate and glutamate        

metabolism (p value=8.6*10-5; FDR=2*10 -3), glycine, serine and threonine        

metabolism (p value=7.8*10-4; FDR=1.5*10 -2), phenylalanine, tyrosine and       
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tryptophan biosynthesis (p value=1*10-3; FDR=2.4*10 -2) and phenylalanine       

metabolism (p value=3*10-3; FDR=4*10 -2). When the same pathway was found          

enriched, i.e. aminoacyl-tRNA biosynthesis or glycine, serine and threonine         

metabolism, it was due to different metabolites in the same pathway being found in              

different clusters ( Fig. S1C ). Moreover, clusters C1 and C2 were more patient            

specific compared to the two clusters that we observed within WP10 donors            

adjacencies heatmap, C3 and C4 ( Fig. S1A). These two clusters were defined by             

different metabolites and were unable to discriminate between obese and          

lipodystrophy patients ( Fig. S1B). Of the 37 metabolites associated previously          

associated with BMI63, 15 were found to overlap with cluster C1 (p value=0.001;             

hypergeometric test). These belong to modules: M1 (Carnitine, Glycine, Tyrosine,          

Asparagine, N-acetylglycine, Kynurenine and Gamma-glutamyltyrosine), M7      

(1-Eicosadienoylglycerophosphocholine), M9 (3-methyl-2-oxobutyrate, Lactate,    

4-methyl-2-oxopentanoate, Hexanoylcarnitine, Propionylcarnitine and    

3-methyl-2-oxovalerate) and M14 (Phenylalanine and Histidine). The only        

phenotypical association was found in module M1, the one having with the largest             

number of components shared between C1 and C4 was LDL-C (p value=0.02 and p              

value=0.01; Fisher's exact test; Fig. 1C and Fig.1D ). However, M1 was negatively            

correlated with LDL-C in patients whereas, in WP10 donors, it was positively            

correlated with it. In summary, analysis of serum metabolites abundance revealed           

distinct clusters identifying patient groups, as well as, biological pathways known to            

be associated with AT dysfunction in individuals having high CMS risk. 

Transcriptional and epigenetic signatures in obese and lipodystrophy patients 
for 3 innate immune cell types and platelets. 

Next, we sought to determine if the metabolic changes observed in plasma were             

accompanied by changes in the transcriptional and epigenetic signatures of innate           

immune cells (neutrophils, monocytes macrophages) and platelets ( Fig. 2A). We          

characterised the transcriptome by ribo depleted RNA-sequencing (RNA-seq), the         

genome-wide distribution of histone 3 lysine 27 acetylation (H3K27ac), a marker of            

active promoters and transcriptional enhancers, by chromatin immunoprecipitation        

(CHIP-seq) and DNA methylation by reduced representation bisulfite sequencing         
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(RRBS). First, we determined which, amongst the volunteers recruited as controls,           

were the metabolically healthy individuals (hereafter lean, selected using the          

following parameters: BMI < 25, glycaemia (GLC) <5.4 mmol/L, TG <1.7 mmol/L,            

LDL-C <2.59 mmol/L, HDL-C >1 mmol/L for men and >1.3 mmol/L for women,             

HOMA-IR score< 2.2) and used these in all the following comparisons (Table S7).  

The comparison between obese and lean individuals ( Fig. 2B) led to the            

identification of 42 genes differentially expressed (DEG) in macrophages (26 up and            

16 down regulated in obese individuals, Table S8 ), 77 in monocytes (55 up and 22               

down regulated, Table S9 ), 38 in neutrophils (13 up and 25 down regulated, Table              

S10 ) and 135 in platelets (92 up and 43 down regulated, Table S11 ); at a FDR                

threshold of 5%. We also identified limited changes in H3K27ac peaks ( Fig. 2B):             

with 299 (298 up and 1 down regulated) differentially acetylated regions (DAcR)            

above 5% FDR in macrophages ( Table S12), 16% of these were located on gene              

promoters or gene body, 31% intergenic and 53% in introns. Only 3 DAcR were              

identified in neutrophils ( Table S13) and none in monocytes. DNA methylation           

analysis found 15 differentially methylated CpG islands (0.5% FDR) in macrophages           

( Table S15 ); 17 in monocytes ( Table S16) and 18 in neutrophils (Table S17).  

The comparison between lipodystrophy patients and lean individuals ( Fig. S2C)          

identified 125 DEG in macrophages (115 up and 10 down regulated in lipodystrophy,             

Table S8 ), 8 in monocytes (2 up and 6 down regulated, Table S9 ) and 5 in                

neutrophils (2 up and 3 down regulated, Table S10 ). No DEG were identified in              

platelets. Few DAcR were observed in macrophages and monocytes: 17 DAcR (1 up             

and 16 down) in the former ( Fig. S2C and Table S12), 1 of these was located on                 

gene promoter, 12 (70)% were intergenic and 4 (23%) in introns and one in the latter                

(down regulated; intergenic). No DAcR were identified in neutrophils. DNA          

methylation analysis found 20 differentially methylated CpG islands in macrophages          

( Table S15); 60 in monocytes ( Table S16) and 44 in neutrophils (Table S17).  

The comparison between obese individual and lipodystrophy patients ( Fig. S2B)          

identified 4 DEG in macrophages (2 up and 2 down regulated in lipodystrophy, Table              

S8 ), 40 in monocytes (22 up and 18 down regulated, Table S9 ), 1 upregulated gene               

each in neutrophils ( Table S10) and in platelets ( Table S11). We observed 1,764             

DAcR in macrophages (all hyper-acetylated in lipodystrophy; Fig. S2B and Table           
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S12), 22% of these were located on gene promoters or gene body, 33% were              

intergenic and 45% in introns. We also observed 1,766 DAcR in monocytes (1,098             

up and 668 down; Fig. S2B and Table S13 ), 38% of these were located on gene                

promoters or gene body, 13% were intergenic and 49% in introns. Of these, only 50               

overlapped with those observed in macrophages. 

In macrophages, DNA methylation analysis found 3 CpG islands differentially          

methylated (2 up and 1 down, Table S15 ), 90 in monocytes (49 up and 41 down,                

Table S16 ) and 3 in neutrophils (1 up and 2 down, Table S17). 

To gain insight into the changes observed in gene expression, we performed            

functional annotation by gene ontology (GO) terms enrichment analysis. In the           

comparison between obese and lean individuals ( Fig. 2C), we found an enrichment            

for GO terms related to phagocytic and degranulation activities, as well as markers             

of cardiometabolic risk in macrophages ( Table S18). In monocytes, down-regulated          

DEG were enriched in GO terms related to programmed cell death and ion             

homeostasis; whereas up-regulated DEG were enriched for GO terms related to           

inflammatory response ( Table S19). In neutrophils, down-regulated DEG showed         

enrichment for GO terms related to vesicle trafficking, protein sulfation and regulation            

of lipid droplet morphology and activity ( Table S20). In platelets, down-regulated           

DEG showed enrichment for GO terms related to cholesterol biosynthesis and           

C-type lectin receptor signaling pathway; whereas up-regulated DEG were enriched          

for GO terms related to bicellular tight junction mechanism and palmitoylation in            

platelet activation and thrombus formation ( Table S21). Genes associated to DAcR           

with an increased acetylation in macrophages showed an enrichment in GO terms            

related to response to inflammation, infection and cell adhesion ( Table S22). No            

functional enrichment was performed for monocytes and neutrophils due to the low            

numbers of genes associated with DAcR.  

 

Multi omic signatures of obesity and partial lipodystrophy and their use in            

prediction of cardiometabolic risk 

Multivariable regression approaches for variable selection have provided an effective          

means to integrate multiple omics layers and elucidate disease signatures67,68. We           

used one such approach to integrate RNAseq H3K27ac histone modification, DNA           
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methylation, metabolic and lipidomic datasets. We identified a training set comprising           

6 donors from the WP10 group with values below this combination of thresholds:             

BMI <25, GLC <5.4 mmol/L, TG <1.7 mmol/L, LDL-C <2.59 mmol/L, HDL-C >1             

mmol/L for men and >1.3 mmol/L for women, HOMA-IR index <2.2, 6 obese             

individuals and 10 lipodystrophy patients for which we had complete measurements           

on all omic data layers, in monocytes and in neutrophils. Using this training set, we               

used elastic net penalised logistic regression to identify putative signatures          

associated with an increased probability of belonging to the obesity and/or           

lipodystrophy groups ( Fig. 3A). The values taken by the variables selected into each             

signature defined patterns characterising the different groups (WP10, all patients,          

obese and lipodystrophy) ( Fig. 3B; Table S33 ). When comparing features selected           

for each comparison, i.e. obese versus lean and lipodystrophy versus lean, 27 genes             

in monocytes (pvalue=1.5*10-26, hypergeometric test) and 6 genes (p value=1*10-3,          

hypergeometric test) in neutrophils were also differentially expressed between obese          

and lean. Two and one selected genes were also differentially expressed between            

lipodystrophy and lean in monocytes and in neutrophils respectively. Genes within           

10 kilobases of a H3K27ac peak or within 10 kilobases of a DNA methylation site               

identified using the variable selection did not return significant enrichment for gene            

ontology terms (above 5% FDR threshold). The variable selection analysis identified           

groups of features that were, together, predictive of patient status, whereas the            

differential analysis identified individual variables that were different between each of           

the patient groups and the lean individuals.  

We used the variables selected for each signature, together with the biometric            

variables, to construct multivariable logistic regression models to predict whether an           

individual was a patient or donor ( Fig. 3C). Although rigorous validation of the full              

predictive model was hampered by a paucity of other cohorts for which multiple             

omics datasets were available, we observed that training the model using just the             

obese and lean groups allowed us to correctly identify the lipodystrophy patients as             

having a CMS profile ( Fig. S3); and vice versa ( Fig. S4). Further validation was              

obtained using the lipidomic layer signature. We identified selected lipids that were            

also measured in two other studies: a subset of 1,507 participants of the Fenland              

study 69 which is a population-based cohort of 12,345 volunteers without diabetes           
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born between 1950 and 1975 and recruited within the Cambridgeshire region           

between 2005 and 2015, and a biopsy-confirmed nonalcoholic steatohepatitis         

(NASH) cohort comprising 42 individuals70. In the Fenland cohort ( Fig. 3D), we found             

TG (52:2) and TG (50:1) to be positively associated with several risks factors, such              

as elevated glycaemia, increased fasting insulin level, HOMA-IR and liver indexes,           

HbA1c, leptin, LDL-C, hsCRP, TG, BMI, fat mass, ALT and ferritin. Conversely, they             

were inversely associated with adiponectin and HDL-C. Except for adiponectin and           

HDL-C, PC (40:7), PC (38:7), PC-O (36:2), PC (38:6) and PC (35:2) were inversely              

associated with all the remaining factors. To assess the specificity of the selected             

lipids, we repeated the analysis with 10 lipids that were not selected into the              

signature ( Fig. 3E). We found far fewer associations were found to be significant.             

We performed the same analysis using data from the NASH cohorts ( Fig. S5), as              

well as data from the present study ( Fig 3F). Although these studies were             

insufficiently powered to allow us to identify significant associations after correcting           

for multiple testing, the effect estimates were similar to those obtained in the Fenland              

study. In summary, we managed to define molecular signatures representing CMS           

abnormalities overlapping components. We next sought if these signatures were          

reversible if obese individuals underwent important surgery which led stomach          

reduction. 

 

Effect of bariatric surgery on transcriptional profile, epigenetic landscape and 
cell functions . 
Bariatric surgery is an effective option for the management of extreme obesity and its              

comorbidities, including CMS risk 71, with well established long term benefits on           

weight loss, diabetes, hypertension and dyslipidemia72. Here, we investigated the          

effects of weight loss by bariatric surgery on the transcriptional and epigenetic            

profiles of innate immune cells and platelets, and on plasma proteins. To this end, a               

second blood sample was obtained six months after bariatric surgery and subjected            

to the same assays. Pairwise comparison of each biochemical parameter showed a            

decrease for LAR, TG, hsCRP, AT-IR and AST and an increase of HDL-C level (p               

values of: 7.22*10-6, 2.63*10 -9, 4.98*10 -4, 2.51*10 -2, 1.48*10 -3 and 1.86*10-3         

respectively ; conditional multiple logistic regression ; Table S1 for other           
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comparisons). We next compared the transcriptional and epigenetic profiles in          

monocytes, neutrophils, macrophages and platelets before and after bariatric         

surgery. We identified, using paired analysis, 713 DEG in macrophages (403 down            

and 310 up regulated; Table S8 ); 2,081 in monocytes (1,204 down and 877 up              

regulated; Table S9 ); 3,564 in neutrophils (2,609 down and 955 up regulated; Table             

S10 ) and 2,741 in platelets (1,159 down and 1,582 up regulated; Table S11 ). No              

DAcR were found in macrophages ( Table S12), 229 in monocytes (139 down and 90              

up regulated; Table S13 ) and 788 in neutrophils (775 down and 13 up regulated;              

Table S14 ). RRBS analysis found 126 differentially methylated CpGs in          

macrophages (69 down and 57 up regulated; Table S15 ); 48 in monocytes (32 down              

and 16 up regulated; Table S16 ) and 55 in neutrophils (44 down and 11 up               

regulated; Table S17 ).  

GO terms enrichment for DEG identified the following processes: ribosome formation           

and translation, platelet activation, fatty acids synthesis, lipids metabolism and          

transport, several immune related pathways ( Table S18, S19, S20 and S21 for            

macrophages, monocytes, neutrophils and platelets, respectively). The results of the          

other possible comparisons ( Fig. S2) are available in Tables S8 to S17 . Next, we              

searched for those genes whose expression changed in obese individuals and           

reverted to the level observed in lean individuals after bariatric surgery. In            

macrophages we found 3 genes that after having been upregulated in obese            

individuals compared to lean individuals, returned to the same expression level after            

weight loss (MCEMP1, PHACTR1 and CTD-2135D7.2; p value=1*10-2,        

hyper-geometric test). In monocytes, we found 7 genes with down-up-down profile           

(CLASP1, ATP11C, RALGAPA2, MTHFD2, GPRIN3, FAM129A and MCTP2; p         

value=1*10-2, hyper-geometric test) and 4 genes with a up-down-up profile          

(HLA-DRB9, RMRP, LINC00899 and APEX1; p value=5*10-2, hyper-geometric test).         

No genes with a down-up-down profile were found in neutrophils and only PCGF6             

was found with a up-down-up profile (p value=9*10-2; hyper-geometric test). In           

platelets we identified 39 genes with a down-up-down profile (C16orf72, G3BP2,           

PJA2, ZBED6, CBL, AKIRIN1, BSDC1, TC2N, FAM122B, SYTL4, ENDOD1,         

LYPLA1, F11R, SSFA2, UBN1, ATP9A, NDST1, DOK2, CLDN10, NUDT3, STIM1,          

GDI1, ST20-AS1, CDS2, LGMN, PROS1, ARF3, GTPBP1, TMPPE, KCMF1,         
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NBPF10, RP11-4O1.2, RP11-755F10.1, DANT2, DPP10, ITGB3, MLEC,       

RP11-667F9.1 and KIAA2012; p value=7*10-19, hyper-geometric test) and 8 genes          

with a up-down-up profile (TM4SF19-AS1, MRAS, CXXC5, CAPG, A2M, CYB5A,          

CD52 and RP11-509J21.2; p value=2*10-3, hyper-geometric test). 

In addition, overlap between DEG and DAcR was found for neutrophils in obese             

versus post surgery (208 genes, p value=4.9*10-30, hyper-geometric test) and lean           

versus post surgery (8 genes, p value=7*10-3, hyper-geometric test). To obtain           

further insight into how bariatric surgery affects gene expression and signaling           

pathways in other tissues and organs, we investigated plasma protein levels before            

and after surgery. We quantified 3,098 plasma proteins; 604 of which were found to              

be differentially abundant (DAP, Fig. 4C and Table S28 ) above ordinal Q-value of             

1*10-3. Proteins whose levels increased after bariatric surgery (72) were enriched in            

GO terms related to tight junction, WNT signalling, PI3K/AKT signalling, and           

sphingolipid signalling. Instead, proteins whose abundance decreased after surgery         

(532) were enriched in the following GO terms: cell cycle and DNA repair, ribosomal              

RNA metabolism and cell senescence, phagocytosis and T cell receptor signalling as            

well as FGF, IL2, VEGF and insulin signaling pathways ( Table S29) in agreement             

with Albrechtsen and colleagues73. Plasma proteins can have different origins; to           

determine if any of the proteins identified could be linked to a specific tissue, we               

curated the GTEx project 74 database to extract tissue specific genes, these range            

from 286 in the heart left ventricle to 1286 in the spleen ( Table S30 and methods).                

Tibial artery, heart atrial appendage and blood display an enrichment of tissue            

specific genes amongst DAP (p values: 2.2*10-2, 2.1*10 -2 and 9*10-2, respectively;           

hyper-geometric test; Table S30 ). Of the 16 blood specific genes that encode for a              

DAP, 7 are also differentially expressed in at least one of the 4 studied cell types                

( Fig. 4D ). SIRPB1, HBA2, ADGRE2 and RAC2 in monocytes, MYO1G in platelets,            

HIST1H3D and HIST1H2BC in neutrophils, monocytes, platelets and macrophages.         

The data generated in monocytes and macrophages also allowed us to explore the             

effect of bariatric surgery on trained innate immunity 75, as it has been shown that              

trained innate immunity could play a role in atherosclerosis76,77. We found two distinct             

overlaps: one (p value 5*10-2; t-test) between the genes associated with the top 500              

regions with a gain in histone 3 lysine 4 trimethylation (H3K4me3) after β -glucan             
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treatment in Quintin and colleagues75 and the DEG found comparing lean individuals            

and obese individuals. The second overlap (p value 2*10-4; t-test) between the            

genes associated with the top 500 regions with a gain in histone 3 lysine 4               

trimethylation (H3K4me3) without treatment and the DEG found comparing obese          

individuals before and after bariatric surgery. All other overlaps were non-significant           

( Table S31).  

We performed functional tests on neutrophils and platelets to determine if the            

changes observed at molecular levels resulted in changes in the functional           

phenotypes of these cells. After bariatric surgery, neutrophils showed a reduction in            

their ability to adhere when unstimulated and when subjected to a variety of stimuli              

(DTT, LBP, PAM3, PAF and fMLP) but not when treated with TNFalpha or PMA.              

These results were accompanied by a reduction in the cell surface levels of CD16              

and CD32 but not CD66b, CD63, CD62L or CD11b (paired t-test, all result in Table               

S32). Alongside, we performed platelet functional tests which showed a reduction in            

P-selectin upon collagen stimulation, but not upon ADP or thrombin stimulations.           

These results were accompanied by a reduction in the cell surface levels of             

fibrinogen receptor (both CD61 and CD41a but not CD41b) and CD36, whereas no             

changes were observed for CD49b, CD42a, CD42b, CD29 and CD9 (paired t-test, all             

result in Table S32).  

Discussion 
Biochemical and Metabolic signatures.  

We considered two groups of patients with extreme phenotypes associated with           

cardiometabolic syndrome. These two groups can be distinguished amongst the          

general population using anthropometric and plasma biochemistry parameters. PCA         

of these parameters showed that obese individuals were separateded along PC1,           

with weight explaining most of the variance. ALT and AST activities explained most             

of the variance along PC2 (45.6% and 29.8% respectively). These transaminases           

are known to be elevated in lipodystrophy patients 78. Some WP10 donors overlapped            

either with obese or lipodystrophy patients (Fig. 1A) due to similarities either in             

weight or plasma biochemistry profile.  
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We used a network-based approach to determine the differences in metabolite           

abundances in the different groups. To increase statistical power, we merged the            

patient groups under the assumption that they share similar associations of           

metabolites and phenotypic traits. In the consensus analysis, we used a           

conservative approach, considering 988 metabolites Of these, 375 were assigned to           

15 different modules and the remaining 613 were put in an ad hoc extra module               

because they did not show any correlation. Analysis of the correlation module matrix             

divided the modules into two different clusters for patients, C1 and C2. Together with              

the analysis performed using the results from PC1, in Fig.1E, we showed that these              

clusters represented each a patient group. However, these separations were based           

on CMS features rather than obesity and lipodystrophy specific features. C1 showed            

an enrichment for modules involved in alanine, aspartate and glutamate metabolism           

known to be associated with NAFLD 79,80, but they also showed enrichment for            

nitrogen and phenylalanine metabolisms, previously described in obesity 81,82. The         

same functional annotations were retrieved in a large study on the effects of bariatric              

surgery on the metabolome83. C2 showed an enrichment for cysteine and methionine            

metabolism, and glycine, serine and threonine metabolism. These have been          

associated with NAFLD 84 and have also been shown to play a role in other CMS               

associated diseases such as obesity and T2D85.  

 

Transcriptional and epigenetic signatures. 
The comparisons between lean/obese and lean/lipodytrophy ( Fig. 2A) found a          

modest number of changes in terms of gene expression, active chromatin and DNA             

methylation ( Table S7), however these were enough to clearly highlight inflammatory           

response and platelet activation related terms in GO enrichment analysis, thus           

confirming that these conditions modify the molecular phenotype of cell types           

involved in the development atherosclerosis and in thrombus formation. Similar          

results have already been reported for blood cells DNA methylation86, while more            

extensive changes have been observed in adipose tissue59.  

The limited changes we observed can be, at least in part, explained by the absence               

of acute challenge when the samples were collected, as previously shown87. The            

largest number of changes observed in active chromatin, DAcR, was found, both in             
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monocytes and in macrophages, in the comparison between obese individuals and           

lipodystrophy patients, where the latter had in excess of 1,700 transcriptional           

enhancers ( Fig. S2B and Table S12). However, this was not associated with            

changes of the same magnitude at transcriptional level, suggesting that the same            

transcriptional output can be achieved with different regulatory landscapes, as          

previously shown88, but also that the same cell types could be primed differently in              

the two groups. 

 

Multi omic signatures 

We used variable selection approaches to identify signatures of disease, which we            

incorporated into a predictive mode. Within-study validation demonstrated the utility          

of the model for out of sample prediction (Fig. S3 and S4). We moreover showed               

that prioritized lipid species are associated with major cardiometabolic risk factors in            

the Fenland study. Among the selected lipids, previous studies have shown PC            

(38:6) to be reduced in models of liver damage, PC (36:2) to be reduced in obese                

mice livers 89, TG (50:1) and TG (52:2) 89 to be a product of de novo lipogenesis               

increased in NAFLD 69 and NASH 70. Although we believe this represents the limits of             

the validation that can be performed using present datasets, we acknowledged that            

further multi-omic studies will be required to evaluate this model in external cohorts 

 
Effect of bariatric surgery. 
We found that bariatric surgery has remodelled plasma biochemistry results. In           

particular, the decrease of TG in obese individuals after bariatric surgery was in             

agreement with what was already shown by Szczuko and colleagues90. TG levels            

were different between lipodystrophy and post surgery groups, but not between           

lipodystrophy and obese groups. Although our results did not establish a direct effect             

of bariatric surgery on lipodystrophy patients, several previous studies have          

demonstrated the beneficial effects of bariatric surgery in lipodystrophy patients with           

BMI < 30 91–95. Furthermore, our results showed that bariatric surgery had an            

profound effect on gene expression and epigenetic profiles of macrophages,          

monocytes, neutrophils, and platelets larger than those observed when comparing          

obese (or lipodystrophy) with lean individuals ( Tables S8 to S17). Although there            
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were genes whose expression levels, after surgery, were indistinguishable from the           

level observed in lean individuals. There were also many more genes whose            

expression levels changed after surgery to assume values not observed before in            

any of the conditions tested. These findings indicated that the reduction in            

inflammatory signatures observed after bariatric surgery in macrophages,        

monocytes, neutrophils, and platelets were due to novel gene expression          

landscapes. Of interest, in these cells we did not observe changes in DNA             

methylation levels of the same magnitude as those observed at gene expression            

level. The short life span of the cell types analysed and the overall small number of                

changes in DNA methylation observed in the different comparison, suggested that           

the changes from a pro-inflammatory to a healthy bone marrow environment had            

little effect on the hematopoietic stem cell epigenome. Plasma proteomic allowed us            

to obtain a whole body snapshot of the changes that occur after surgery. The              

majority of the changes were in proteins whose level decreased after surgery (532             

out of 605; Table S28 ). These showed that the effect of the surgery inflammatory              

response (including NLRP3), insulin signalling, WNT signalling, VEGF signalling         

were reduced because of the reduction in fat mass but also vascular integrity was              

restored, as confirmed by the tissue specificity analysis that identified amongst           

others artery and blood as the sources of production of the reduced plasma proteins              

( Table S29).  

Interestingly, we also observed that genes previously been implicated in trained           

immunity 75, a phenomenon associated with innate cells response to stimuli and also            

atherosclerosis96, were found in the comparison between obese and lean individuals.           

However, post surgery we observed that many of the changes involved genes that             

belonged to the non-challenged set75, suggesting that bariatric surgery had a positive            

impact on innate immune cells or that trained immunity acted downstream the            

hematopoietic stem cell pool and its effects were eventually diluted and lost. Lastly,             

the transcriptional events were accompanied by a decrease in adhesion observed in            

platelets and neutrophils. This could be due to a diminution of proinflammatory            

signals in the cell environment and would result in a diminished propensity to form a               

thrombus. 
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Conclusion 

 
Our study provided a comprehensive overview of the transcriptional and epigenetics           

features associated with CMS in 3 immune cell types ( monocytes, neutrophils and             

macrophages) and platelets. The integration of multiple -omics data layers allowed           

us to extract relevant features discriminating between patients and donors, and to            

construct a predictive model that we used to rank individuals by their likelihood of              

being a patient. Analysis of -omics data in obese individuals before and six months              

after bariatric surgery revealed deep rewiring of both transcriptional and epigenetic           

networks. Only a small proportion of the rewired features were already associated            

with obesity, suggesting that bariatric surgery does not revert the organism to the             

lean status but it creates a new status with low inflammation and low thrombotic              

propensity. Greater understanding of this impact will be required in order to optimize             

patient support after surgery.  
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Legends. 
 

Table 1 - Summary table of anthropometric and biochemical parameters.          

Average values are reported and interquartile ranges are given in brackets. BW:            

Body weight; FFA: free fatty acid; GLC: Glucose; TG: serum lipid profiles            

(triglycerides); TC: total cholesterol; HDL-C: high density lipoprotein; LDL-C:         

low-density lipoprotein; ALT: alanine amino-transferases; AST: aspartate       

amino-transferases; hsCRP: high-sensitivity C-reactive Protein ; LAR:       

leptin-adiponectin ratio; HOMA-IR: Homeostatic Model Assessment for Insulin        

Resistance; AT-IR: adipose tissue insulin resistance; BMI: body mass index 

 

Figure legends. 

 

Figure 1 - High cardiovascular risk groups characterisation using         

anthropometric, biochemical and metabolic profiles. A . Principal component        

analysis (PCA) of 3 groups: obese (BMI>40), green; lipodystrophy, blue; and blood            

donors (WP10), light red. PCA was performed using the parameters below. B.            

Representation of PCA loadings on: age, weight (BW), body mass index (BMI),            

leptin-adiponectin ratio (LAR), glucose (GLC), triglycerides (TG), total cholesterol         

(TC), high density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), alanine         

amino-transferase (ALT), aspartate amino-transferase (AST), Homeostatic Model       

Assessment for Insulin Resistance (HOMA-IR) and adipose tissue insulin resistance          

(AT-IR) indexes and high-sensitivity C-reactive Protein (hsCRP). Colour and arrow          

length scale represent contribution to variance on the first two principal components.            

C . Metabolite module-trait associations using weighted Gene Correlation Network         

Analysis (WGCNA) consensus analysis and 988 metabolites (Metabolon). Each row          
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corresponds to a module eigen-metabolites (ME), and each column to a parameter.            

Number of metabolites in each module is indicated in brackets. Cell colour            

represents Pearson’s correlation as shown by legend. Significance is annotated as           

follows: * P≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 (Fisher’s test). Red                   

stars indicate module-trait associations found to be significant in both groups. Left            

panel shows eigen-metabolites values in patients whereas the right panel shows the            

values in donors. D. Heatmap of patients’ eigen-metabolites adjacencies in the           

consensus eigen-metabolites network. Each row and column corresponds to one          

eigen-metabolite (labeled by consensus module color). The heatmap is color-coded          

by adjacency, yellow indicating high adjacency (positive correlation) and blue low           

adjacency (negative correlation) as shown by the color legend. E. Beeswarm plot            

using average eigen-metabolites per cluster. Shapes indicate cohorts and color          

legend represents the first principal component value extracted from the plot in 1A. 

Figure 2 - Transcriptional and epigenetic comparison of obese and          

lipodystrophy patients versus lean individuals in 3 immune cell types and           

platelets. A. Schematic overview of the comparisons made in the 4 different cell             

types (Monocytes: blue ; Neutrophils: green ; Macrophages: purple ; Platelets:           

yellow). B . Barplot showing number of features significantly different when          

comparing lean individuals and obese individuals in H3K27ac distribution         

(ChIP-seq), gene expression (RNA-seq) and DNA methylation (RRBS). Each bar is           

color coded to represent the different cell types as in A. C. Annotation of              

down-regulated genes in obese individuals compared to lean individuals, colour          

coded by cell types as above. Annotation source is indicated in brackets. The             

numbers near each dot indicate, from left to right: number of submitted genes,             

number of genes overlapping with the category and number of genes in the             

category. D . Annotation of up-regulated genes in obese individuals compared to lean            

individuals colored per cell types. Annotation source is indicated in brackets. The            

numbers near each dot indicate, from left to right: number of submitted genes,             

number of genes overlapping with the category and number of genes in the             

category. 

Figure 3 - Multi omics integration strategy and signature identification . A.            

Presentation of the different layers used for multi omic integration, the strategy            
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leading to signature identification and schematic view of WP10 stratification. B.           

Heatmap showing the mean of the Z-score distribution for each group, for all             

features selected in each layer. C. Left: Heatmap representing Z-score values for 8             

top ranked lipids (columns) and all individuals ranked by the probability of being a              

patient according to the multi omic model (rows). Gaps indicate individuals for whom             

lipid data were not collected. Right: Heatmap representing Z-score values for clinical            

parameters (columns) for all individuals (rows). D. Heatmap showing age and sex            

adjusted association values between 8 previously selected lipids matching quantified          

lipids in Fenland cohort and Fenland outcome parameters. Black frames indicate           

significant associations after correcting for multiple testing (p<0.000125). E. As left,           

but for 10 lipids not selected in our analyses F. As D, but using lipid and outcome                 

data from the present study.  

Figure 4 - Effect of bariatric surgery at molecular level in 3 immune cell types               

and platelets. A. Biochemical values distribution accross the four studied groups:           

obese (BMI>40) (dark green); lipodystrophy (blue); blood donors (WP10) (light red);           

and post bariatric surgery patients (light green). Asterisks indicate result of           

significance from multiple logistic regression models and conditional multiple logistic          

regression for obese and post surgery comparison. Significance is annotated as           

follows: * P≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. B. Barplot showing                   

number of features significantly different when comparing the same individuals          

before and after bariatric surgery colored by cell types. C .Volcano plot showing             

differentially abundant plasma proteins when comparing obese individuals before         

and after bariatric surgery. Whole blood specific genes associated with differentially           

abundant proteins have been annotated. D . RNAseq expression in the 4 different cell             

types of highlighted proteins in C). Asterisks indicate if the gene was differentially             

expressed genes in at least one cell type. E. Adhesion percentage of neutrophils             

measured in the presence of different pro-inflammatory molecules in obese (dark           

green) individuals and six months after bariatric surgery (light green). Asterisks           

indicate the result of significance from paired t-test. Significance is annotated as            

follows: * P≤ 0.05, ** P ≤ 0.01. 
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Supplemental figure 1 - WGCNA analysis with WP10 donors metabolite values           

and cluster functional annotation. A. Heatmap of WP10 donors eigen-metabolites          

adjacencies in the consensus eigen-metabolites network. Each row and column          

corresponds to one eigen-metabolite (labeled by consensus module color). The          

heatmap is color-coded by adjacency, yellow indicating high adjacency (positive          

correlation) and blue low adjacency (negative correlation) as shown by the color            

legend. B. Beeswarm plot using average eigen-metabolites per cluster. Shapes          

indicate cohorts and color legend represents the first principal component value           

extracted from the plot in Figure 1A. C. Functional annotation of cluster C1, C2 and               

C4. Heatmap shows normalised abundance of metabolites belonging to each          

functional category.  

 

Supplemental figure 2 - Summary plots of different feature numbers in all            

comparisons. Barplots showing the number of features significantly different for          

each comparison in H3K27ac distribution (ChIP-seq), gene expression (RNA-seq)         

and DNA methylation (RRBS). Each bar is color coded to represent the different cell              

types. 

 

Supplemental figure 3 - Model built with obese individuals discriminated          

between lipodystrophy patients and donors. A. Heatmap showing the mean of           

the Z-score distribution for each group, for all features selected in each layer. B. Left:               

Heatmap representing Z-score values for 8 top ranked lipids (columns) and all            

individuals ranked according to the multi omic model probability of being an obese             

individual (rows). Gaps indicate individuals for whom lipid data were not collected.            

Right: Heatmap representing Z-score values for clinical parameters (columns) for all           

individuals (rows). 

 

Supplemental figure 4 - Model built with lipodystrophy patients discriminated          

between obese individuals and donors. A . Heatmap showing the mean of the            

Z-score distribution for each group, for all features selected in each layer. B. Left:              

Heatmap representing Z-score values for 8 top ranked lipids (columns) and all            

individuals ranked according to the multi omic model probability of being a            
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lipodystrophy patient (rows). Gaps indicate individuals for whom lipid data were not            

collected. Right: Heatmap representing Z-score values for clinical parameters         

(columns) for all individuals (rows). 

 

Supplemental figure 5 - Association of selected lipids with NASH cohort           

outcomes. Left: Heatmap showing age and sex corrected association values          

between 8 selected lipids matching quantified lipids in NASH cohort and NASH            

outcome parameters. Right: As left, but for 10 lipids not selected in our analyses. 

Material and methods 
 
Raw sequencing datasets are available under EGA study EGAS00001003780.  

Code produced for this study is available at        

https://gitlab.com/dseyres/extremephenotype. 

Patients recruitment and ethics 
Obese individuals referred for obese surgery by the obesity clinic and lipodystrophy            

patient cared for by the National Severe Insulin Resistance Service respectively,           

both based at Addenbrooke’s hospital, Cambridge University Hospitals were         

recruited to this study together with healthy individuals. Informed consent was           

obtained under the “Inherited Platelet Disorders” ethics (REC approval 10/H0304/66          

for patients and 10/H0304/65 for healthy controls, NRES Committee East of           

England-Cambridge East). 

BluePrint WP10 volunteers were recruited amongst NHS Blood and Transplant          

donors after informed consent under the “A Blueprint of Blood Cells” ethical approval             

(REC approval 12/EE/0040 NRES Committee East of England-Hertfordshire).  

Cell types isolation 
Whole blood (50ml) in citrate tubes was obtained after informed consent. Platelet            

rich plasma (PRP) was separated from the cellular fraction by centrifugation (20’,            

150g and very gentle break). Platelets then isolated from PRP after 2 more spins as               

above and leukodepleted using anti CD45 Dynabeads (Thermofisher) following the          
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manufacturer's instructions. Purified platelets were stored in TRIzol (Invitrogen) until          

RNA extraction. The remaining cells were resuspended in buffer 1 and separated on             

a Percoll gradient. Neutrophils were harvested from the pellet after red cell lysis             

(4.15 g NH4Cl, 0.5 g KHCO3 and 18.5 mg EDTA (triplex III, 0.01%) in 500 ml of                 

water) and aliquots prepared for RNA extraction (TRIzol), DNA extraction for RRBS            

(snap frozen pellet) and ChIP-seq (formaldehyde fixation, see below). Monocytes          

were isolated from peripheral blood mononuclear cells (PBMC) layer by CD14           

positive selection (Miltenyi) and aliquots prepared for RNA extraction (TRIzol), DNA           

extraction for RRBS (snap frozen pellet) and ChIP-seq (formaldehyde fixation, see           

below). Macrophages were cultured by plating 14*106 PBMC resuspended in 2 ml            

macrophage media (Macrophage-SFM [with L-Glutamine without Antibiotics], Fisher        

Scientific UK LTD). After 1h 30’ non adherent cells were removed and 1 ml fresh               

macrophage media added together with 400 𝜇l of autologous serum. Culture media            

was replaced after 3 or 4 days. On day 7 cells were harvested for RNA extraction                

(TRIzol), DNA extraction for RRBS (snap frozen pellet) and ChIP-seq (formaldehyde           

fixation). Cell purity was determined by flow cytometry as follows: neutrophils CD66b            

(BIRMA17c, FITC, 9453 https://ibgrl.blood.co.uk/), CD16 (VEP13, PE, 130-091-245        

Miltenyi) and CD45 (HI30, PE-CY5.5, MHCD4518 Invitrogen); monocytes CD14         

(MφP9, FITC, 345784 BD), CD16 (B73.1 / leu11c, PE, 332779 BD), CD64 (10.1, 

PerCP-Cy5.5, 561194 BD), CD45 (HI30, PE-CY7, MHCD4512 Invitrogen);        

macrophages panel (only done for WP10 donors) 1: CCR7/CD197 (150503, FITC           

561271 BD), CD25-PE MACS 120-001-311 (10ul/test), CD14 (TuK4, PE-Cy5.5,         

MHCD1418 Invitrogen), CD40 (5C3, PE-Cy7, 561215 BD). Panel 2: CD206 (19.2,           

PE, 555954 BD), CD36 (SM𝜱, FITC, 9605-02 Southern Biotech), CD45 (HI30,           

PE-Cy5.5, MHCD4518 Invitrogen). Samples whose purity was below 90% were          

discarded. WP10 samples isolation has been extensively described in Chen et           

al.{27863251}. 

RNA sequencing  
RNA extraction 

RNA extraction from samples stored in TRIzol was performed following the           

manufacturer's instructions. Briefly, tubes were retrieved in small batches and          
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thawed on ice. Prior to extraction samples were vortexed for 30” to ensure complete              

lysis and let for 5’ at room temperature. Samples were then transferred to heavy              

phase lock tubes (5prime), chloroform was added and the tubes spun to separate             

RNA in the aqueous phase from the organic phase. RNA was precipitated from the              

former with isopropanol and glycogen. The RNA pellet was washed with 75%            

ethanol and resuspended in RNase free water. Purified RNA was stored in single             

use aliquots. Each sample was quality controlled by Bioanalayser (Agilent) and           

quantified via Qubit (Thermofisher).  

 

Library preparation and sequencing 

For cell types isolated from obese and lipodystrophy patients and day controls we             

used 100 ng total RNA for neutrophils, monocytes and macrophages; 200 ng total             

RNA for platelets to prepare libraries for sequencing using the Kapa stranded            

RNA-seq kit with riboerase (Roche) according to the manufacturer's instructions and           

sequenced 150bp paired end on Illumina HiSeq 2500 or Illumina HiSeq 4000.            

WP10 RNA-seq data (extensively described in Chen et al. 75,97) were retrieved from            

European Genome-phenome Archive (EGA) - EMBL-EBI after application to the          

Data Access Committee.  

 

Quantification 

FastQ files were first checked for sequencing quality using FastQC (v.0.11.2)           

[https://www.bioinformatics.babraham.ac.uk/projects/fastqc/] and quality trimming    

were applied on reads with TrimGalore! (v.0.3.7)       

[https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/].  

Transcript-level abundance was estimated using Kallisto (v0.42) 98 with 100 bootstrap          

iterations in single-end mode for patients samples in order to minimize technical            

batch effect with WP10 donors cohort. Transcript abundances were then          

summarized to gene-level with Tximport R package (v1.9) 99 by using tximport           

function and Ensembl reference transcriptome (Ensembl Genes 96) 99,100. This step          

provides input counts matrix for DESeq2 (v.1.21.21) 101. DESeq2 was used to           

normalize counts by library size and transformed by variance stabilisation (VST). We            

corrected for sequencing batch effect by using Combat (from sva R package            
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(v.3.29.1)) 101,102 and individual status as covariate. Non-autosomal and genes with no           

or low variance (<0.05) across individuals were removed. The final gene sets            

(including coding and non-coding genes) were formed of 11,370 genes for           

monocytes and of 24,224 for neutrophils.  

 

Differential analysis 

For differential analysis, transcript-level abundance were estimated by Kallisto with          

100 bootstrap iterations in paired-end mode for each group (obese, post surgery,            

lipodystrophy patients and lean individuals) using Ensembl reference transcriptome         

(Ensembl Genes 96). Transcript abundances were then summarized to gene-level          

with Tximport R package (v1.9) by using tximport function and DESeq2 object was             

created using DESeqDataSetFromTximport function from DESeq2 R package        

(v.1.21.21). Differential analysis was performed using Deseq function from DESeq2.          

Log fold changes were corrected with lfcShrink function from DESeq2. Genes with            

FDR < 5% were marked as differentially expressed. For obese versus post surgery             

comparison, we considered only paired samples      

([S01RS6;S022QS][S01Y9G;S022UK][S01WCI;S0232Z][S01TEQ;S0234V][S01WX

D;S023EB][S01WFC;S023F9][S01Y7K;S023H5][S022TM;S023PQ][S01XJ0;S023R

M][S01SYR;S0240Z][S022GB;S0245P]) and therefore performed a paired analysis       

by adding relationship information as covariate in the design formula. 

Functional annotation was performed with genes differentially expressed for each          

cell-types and comparisons, taking into account fold change direction. Lists of genes            

were submitted to EnrichR using R package EnrichR (v.1.0)103,104 and the following            

databases: BioCarta_2016, DSigDB, GO_Biological_Process_2018,    

GO_Cellular_Component_2018, GO_Molecular_Function_2018,  

HMDB_Metabolites, KEGG_2019_Human, Reactome_2016 and    

WikiPathways_2015. To facilitate gene lists submission, we developed an R shiny           

interface to EnrichR (https://blue pri nt.haem.cam.ac.uk/EnrichR_Interface/).  
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Chromatin Immunoprecipitation sequencing  

Sample preparation 

Cells were fixed immediately after purification with 1% w/v formaldehyde for 10 min             

and quenched using 125 mM glycine before washing with PBS. Samples were            

sonicated using a Bioruptor (Diagenode), final SDS concentration of 0.1% w/v for 9             

cycles of 30 s ‘on’ and 30 s ‘off’, and immunoprecipitated using an IP-Star Compact               

Automated System (Diagenode) using the histone H3K27ac antibody C15410196         

(lot 1723-0041D) Diagenode. Immunoprecipitated and input DNA were reverse         

cross-linked (65 C for 4 h), treated with RNase and Proteinase K (65 C for 30 min).  

 
Library preparation and sequencing 
DNA was recovered with Concentrator 5 columns (Zymo) and prepared for           

sequencing using MicroPlex Library Preparation Kit v2 (C05010012, Diagenode).         

Libraries analysed using High Sensitivity Bioanalyzer chips (5,067–4,626, Agilent),         

quantified using qPCR Library Quantification Kit (KK4824, Kapa Biosystems), pooled          

and sequenced with a 50bp single end protocol on Illumina HiSeq 2500 or Illumina              

HiSeq 4000. 

 
Peak calling and quantification 
FastQ files were first checked for sequencing quality using FastQC (v.0.11.2) and            

quality trimming were applied on reads with TrimGalore! (v.0.3.7). Trimmed FASTQ           

files were aligned to the human genome (Ensembl GRCh38.80) with BWA           

(v.0.7.12) 105 aln and samse functions with default parameters. Low mapping quality           

reads (-q 15), multi-mapped and duplicate reads were marked and removed with            

respectively samtools (v.1.3.1)106 and picard ( http://broadinstitute.github.io/picard      

v.2.0.1). 

A combination of quality metrics was used to assess samples quality: number of             

uniquely mapped reads, number of called peaks, NSC (Normalized strand          

cross-correlation) and RSC (relative strand cross-correlation) computed with        

Phantompeakqualtools (v.1.2)107,108, area under the curve (AUC), X-intercept and         

Elbow Point computed with plotFingerPrint function from deepTools suite (v.3.0.2)109          

with --skipZeros --numberOfSamples 50000 options. Peaks were called with MACS2          
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(v.2.1.1) with --nomodel --shift -100 --extsize 200, a qvalue threshold of 1e-3 options             

and celltype matching input file scaled to sample read number. We used MACS2             

randsample function to downscale inputs. We then computed a score by summing            

values obtained for each range of these metrics. We applied a threshold of -3 (total)               

to select the best quality data.  

 -2 -1 0 1 2 

Uniq reads (% raw 
reads) 

<20 >=20 and 
<40 

>=40 and 
<60 

>=60 and 
<80 

>=80 

Encode - NSC <0.9 >=0.9 and 
<1 

>=1 and 
<1.1 

>=1.1 and 
<1.2 

>=1.2 

Encode - RSC <0.8 >=0.8 and 
<0.9 

>=0.9 and 
<1 

>=1 and 
<1.1 

>=1.1 

Deeptools - AUC >=0.4 >=0.3 and 
<0.4 

>=0.2 and 
<0.3 

>=0.1 and 
<0.2 

<0.1 

Deeptools - 
X-intercept 

>=0.3 >=0.2 and 
<0.3 

>=0.15 and 
<0.2 

>=0.1 and 
<0.15 

<0.1 

Deeptools - Elbow 
point 

<0.65 >0.65 and 
<0.75 

>0.75 and 
<0.85 

>0.85 and 
<0.95 

>0.95 

Peak number <(e-10
000) 

>=(e-10000
) 

and 
<(e-5000) 

>=(e-5000) 
and 

<(e-2000) 

>=(e-2000) 
and <e 

>=e 
and 

<(e+25
000) 

 
To build ChIP-seq layer for integrative analysis, we defined a master set of peaks              

and quantify H3K27ac ChIP-seq signal under these peaks. Peaks shared by at least             

5 individuals were merged using R package DiffBind (v2.9) 110. We obtained 67,763            

and 49,188 peaks for monocytes and neutrophils, respectively. Minimum merged          

peak size was 244bp and 235bp, median peak size 1,392bp and 1,648bp and             

maximum peak size 75,534bp and 60,528bp for monocytes and neutrophils,          

respectively. We did not filter out very large merged peaks as they represent less              

than 3% of total peaks and indicate large acetylated regions. Read counts under             

merged peaks were TMM normalized using effective library size and logit           

transformed into count per million (CPM). Sequencing center batch effect was           

corrected with Combat (from sva R package (v.3.29.1)) using individual status           
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(Patient/Donor) as covariate. Non-autosomal and no or low variance (<0.1) peaks           

across individuals were removed. The final master set of peaks counted 25,600            

regions in monocytes and 26,300 regions in neutrophils.  

Differential analysis 
For differential analysis, we used DiffBind with built-in DEseq2 method for statistical            

analysis. We merged peaks present in at least 50% of individuals and asked that all               

individuals have a FRiP value (Fraction of Reads in Peaks) over 5%. We then              

applied a FDR threshold of 5% to select H3K27ac peaks differentially acetylated            

peaks. For obese versus post surgery comparison, we considered only paired           

samples and therefore performed a paired analysis by using the block factor in             

DEseq2. Differentially acetylated regions (DAcR) were annotated with HOMER         

(v.4.10) 111, annotatePeak function and Hg38 RefSeq genome annotation        

(http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip).  

Functional annotation was performed on genes within a window of 10kb around each             

DAcR, taking into account fold change direction. Similarly to RNA-seq, lists of genes             

were submitted to EnrichR interrogating the same databases.  

Illumina 450K arrays and reduced representation bisulfite sequencing (RRBS) 
Arrays and libraries preparation and sequencing 
WP10 Infinium Human Methylation 450 arrays (Illumina) were retrieved from the           

European Genome-phenome Archive (EGA) - EMBL-EBI. DNA extraction and array          

generation have been described in detail in Chen et al. 97. Briefly, cells were lysed              

using guanidine hydrochloride, sodium acetate and protease lysis buffer. DNA was           

extracted using chloroform and precipitated in ethanol prior to washing and           

resuspension in ultra-pure water. 500ng of DNA for each monocyte and neutrophil            

sample was randomly dispensed onto a 96-well plate to reduce batch effects.            

Samples were bisulfite-converted using an EZ-96 DNA Methylation MagPrep Kit          

(Zymo Research) following the manufacturer’s instructions with optimized incubation         

conditions (i.e., 16 cycles of 95C for 30 s, 50C for 60 min; followed by 4C until further                  

processing). Purified bisulfite-treated DNA was eluted in 15 mL of M-Elution Buffer            

(Zymo Research). DNA methylation levels were measured using Infinium Human          

Methylation 450 arrays (Illumina) according to the manufacturer’s protocol. 
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For RRBS, 100 ng of genomic DNA were digested for 6h at 65°C with 20 U TaqI                 

(New England Biolabs) and 6h hours at 37°C with 20 U of MspI (New England               

Biolabs) in 30 μl of 1x NEBuffer 2. To retain even the smallest fragments and to                

minimize the loss of material, end preparation and adaptor ligation were performed in             

a single-tube setup. End fill-in and A-tailing were performed by addition of Klenow             

Fragment 3’ --> 5’ exo- (Enzymatics) and dNTP mix (10 mM dATP, 1 mM dCTP, 1                

mM dGTP New England Biolabs). After ligation to methylated Illumina TruSeq LT v2             

adaptors using T4 DNA Ligase rapid (Enzymatics), the libraries were size selected            

by performing a 0.75x clean-up with AMPure XP beads (Beckman Coulter). The            

libraries were pooled based on qPCR data and subjected to bisulfite conversion            

using the EZ DNA Methylation Direct Kit (Zymo Research) with changes to the             

manufacturer’s protocol: conversion reagent was used at 0.9x concentration,         

incubation performed for 20 cycles of 1 min at 95°C, 10 min at 60°C and the                

desulphonation time was extended to 30 min. These changes increase the number            

of CpG dinucleotides covered, by reducing double-strand break formation in larger           

library fragments. Bisulfite-converted libraries were enriched KAPA HiFi HS Uracil+          

RM (Roche). The minimum number of enrichment cycles was estimated based on a             

qPCR experiment. After a 1x AMPure XP clean-up, library concentrations were           

quantified with the Qubit Fluorometric Quantitation system (Life Technologies) and          

the size distribution was assessed using the Bioanalyzer High Sensitivity DNA Kit            

(Agilent).  

Processing and quantification 
All Infinium Human Methylation 450 array data pre-processing steps were carried out            

using established analytical methods incorporated in the R package RnBeads          

(v.1.13.4) 112. First, we performed background correction and dye-bias normalization         

using NOOB113, followed by normalization between Infinium probe types with          

SWAN114. Next, we filtered out probes based on the following criteria: median            

detection p value 0.01 in one or more samples; bead count of less than three in at                 

least 5% of samples; ambiguous genomic locations115; cross-reactive and         

SNP-overlapping probes 116. 

The RRBS samples were sequenced on Illumina HiSeq3000 platform in 50bp           

single-end mode. Base calling was performed by Illumina Real Time Analysis           
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(v2.7.7) software and the base calls were converted to short reads using            

Illumina2bam (1.17.3 https://github.com/wtsi-npg/illumina2bam) tool before     

de-multiplexing (BamIndexDecoder) into individual, sample-specific BAM files.       

Trimmomatic (v0.32) 117 was used for trimming the adapter sequences. Trimmed          

short read sequences were aligned onto the GRCh38/hg38 human reference          

genome with BSMAP(v2.90) 118 aligner in RRBS mode which was optimized for           

aligning the RRBS data while being aware of the restriction sites and with the              

following options: -D C-CGG -D T-CGA -w 100 -v 0.08 -r 1 -p 4 -n 0 -s 12 -S 0 -f 5 -q                       

0 -u -V 2. R package RnBeads was used to filter out low confidence sites: sites                

overlapping any SNP, having a coverage lower than 5 and high coverage or missing              

in more than 5% or individuals were filtered out.  

Integration analysis required to attenuate technology effect between 450K arrays          

and RRBS. To this goal, we generated RRBS data for 14 BluePrint donors for which               

we already have 450K array data in monocytes, and 9 in neutrophils. We first              

removed non reproducible sites between technologies as follows: for monocytes and           

neutrophils, 1) liftover 450K sites to Hg38 using UCSC liftover tool 119, 2) keep             

overlapping sites between array and RRBS, 3) filter out sites with high variation in              

methylation percentage observed in more than 70% of individuals. We excluded           

14,301 and 14,972 sites for monocytes and neutrophils respectively. We have also            

excluded sites on sex chromosomes and imputed missing values using KNN           

networks (impute.knn function from impute R package (v.1.55.0)) [Hastie T,          

Tibshirani R, Narasimhan B, Chu G (2019). impute: impute: Imputation for           

microarray data.] with 10 nearest neighbors. 

Finally, we adjusted for batch effects using an empirical Bayesian framework, as            

implemented in the ComBat function of the R package SVA (v.3.29.1) and individual             

status as covariate, transformed beta values to M values using beta2m function in R              

package lumi (v.2.33.0) 120,121, normalize by quantile using normalize.quantiles        

function from R package preprocessCore (v.1.43.0) [Bolstad B (2019).         

preprocessCore: A collection of pre-processing functions.] and remove zero or low           

variance sites (< 3). The final data matrix used for multi-omic integration, comprised             

DNA methylation M-values across 26,214 CpG sites and 193 samples in monocytes            

and 21,442 CpG sites and 187 samples in neutrophils. 
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Differential analysis 
For differential analysis, we used methylKit R package (v.1.8.1)122 and we compared            

only RRBS data. We first extracted methylation ratios from BSMAP mapping results            

with methratio.py python script provided with BSMAP. We then removed all sex            

chromosomes sites and filtered out non-retained sites from RnBeads RRBS          

processing. Finally, we used the methRead function from methylKit R package in            

CpGs context at base resolution to read in the input files and calculateDiffMeth             

function correcting for overdispersion (overdispersion="MN") and applying       

Chisq-test. Q Values are then computed using SLIM method 122,123. We applied two            

thresholds: difference of methylation > 25 and qvalue < 0.05 and retrieved            

differentially methylated sites (DMS) with getMethylDiff function specifying        

type=”hypo” or type=”hyper” option to get down and up methylated CpGs           

respectively. 

For obese (pre) versus post surgery comparison, we considered only paired samples            

and therefore performed a paired analysis. DMS were annotated with HOMER           

(v.4.10), annotatePeak function and Hg38 RefSeq genome annotation        

(http://homer.ucsd.edu/homer/data/genomes/hg38.v6.0.zip).  

Functional annotation was performed on genes within a window of 10kb around each             

DMS, taking into account fold change direction. Similarly to RNA-seq and ChIP-seq,            

lists of genes were submitted to EnrichR interrogating the same databases.  

Plasma biochemistry assays 

Plasma biochemistry assays were performed in the Core Biochemical Assay          

Laboratory, Cambridge University Hospitals    

( https://www.cuh.nhs.uk/core-biochemical-assay-laboratory) as described in    

supplementary material and methods. Homeostatic Model Assessment for Insulin         

Resistance (HOMA-IR) index as follows: (glucose (mg/dL) x insulin (mIU/L)) / 405,            

and adipose tissue insulin resistance (AT-IR) index as follows: insulin (µU/mL) x free             

fatty acids (mmol/L). 

Plasma metabolites measurement 
Metabolites quantification 
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Metabolites profiling of obese and lipodhystrophy patients, day controls and blood           

donors (WP10 participants) was performed by Metabolon Inc.        

(https://www.metabolon.com/) using their standard protocol (see extended Methods).        

Briefly, Metabolon analytical platform incorporates two separate ultra-high        

performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS2)      

injections and one gas chromatography GC/MS injection per sample. The UHPLC           

injections are optimized for basic species and acidic species. The numbers of            

compounds of known structural identity (named biochemicals) as well as compounds           

of unknown structural identity (unnamed biochemicals) detected by this integrated          

platform were respectively of 793 and 362 for the first batch and 947 and 433 for the                 

second batch (with an overlap of 786 and 359 compounds respectively). All samples             

were rescaled to set the median to 1, missing values were imputed using KNN              

networks (impute.knn function from impute R package (v.1.55.0) with the following           

options: number of nearest neighbors=10, maximum missing values per metabolites          

< 50% and maximum missing values for individuals < 80%.) Finally, we adjusted for              

batch effects using the ComBat function of the R package SVA (v.3.29.1) and             

individual status as covariate. 

Plasma lipids measurement 
Plasma was frozen in dry ice immediately after collection and stored at -80C until              

analysis. Samples were prepared essentially as previously described124. Briefly, a 15           

μL sample, controls and blanks were placed in a predefined random order across             

96-well plates (Plate+, Esslab, Hadleigh, UK). To which, 750 µL methyl tert-butyl            

ether was added, along with 150 µl of internal standard mix, containing the following              

six internal standards (IS): 1,2-di-o-octadecyl-sn-glycero-3-phosphocholine (0.6 µM),       

1,2-di-O-phytanyl-sn-glycero-3-phosphoethanolamine (1.2 µM), C8-ceramide (0.6     

µM), N-heptadecanoyl-D-erythro-sphingosylphosphorylcholine (0.6µM), undecanoic    

acid (0.6µM), and trilaurin (0.6 µM), (Avanti Polar Lipids and SIgma Aldrich). Quality             

controls were derived from pooling all samples and serially diluting with chloroform.            

25 µl of the sample/IS mixture was transferred to a glass coated 384 well plate and                

90µl mass spectrometry (MS) mix [7.5mM NH4Ac IPA:MeOH (2:1)] added and then            

sealed. Lipidomics was performed using chip-based nanospray with an Advion          
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TriVersa Nanomate (Advion) interfaced to the Thermo Exactive Orbitrap (Thermo          

Scientific). Briefy, a mass acquisition window from 200 to 2000 m/z and acquisition in              

positive and negative modes were used with a voltage of 1.2kV in positive mode and               

−1.5 kV in negative mode and an acquisition time of 72 s. Raw spectral data were                

processed as previously described125. Raw data were then converted to.mzXML          

(usingMSconvert 126 with peakpick level 1), parsed with R and 50 spectra per sample             

(scan from 20 to 70) were averaged using XCMS42, with a signal cutoff at 2000. The                

files were aligned using the XCMS 127,128 grouping function using “mzClust” with a            

m/z-window of 22 ppm and a minimum coverage of 60%. Compound annotation was             

automated using both an exact mass search in compound libraries as well as             

applying the referenced Kendrick mass defect approach. Signal normalisation was          

performed by summing the intensities of all detected metabolites to a fixed value to              

produce a correction factor for the efficiency of ionisation. Exact masses were fitted             

to the lipid species library and subsequently annotated to the peak as described             

before 70.  

Plasma proteomics 
Sample preparation 
Plasma was precleared by centrifugation at 3,000 g for 10 minutes and bound to 100               

µL of calcium silicate matrix (CSM, 4 mg/mL) by rotation for 1 hour. The sample was                

centrifuged at 14,000 g for 1 minute and the supernatant was removed for further              

analysis. The pellet was washed in ammonium bicarbonate (50 mMoL, 1 mL) 3 times              

using the same centrifugation settings. The sample was then reduced for 30 minutes             

at 65°C using 200 µL of DL-dithiothreitol (DTT) premix (ADC 2%: ammonium            

bicarbonate 50 mMoL: DTT 1 MoL in the ratio of 50:49:1) and alkylated for 30               

minutes in the dark with iodoacetamide (IAA) at 20 mMoL. Ammonium bicarbonate            

was added to dilute the ADC to 0.5%. Trypsin was added in the ratio of 1:25 trypsin                 

to plasma and incubated overnight at 37°C. The ADC was precipitated with 1%             

formic acid (FA) and centrifuged at 14,000 g for 10 minutes. The peptides were              

isolated using solid phase EMPORE C18 discs which had been washed with 1 stem              

of methanol and 3 stem of 0.1% FA. The sample was left to bind to the column for 30                   

minutes before washing with 0.1% FA and eluting with 60% acetonitrile (ACN) with             
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0.1% FA and then 80% ACN with 0.1% FA. The ACN was removed by speed               

vacuum for 1 hour 15 minutes and freeze dried overnight. Peptide suspended in 30              

µL of 0.1% FA and a peptide assay was performed to calculate the amount of               

peptides. 10 µL of peptides were removed from each sample and 0.1% FA added to               

equalise the volume and spiked with an internal standard protein (yeast alcohol            

dehydrogenase, ADH), with a known amount of 50 fmol injected for each run.  

Waters NanoAcquity UPLC and Synapt G2S 
Sample separation was performed using an Acquity UPLC Symmetry C18 trapping           

column (180 µm x 20mm, 5 µm) to remove salt and other impurities and a HSS T3                 

analytical column (75µm x 150mm, 1.8µm). Solvent A was compromised on 0.1% FA             

in HPLC grade water and solvent B contained 0.1% FA in ACN.  

Time 
(minute) 

Flow rate 
(µL/minute) 

Solvent A 
(Water + 0.1% FA) 

Solvent B 
(ACN + 0.1% FA) 

3 0.3 97 3 

20 0.3 86 14 

30 0.3 80 20 

40 0.3 75 25 

51-52.2 0.3 69 31 

53-53.1 0.3 65 35 

54 0.3 63 37 

55 0.3 58 42 

63 0.3 31 69 

65 0.3 97 3 

80 0.3 50 50 

80.5 0.3 10 90 

82.2-87.5 0.3 97 3 

99.5 0.3 50 50 

101.5 0.3 10 90 

103.5-110 0.3 97 3 
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Table above shows the gradient in 110 minutes of solvent A and B used in LC                
ESI-MS/MS analysis. The flow rate of solvents was 0.3 µL/minute. Coupled directly            
to the Nano Acquity UPLC was a Water Synapt G2S mass spectrometer (Waters             
Corporation, Manchester, UK). The Synapt G2S includes a nano electrospray          
ionisation (ESI), StepWave ion guide, Quadrupole, TriWave and TOF         
(Supplementary Figure 2).  
 

Proteomic data processing and analysis 

Progenesis QI for Proteomics (Nonlinear Dynamics, Waters Corporation, UK) was          

employed to identify and quantify proteins. The human database from UniProtKB           

was downloaded and used in FASTA format. The proteomic raw data was searched             

using strict trypsin cleavage rules with a maximum of two missed cleavages.            

Cysteine (Carbamidomethyl C) was set as a fixed modification. Deamidation N,           

Oxidation M and Phosphoryl STY were selected as variable modifications. Minimum           

of 2 fragments per peptide, minimum of 5 fragments per protein and minimum of 2               

peptides per protein were set for parameters of identification. The maximum protein            

mass was set to 1000 kDa. The false rate discovery (FDR) for protein identification              

was set at a maximum rate of 1%. Then, proteomic data generated from using the               

Progenesis QI was exported to Microsoft Excel for further data analysis.  

For differential analysis, we used LIMMA (v.3.37.4) 129. Because we compared obese           

and post surgery patients, we performed a paired analysis. We then applied a             

threshold of 0.1% on ordinary qvalue.  

To define whole blood specific genes, we exported GTEx project 130 expression table            

(in TPMs), converted it into SummarizedExperiment container using        

SummarizedExperiment R package ((v.1.11.6); Morgan M, Obenchain V, Hester J,          

Pagès H SummarizedExperiment: SummarizedExperiment container. (2019)) and       

used teGeneRetrieval function from the TissueEnrich R package (v.1.2.1)131. This          

package relies on Human Protein Atlas 132 to grouped genes as follows: Tissue            

Enriched (Genes with an expression level greater than 1 TPM that also have at least               

five-fold higher expression levels in a particular tissue compared to all other tissues),             

Group Enriched (Genes with an expression level greater than 1 TPM that also have              

at least five-fold higher expression levels in a group of 2-7 tissues compared to all               

other tissues, and that are not considered Tissue Enriched) and tissue Enhanced            
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(Genes with an expression level greater than 1 TPM that also have at least five-fold               

higher expression levels in a particular tissue compared to the average levels in all              

other tissues, and that are not considered Tissue Enriched or Group Enriched). With             

default parameters, we identified 693 whole blood specific genes. Finally we           

interesected genes coding for differentially abundant proteins and whole blood          

specific genes.  

  
Weighted correlation network analysis (WGCNA)  
WGCNA 66 is a correlation-based method that describes and visualizes networks of           

data points, whether they are gene expression estimates, metabolite concentrations          

or other phenotypic data. We followed the protocols of WGCNA to create metabolic             

networks. Metabolites are clustered into co-abundant "modules". Low correlations         

can be suppressed either in a continuous ("soft") manner or the discontinuous            

("hard") thresholding used in constructing unweighted networks. To maintain         

scale-free topology, we estimated an applied power by computing soft-threshold with           

pickSoftThreshold function from WGCNA R package (v.1.64-1) 133. To build network,          

we used blockwiseModules function with the following options: TOMType = "signed",           

minModuleSize = 20,reassignThreshold = 0, mergeCutHeight = 0.25 and         

corType="bicor". Each obtained module is notated by a unique color. Additionally, we            

assigned a name to each consensus module. Each module abundance profile can            

be summarised by one representative metabolite: the module eigen metabolite.          

Specifically, the module eigen metabolite was defined as the first right-singular           

vector of the standardized module expression data 134. We performed 3 analysis:           

patients (obese and lipodystrophy patients were combined to get enough individual           

number for network analysis), donors (all WP10 individuals) and a consensus           

analysis. We identified 8, 22 and 16 modules with donors, patients and consensus             

data respectively. We computed eigenmodule and biochemical parameters        

correlations (leptin-adiponectin ratio (LAR), glucose (GLC), triglycerides (TG), total         

cholesterol (TC), high density lipoprotein (HDL-C), low-density lipoprotein (LDL-C),         

alanine amino-transferase (ALT), aspartate amino-transferase (AST), Homeostatic       

Model Assessment for Insulin Resistance (HOMAIR) and adipose tissue insulin          

resistance (AT-IR) indexes and high-sensitivity C-reactive Protein (hsCRP) and also          

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.06.961805doi: bioRxiv preprint 

https://paperpile.com/c/51m0KB/UNS2J
https://paperpile.com/c/51m0KB/fmuu
https://paperpile.com/c/51m0KB/SeeGv
https://doi.org/10.1101/2020.03.06.961805


weight (WGT), BMI and age) using cor function from stats R base package (R              

version 3.5.0) and pearson method (default). P Value of each correlation was            

computed using corPvalueStudent function from WGCNA R package.  

Pathways enrichment analysis were performed with MetaboAnalyst135 and in         

particular Pathway analysis module by submitting combined list HMDB identifiers for           

clusters C1 And C2, hypergeometric test, relative-betweenness centrality topology         

analysis and KEGG database. In addition, we submitted these lists to the Reactome             

database.  

Multi-omic integration 
Training datasets 
We identified 16 WP10 donors as controls, according to the following criteria: BMI <              

25, glycaemia (GLUC) <5.4 mmol/L, TG <1.7 mmol/L, LDL <2.59 mmol/L, HDL >1             

mmol/L for men and >1.3 mmol/L for women, HOMA score< 2.2. For training the              

multi-omics predictive model (see below), we used a reduced training dataset           

comprising the subset of individuals having measurements across all omics layers.           

This reduced set comprised 6 controls, 6 obese individuals and 10 lipodystrophy            

patients. For the clinical data, we first used multiple imputation by chained equations,             

as implemented in the mice R package (with default options) to impute missing             

values before construction of the training dataset.  

 

Variable selection: multivariable regression approach  
For each of the omics layers considered independently, we used elastic-net           

penalised logistic regression as implemented in the glmnet R package to identify            

putative signatures that discriminated between all patients (i.e. lipodystrophy +          

obese) versus controls. The elastic-net ɑ parameter was fixed at ɑ = 0.01, while the               

λ parameter was determined using cross-validation. Since different cross-validation         

splits resulted in different choices for λ, we performed multiple rounds of            

cross-validation, and used the value of λ that resulted in the maximum number of              

selections.  
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Clinical predictive model  
We trained a ridge-penalised logistic regression model predictive of the binary           

response (i.e. patient/control status) using the clinical training dataset.  

 

Multi-omics predictive model  
We used the omic variables selected by the multivariable approach described above,            

together with the clinical covariates, to train a ridge-penalised logistic regression           

model predictive of the binary response (i.e. patient/control status). We fitted this            

model using the reduced training dataset. We used this model to make predictions             

for the 96 individuals for which we had measurements across all omics layers. To              

allow us to make predictions for those individuals for which we only had             

measurements on a subset of the omics datasets, we additionally fitted models to             

each combination of subsets. 

 

Validation of selected lipids 
To further investigate the lipidomic signature, we identified selected lipid species that            

were also measured in two other studies: a subset of 1,507 participants of the              

Fenland study 69,70 which is a population-based cohort of 12,345 volunteers without           

diabetes born between 1950 and 1975 and recruited within the Cambridgeshire           

region between 2005 and 2015, and a biopsy-proven nonalcoholic steatohepatitis          

(NASH) cohort comprising 42 individuals70. We used linear regression analysis to           

test for association between plasma levels of 8 lipid speciess selected into the             

lipidomic signature and all relevant CMD parameters quantified in the Fenland           

cohort, adjusting for age and sex, and using the Bonferroni method to control for              

multiple testing. We repeated this analysis for a set of 10 lipids that were not               

selected by either our multivariable or univariate variable selection approaches. 

 

Functional tests 
Neutrophils Adhesion Method: 
Polymorphonuclear granulocytes were isolated via density gradient (1.078g/mL) from         

3.2% sodium citrated whole blood within 2hours of venipuncture. Neutrophil purity           
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was assessed by haematology analyser (Sysmex, XN-450) to ensure purity levels           

were satisfactory (≥90%) for subsequent functional assays. Isolated cells were          

incubated in a water bath at 37C for 30 minutes with fluorescently labelled             

Calcein-AM (4ug/mL, Molecular probes). Cells were washed twice with 1x PBS and            

resuspended at 2x106/ml in HEPES complete medium supplemented with calcium          

(1mM). 1.6x105 fluorescently labelled neutrophils were then added to relevant          

duplicate wells in a 96-well plate containing the following stimuli; fMLP, 10µM; DTT,             

10mM; Pam3Cys, 20µg/ml; LBP+LPS, 50ng/mL and 20ng/mL; PAF, 1µM; PMA,          

1µg/mL; TNF, 10ng/mL or HEPES only as a control in a final volume of in 100µl.                

Cells were incubated for 30 minutes at 37C in a 5% CO2 incubator, after which they                

were washed twice using 1x PBS before lysing in 100µl PBS with 0.5% triton. A               

100% adhesion control was generated by lysing 1.6x105 fluorescently labelled          

neutrophils in 0.5% triton. Fluorescent intensity was measured using a Tecan           

Infinite® 200 PRO series plate reader (excitation of 485/20nm and emission of            

535/25nm). The mean of duplicate values were calculated and the % adhesion over             

the hepes control calculated using the following formula: % adhesion = ((RFU stimuli             

– RFU HEPES)/ RFU 100% control) x 100. 

 CD63 Expression: 
  
50ul of whole blood was incubated with antibodies: 

CD16 PE VEP13 Miltenyi 

CD63 APC H5C6 Miltenyi 

CD11b APC ICRF44 BD Pharmingen™ 

CD62L FITC Dreg 56 BD Pharmingen™ 

CD32 FITC FLI8.26 BD Pharmingen™ 

CD14 APC MφP9  BD Pharmingen™ 

  
for 20 minutes, followed by a red cell lysis (BD FACS lyse) and resuspension in 0.2%                

formyl saline. Samples were analysed using flow cytometry (Beckman Coulter,          

FC500) within 4 hours. Neutrophils were identified using scatter properties and CD16            

positivity. BD CompBeads were used to generate compensation controls. The          
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median fluorescence intensity (MFI) for each surface marker was calculated using           

Kaluza Analysis Software (Beckman Coulter). 
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Figure 1 - High cardiovascular risk groups characterisation using anthropometric, biochemical and metabolic profiles.
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Figure 4 - Effect of bariatric surgery at molecular level in 3 immune cell types and platelets.
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Supplemental Figure 1 - WGCNA analysis with WP10 donors metabolite values and cluster functional annotation. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.06.961805doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.961805


35

308

0

1001

450

2380

482

295

100113

0

500

1000

1500

2000

ChIPseq RNAseq RRBS

D
iff

er
en

t f
ea

tu
re

s
Le

an
 v

s 
P

os
t

17

01 0

125

58

2022

60

0

40

80

120

ChIPseq RNAseq RRBS

D
iff

er
en

t f
ea

tu
re

s
Le

an
 v

s 
Li

po
dy

st
ro

ph
y

1764

0

1766

41140 33
90

0

500

1000

1500

ChIPseq RNAseq RRBS

D
iff

er
en

t f
ea

tu
re

s
O

be
se

 v
s 

Li
po

dy
st

ro
ph

y

1689

10

539

1399

4557

3422

417
146400

1000

2000

3000

4000

ChIPseq RNAseq RRBS

D
iff

er
en

t f
ea

tu
re

s
Li

po
dy

st
ro

ph
y 

vs
 P

os
t s

ur
ge

ry

MonocytesNeutrophils MacrophagesPlatelets

Supplemental Figure 2 - Summary plots of different feature numbers in all comparisons. 
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Supplemental figure 3 - Models trained using obese patients predicted lipdoystropy patients as being at high risk of disease.
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Supplemental figure 4 - Models trained using lipodystrophy patients predicted obese patients as being at high risk of disease.
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Figure S5 - Associations between lipids and outcomes in the NASH cohort.
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