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Abstract 

Previous research suggests that the proximity of individuals in a social network predicts how 

similarly their brains respond to naturalistic stimuli. However, the relationship between social 

connectedness and brain connectivity in the absence of external stimuli has not been examined. To 

investigate whether neural homophily between friends exists at rest we collected resting-state 

functional magnetic resonance imaging (fMRI) data from 68 school-aged girls, along with social 

network information from all pupils in their year groups (total 5,066 social dyads). Participants were 

asked to rate the amount of time they voluntarily spent with each person in their year group, and 

directed social network matrices and community structure were then determined from these data. 

No statistically significant relationships between social distance, community homogeneity and 

similarity of global-level resting-state connectivity were observed. Nor were we able to predict social 

distance using a machine learning technique (i.e. elastic net regression based on the local-level 

similarities in resting-state whole-brain connectivity between participants). Although neural 

homophily between friends exists when viewing naturalistic stimuli, this finding did not extend to 

functional connectivity at rest in our population. Instead, resting-state connectivity may be less 

susceptible to the influences of a person's social environment.   
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Homophily is the tendency of individuals to attract and interact with those who share similar traits. 

Homophilic selection is observed for broad categorical traits such as gender, ethnicity and sexual 

orientation 1-3 but also for personal traits such as motivation 4, personality and cognitive ability 5, and 

academic achievement 6. High school and university students have been found to rearrange their 

local social networks to form ties and clusters with students who have similar performance levels 6 

and this type of homophily has been observed even in polygenic scores for academic achievement 7.  

Given the predominance of social network homophily for behavioural, personality and cognitive 

traits, we can reasonably expect that this extends to similarities in brain function. In fact, neural 

responses observed during unconstrained viewing of naturalistic stimuli (movie clips) were found to 

be significantly more similar among friends compared with those farther removed in a real-world 

social network 8. This effect persisted, even after controlling for inter-subject similarities in 

demographic variables, such as age, gender, nationality and ethnicity. Social closeness also provides 

opportunities for behavioural contagion - researchers have shown that social contagion modulates 

neural representations of risk in reward-related areas and that functional connectivity between the 

caudate and prefrontal cortex accounts for individual differences in susceptibility to risk-taking 

contagion 9. 

Previously, neural similarity was assessed using intersubject correlation of blood oxygenation level-

dependent (BOLD) timeseries across functionally derived regions of the brain. This method of inter-

subject correlation evaluates the externally generated (extrinsic) stimulus-locked BOLD activation 

associated with the task but ignores the internally generated (intrinsic) component of BOLD activity, 

which is cancelled out when correlating across participants 10. Therefore, it remains unclear whether 

internally-generated brain activity similarly exhibits neural homophily between friends.  

Patterns of brain connectivity elicited from internally generated resting-state BOLD activation are 

mirrored by activation networks found under explicit task-based activation 11. For example, resting-

state sub-networks have been shown to correspond with externally generated activation from 
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attention, speech, reasoning, emotion, memory and social cognition tasks 11,12. Resting-state 

connectivity is also associated with non-cognitive measures of motivation. Grit and growth mind-set 

were found to be associated with functional connectivity between ventral striatal and bilateral 

prefrontal networks important for cognitive-behavioural control 13. Connectivity at rest also predicts 

personality. Connectome-based predictive modelling has been used to successfully predict trait-level 

measures of personality, including openness to experience 14, neuroticism and extraversion 15. 

Others have found that global connectivity of the left prefrontal cortex predicts individual 

differences in fluid intelligence and cognitive control 16 and a clinical measure of attention can be 

predicted from resting-state connectivity in a network associated with sustained attention 17. These 

findings highlight the utility of resting-state connectivity for identifying individual differences in 

cognition, behaviour and personality, all of which have exhibited homophily within social networks. 

Researchers have also linked internally generated brain connectivity with a number of social 

behaviours. For example, resting-state sub-networks for motor, visual, speech and other language 

functions have been associated with the quality and quantity of social networks in older adults 18. 

Others have demonstrated positive associations between functional connectivity and social network 

size and embeddedness 19. There is also evidence for stronger amygdalar connectivity with brain 

networks subserving perceptual and affiliative behaviours in healthy adults who foster and maintain 

larger and more complex social networks 20. Social network size may also dictate the degree of 

connectivity within the default mode network (DMN). The DMN overlaps considerably with regions 

important for theory of mind and social cognition 12,21 and has been found to exhibit greater coupling 

with anterior cingulate and dorsolateral prefrontal cortex in those with larger social network size 22. 

This striking overlap between the DMN and regions involved in social cognition infers a tendency for 

entertaining thoughts about oneself and others during rest 23.  

However, despite investigations into the relationship between internally generated connectivity 

patterns and social behaviour, no study has investigated whether close social relationships are 
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associated with similarities in resting-state connectivity. If behaviours and personality traits exhibit 

homophily and these traits have connectivity signatures in the resting brain, it may be possible for 

resting-state brain connectivity to also exhibit homophily. Therefore, in the current study, we set out 

to investigate whether voluntarily spending large amounts of time with a peer is correlated with a 

higher degree of resting-state similarity compared with peers who voluntarily spend less or no time 

with one another. Secondary school offers an excellent environment for investigating such 

associations; young adolescents attending secondary school frequently spend large quantities of 

time with one another while forming new and long-lasting relationships with their peers. Therefore, 

opportunities for behavioural (and potentially neural) contagion and selection at this age are high. 

In this study, we collected resting-state fMRI data of pupils attending a single high school, along with 

social network (friendship) information between them. These unique data allowed us to test the 

hypothesis that friends exhibit greater similarity in internally generated functional brain connectivity 

compared with those farther removed in a school-based social network.  

As homophily has been observed for traits such as motivation 4, personality and cognitive ability 5, 

we hypothesised that social closeness would result in higher levels of between-subject correlations 

in resting-state networks related to cognitive performance, social interaction and motivational 

processing. Specifically, we chose to focus on similarities within the DMN 24, salience network 25, and 

left and right frontoparietal networks (lFPN and rFPN, respectively) 26. To account for potential 

similarities outside of these functional networks, we also sought to investigate similarities in whole-

brain connectivity between friends, hypothesising that friends may select one another based on a 

range of neural attributes not constrained to a single cognitive network.  

In addition to testing our main hypotheses, we conducted exploratory analyses to investigate 

whether friends exhibit similarities in brain network organisation and communication using graph-

theoretical analysis. Measures of interest included modularity - how easily the brain can be divided 

into distinct functional networks, regional (nodal) strength - the importance of a region within its 
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network, and nodal diversity - a measure of regional integration. Finally, these analyses were 

complimented by a machine learning approach to social distance prediction based on neural 

similarity. 

 

 

Results 

Participant and network characteristics 

This study included a total of 175 schoolchildren (5,066 dyads) from a local day and boarding school, 

of whom 68 (767 dyads) participated in the fMRI study. Participants spanned across two academic 

years, including two year 8 cohorts (12-13 years of age) and one year 9 cohort (13-14 years of age). 

This resulted in 5,066 dyads in the social network study and 767 dyads in the fMRI study. 

Demographic data for each cohort are presented in Table 1. FMRI cohorts were relatively well 

matched to full year group cohorts for most demographic characteristics. The fMRI sample size was 

sufficient to detect a small effect with high power (i.e. 80% or 95%) based on an in-house simulation 

(see Supplementary Materials: Study Power). 

Table 1. Demographic data for full and fMRI cohorts. 

Full cohort [fMRI cohort] Cohort 1  Cohort 2  Cohort 3  

N 59 [23] 51 [17] 65 [28] 

Ethnicity (%) 

White 

Asian 

Black 

Mixed 

Other 

 

86.4 [91.3] 

8.5 [4.3] 

3.4 [4.3] 

1.7 [0] 

0 [0] 

 

78.4 [76.5] 

7.8 [5.9] 

7.8 [5.9] 

5.9 [11.8] 

0 [0] 

 

75.4 [75] 

7.7 [3.6] 

9.2 [14.3] 

6.2 [7.1] 

1.5 [0] 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2020. ; https://doi.org/10.1101/788208doi: bioRxiv preprint 

https://doi.org/10.1101/788208
http://creativecommons.org/licenses/by-nc-nd/4.0/


Boarding status (% boarders) 27.1 [17.4] 33.3 [35.3] 41.5 [39.3] 

Handedness (% left handed) [4.4] [5.9] [3.6] 

 

Participants from each cohort provided social network information (i.e. how much time they 

voluntarily spent with each person in their year group) for every other member of their cohort, 

providing almost complete networks of social connections for the three distinct cohorts of students. 

A roster-and-rating method was used. Specifically, participants were provided with a list of all 

students in their year group and asked to consider the question: “How much time do you spend 

interacting with this student?”. Students answered on a five-point Likert scale, which included 

options: “None”, “A rare amount”, “Some”, “More than some” and “Most”. Participants were told to 

consider time spent voluntarily interacting with other students but not time spent in planned seating 

situations, allocated group work or in classes without opportunities to talk amongst themselves.  

In addition, participants were asked to nominate up to five individuals from their cohort with whom 

they considered themselves to be “close with” 27. Peer nominations and roster-and-rating methods 

measure different aspects of peer interactions. Whereas rating assesses general acceptance of 

peers, nomination is thought to encourage the naming of “best friends” 28. In the main text, we 

report results from roster-and-rating data only. However, nomination data provided the same 

conclusion as roster-and-rating data (see Supplementary Fig. S1 and S2).  

Social networks were represented by unweighted, undirected, graphs. Social ties were only 

considered successful if participants rated spending “more than some” or “most” of their time with 

another student. Adjustment to include only ties where students spent “most” of their time together 

did not change the outcome of the results (see Supplementary Fig. S3 and S4). Mutually-reported 

(reciprocal) social ties are deemed to be more robust indicators of friendship than unreciprocated 

ties and were used by Parkinson et al. in their investigation of neural similarity during naturalistic 

viewing 8. For consistency with previous research, only reciprocal ties were included in the social 
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network graphs, although use of non-reciprocated (directed) social ties did not change the overall 

results of the analysis (see Supplementary Fig. S5 and S6).  

Each cohort was described in terms of its network characteristics, in particular, its network diameter, 

modularity, mean path length, reciprocity and density (see Supplementary Materials: Social Network 

Metrics for definitions of these measures). Network characteristics for each cohort are presented in 

Table 2. Relatively higher modularity and mean path length in cohort 3 suggest that this network 

was more segregated and less well integrated compared with the younger two cohorts (cohorts 1 

and 2). The social networks for each cohort are depicted in Figure 1; fMRI cohorts were well 

distributed within whole year group samples and include both highly influential and less influential 

students (determined by Eigenvector centrality). 

Table 2. Network characteristics of cohorts 1, 2 and 3, using threshold 4 social network data. Network diameter is the 
length of the longest geodesic distance between two nodes in the network. Modularity is a measure of how easily a 
network segregates into smaller subnetworks; large values represent networks that segregate easily into smaller 
communities. Mean path length is the mean geodesic distance between any two nodes in the network; smaller values are 
representative of more “tight-knit” networks. Reciprocity defines the proportion of connections in a directed graph that are 
mutual connections. Graph density gives the ratio of the number of connections (edges) and the number of possible 
connections in the network; higher values indicate that a larger number of possible connections have been made.  

Network characteristics Cohort 1  Cohort 2  Cohort 3  

Network diameter 3 3 4 

Modularity 0.304 0.286 0.426 

Mean path length 1.769 1.750 2.033 

Reciprocity 0.618 0.630 0.668 

Graph density 0.285 0.320 0.220 

 

 

 

The distance between two individuals in a social network is an important predictor of behavioural 

tendencies 29 and may relate to shared patterns in brain function 8. Social distances in the current 
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study were relatively short compared with previous literature (e.g. Parkinson et al. (2018) reported a 

network diameter of 6 using only mutually reported social ties compared to a maximum diameter of 

4 in the current study - see Table 2). The highly interconnected nature of our networks may affect 

how social distance and brain function similarities are associated with one another. Therefore, we 

also evaluated dyadic similarities as a function of community affiliation. By splitting social networks 

into smaller friendship communities and evaluating the differences in brain similarity between those 

inside and outside each community, we measured relationships between neural homophily and 

social behaviour at a binary friendship group level.  

Measures of social proximity (social distance and community affiliation) were determined separately 

for each cohort. Social distance was calculated as the shortest path length between each pair of 

nodes (students) in the network. A dyad (student pair) with a social distance of 1 represented a 

relationship in which both students had said they spent “more than some” or “most” of their time 

with the other student (i.e. they were friends). Social distances of 2 and 3 represented dyad pairs in 

which students did not possess a reciprocal friendship (i.e. did not have a mutual rating of “more 

than some” or “most” of the time) but reported a mutual friend or friend of a friend, respectively. 

Community structure was ascertained using the Louvain method 30. This method implements multi-

level modularity optimisation to subdivide the network into non-overlapping groups of nodes that 

maximise the number of within-group (within-module) friendships (edges) and minimised the 

number of between-group friendships for each cohort. Community detection analysis identified four 

communities (modules) in cohorts 1 and 3 and three communities in cohort 2 (Figure 2). These 

communities were used in later analyses to classify student dyads in a binary manner, as either 

sharing a community or coming from different communities. 
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Figure 1. Social networks of cohorts 1, 2 and 3, depicting reciprocal friendships. Nodes represent students; lines (edges) 
represent mutually reported social ties where students rated the amount of time they spent with each other as "more than 
some" or "most" of the time. FMRI cohorts are depicted in green; students who provided information about their social 
interactions but were not included in the fMRI cohort are shown in grey. The size of each node depicts the Eigenvector 
centrality of that student. Eigenvector centrality is a measure of the relative importance/influence of a node in the network. 
Nodes with high importance (those who are themselves well-connected and are connected to others who are well-
connected) have higher centrality (these are the largest nodes in the network), those with low importance have low 
centrality (these are the smallest nodes in the network). 

 

Figure 2. Community structure of each cohort, determined using the Louvain method 30. Community detection was used to 
estimate “friendship” groups within each cohort. The fMRI study included students from all communities. 
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Main analyses: Dyadic similarities in functional connectivity as a function of social distance and 

community affiliation 

A subset of participants (n=68, see Table 1 for details) participated in the fMRI component of the 

study. Functional echo-planar images were acquired over 10 minutes while participants rested with 

eyes open in the scanner (see Supplementary Materials for details of MRI acquisition). Mean blood 

oxygen level dependent (BOLD) time series were extracted from 272 anatomical regions of the brain 

for every participant in the fMRI cohort. Next, the Pearson’s correlation coefficient (connection 

strength) between BOLD time series was determined for each pair of regions (nodes) in MATLAB 

2016a (MathWorks, USA). This produced a weighted, undirected whole-brain matrix of functional 

connectivity for each participant. Z transformations of weighted, undirected whole-brain matrices 

were then used for inter-subject correlations (Figure 3). Resting-state networks (DMN, salience, lFPN 

and rFPN) were defined based on previously published data (see Supplementary Materials: Resting-

State Network Analysis). Nodes from the whole-brain parcellation that overlapped with at least 50 

voxels from the resting-state networks were used to partition the whole-brain node-to-node matrix 

(see Supplementary Materials: Error! Reference source not found.). Data from each participant 

were compared with every other participant from the fMRI cohort using a Pearson’s correlation.  
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Figure 3. Processing pipeline for determining similarity of resting-state functional connectivity between participants. Mean 
blood oxygen level-dependent (BOLD) time series data for each brain parcel were correlated within participants and then 
each participant’s and then whole-brain correlation matrices were compared between participants. 

 

Similarities in functional connectivity between participants were assessed using linear mixed effects 

modelling (LMEs) on a whole-brain network level as well as within individual resting-state networks 

for each fMRI cohort.  Two LMEs (one for social distance and one for community affiliation) were 

applied to the data at each brain network level. Each student dyad (pair of students) in the fMRI 

cohort was described by one of two independent variables: social distance (i.e. shortest path length 

between the pair within the full year group cohort) or community affiliation (i.e. whether or not two 

students belonged to the same community, determined using the Louvain community detection 

method). The dependent variable for both models was similarity (measured as the correlation 

strength between two students) in resting-state connectivity, determined by the correlation 

strength of time series from each regional pair in the whole-brain or resting-state network (see 

Figure 3). Each student (i and j) in the dyad was modelled as a random effect to account for 

dependency introduced by the dyadic nature of the social network data. 
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No statistically significant relationship between social distance and similarity in functional brain 

connectivity was observed for any fMRI cohort at any resting-state network level (see Figure 4 for 

example plot). Beta weights (slopes) and 95% confidence intervals for LME models are presented in 

Figure 5a. Corresponding t and p values for individual tests are provided in the Supplementary 

Materials (Table S2). Cohorts were initially analysed separately to preserve the independence of the 

three social networks. We then integrated the regression coefficients of the LME models from three 

cohorts using a random-effect meta-analysis.  Meta-analyses of LME models did not reveal any 

significant effects of social distance on the degree of functional brain similarity between students. 

These results indicate that the minimum path length between two individuals in a social network is 

not associated with similarities in brain function at rest, either at a whole-brain network or resting-

state network level.  

 

Figure 4. Example plot of standardised correlation strength of whole-brain connectivity between dyad members (y axis), as 
a function of social distance (x axis). Data here are for whole-brain connectivity similarities for all three cohorts; threshold 
was set at a distance of 4 (I spend “more than some” of my time with this person). 
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Figure 5. a) LME model outcomes and meta-analyses of functional connectivity similarity as a function of social distance. b) 
LME model outcomes and meta-analyses of functional connectivity similarity as a function of community affiliation. Whole-
brain and resting state sub-network data are shown for all three cohorts. Circles and bars represent beta weights (slopes) 
and 95% confidence intervals (95% CI), respectively, for individual cohorts. Triangles represent beta weights for meta-
analyses. Relative confidence in the effect is represented by the size of the circle/triangle; colours represent brain networks. 

As our social networks were very densely connected, we opted to also represent dyadic relationships 

according to whether students belonged to the same “community”, determined by the Louvain 

community detection algorithm. Students’ relationships were defined by their affiliation to different 

communities (friendship groups), whereby dyads including students from the same community were 

scored 1 and dyads including students from different communities were scored 0. LME models 

predicting brain similarity as a function of community affiliation did not support an effect of 

friendship grouping as a predictor of connectivity similarity (i.e. the Pearson’s correlation strength 

between two individuals). This was true for whole-brain and resting-state network connectivity 

(Figure 5b). These results are consistent with the social distance analysis. They indicate that the 
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similarity in resting brain function is no greater between individuals in the same social community 

(which we used here to estimate friendship groups) than those spanning different communities.  

Inclusion of demographic variables (i.e. similarities in ethnicity and boarding status) in LME models 

did not affect the statistical significance of the overall findings (see Table S3 for t and p values of 

individual tests).  

 

Exploratory analysis: graph theory measures of connectivity 

Graph metrics of functional connectivity were derived from whole-brain weighted, undirected 

matrices using the Brain Connectivity Toolbox 31. Analysis steps are provided in Supplementary 

Materials: Error! Reference source not found.. Modularity and community structure were calculated 

using the Louvain method 30, assigning higher values to positively, compared with negatively 

weighted connections. 

As for the main analyses, there were no statistically significant relationships between the similarity 

in strength, diversity or modularity of students’ brains and their distance from one another in the 

social network (Figure 6a). Nor were there any associations between these measures and the 

similarity in community affiliation (Figure 6b). These results add weight in support of the null 

hypothesis, that there is no relationship between social distance or community affiliation and 

similarity in resting-state brain connectivity. 
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Figure 6. a) LME model outcomes and meta-analyses of similarities in graph theory measures of nodal strength, nodal 
diversity and brain modularity as a function of social distance. b) LME model outcomes and meta-analyses of similarities in 
graph theory measures of nodal strength, nodal diversity and brain modularity as a function of community affiliation. Data 
are shown for all three cohorts. Circles and bars represent beta weights (slopes) and 95% CI, respectively, for individual 
cohorts. Triangles represent beta weights for meta-analyses. Relative confidence in the effect is represented by the size of 
the circle/triangle; colours represent graph metrics. 

 

Exploratory analyses: Data-driven predictive model of social proximity from neural similarity 

In the previous analyses, we assessed the overall similarity of the whole brain network or resting-

state networks between pairs of students and examined whether social distance is related to the 

overall similarity. Although this analysis gives us the most straightforward test of our hypothesis, the 

analysis does not address the possibility that social distance is represented by the collection of local-

level similarities (i.e. similarity between a specific pair of nodes). To examine whether any local-level 

similarity in the brain functional connectivity encodes social distance, we employed regularised 

(elastic net) regression techniques to predict social distance between two students based on 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2020. ; https://doi.org/10.1101/788208doi: bioRxiv preprint 

https://doi.org/10.1101/788208
http://creativecommons.org/licenses/by-nc-nd/4.0/


similarities in their functional brain connectivity of all pairs of nodes. This regression technique has 

been used to successfully predict a variety of outcomes from MRI data, including openness to 

experience (a Big Five personality trait) 14, psychosis 32, and progression to Alzheimer’s disease in 

people with mild cognitive impairment 33, demonstrating its ability to cope with the high 

dimensionality of MRI data. In summary, predictive models performed poorly and failed to predict 

social distance with sufficient accuracy in any cohort. Further details of analysis and detailed results 

can be found in the Supplementary Materials. These data further support our main findings that 

resting state connectivity similarity between peers is not associated with social distance. 

 

Discussion 

Our results provide little evidence for homophily of internally generated (resting-state) functional 

brain connectivity in school-based social networks. Neither whole-brain nor network-based analysis 

(i.e. resting-state networks relevant to social and motivational processing) of resting-state 

connectivity resulted in significant differences in similarity between friends and those farther 

removed in their social network. Likewise, exploratory analyses provided no evidence of neural 

homophily at rest. Specifically, graph theoretical measures of brain connectivity, including 

modularity, diversity and strength, were no more similar among friends than other more distantly 

connected pairs of students. Results from elastic-net regression, using the whole collection of local-

level connectivity to predict social distance, also provide minimal evidence for similarity in resting-

state functional connectivity among friends. Our findings were robust across individual cohorts of 

students and demonstrated a consistent non-significant result for homophily of resting-state 

connectivity. The inclusion of a data-driven approach to analysis (elastic-net regression) suggests our 

lack of evidence for the hypothesis is not due to noise from irrelevant variables or poor a priori 

selection of resting-state networks for dimensionality reduction. Likewise, results are not due to 

poor sampling from the overall population. Students participating in the fMRI component of the 
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study exhibited demographic characteristics representative of their original class cohorts, from 

which 87% - 96% of enrolled students provided social network data.  

Current literature supports a role for social closeness in synchronisation of neural activation. For 

example, students who report higher social closeness to one another who also engage in silent eye 

contact prior to class exhibit stronger pairwise brain-to-brain synchrony during class activities 

compared with those less close who engage in eye contact 34. This increased synchronisation 

between friends is evident even when friends are in the absence of one another; using functional 

MRI of individual students in a real-world social network, Parkinson and colleagues (2018) 

investigated synchronisation of neural activation during video clip viewing and found evidence for 

homophily at the neural response level. Brain regions where response similarity was associated with 

social network proximity included areas implicated in motivation, learning, affective processing, 

memory, attention, theory of mind and language processing 8, some behavioural traits of which have 

exhibited homophily in previous non-imaging studies 4,5,35,36. These results suggest that, at least in 

terms of cognitive processing, similarities in behaviour relate to similarities in brain function. 

In contrast, the current study examined neural homophily during a resting state scan. Our findings 

suggest that neural homophily observed in previous work may be specific to stimulus-evoked 

activation, and may not extend to stimulus-free intrinsically-generated brain activities. Importantly, 

stimuli used by Parkinson and colleagues (2018) included video clips of comedy, debates and 

documentaries, intended to evoke social and emotional responses from participants. The homophily 

observed in their study may therefore be dependent on cognitive processes important for social 

interaction. This would also explain how our resting-state experiment, which was relatively devoid of 

social context, failed to elicit homophilic outcomes.  

It should be noted that, in a stimulus-free environment, i.e. during rest, subjects are free to mind 

wander, providing no time-locked cue with which to directly compare activation between two 

subjects. Instead, simultaneous activation of spatially disparate brain regions is evaluated within 
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each subject to identify networks of brain regions that exhibit highly correlated patterns of activity. 

Therefore, in the current study, we evaluated the correlational strength between every node in the 

brain for each individual participant and correlated the whole-brain or resting-state network 

connectivity pattern between every pair of participants in the social network. This was a powerful 

approach to evaluating dyadic similarities in resting-state brain function in a social network, but at 

the same time, this novel approach makes it difficult to directly compare the current findings with 

the previous one 8, which focused on the similarities of the activation pattern rather than the 

pattern of brain functional connectivity. Given the evidence that the architecture of task-based 

networks closely resembles networks seen at rest 37, it may be an interesting future inquiry to 

examine whether neural homophily is observed in the brain functional network connectivity 

triggered by external cues and stimuli.  

A notable difference between our sample population and that of Parkinson et al. is the age at which 

social network and imaging data were collected (schoolchildren vs undergraduate students). As 

researchers have found associations between pubertal development and strength of intrinsic 

functional connectivity 38, our younger sample may exhibit less intrinsic network homophily than 

more mature samples due to greater brain variability between subjects.  

In addition to intrinsic network strength, functional resting-state network architecture changes 

throughout the lifespan and can differ between adolescents and adults 39. For example, differences 

in DMN connectivity have been reported between adults and children 40 as well as within individuals 

throughout early adolescence 41. To ensure that the resting-state network maps used in our analyses 

were appropriate for the age group in our study, we ran independent components analysis in our 

student sample and compared our sample-derived independent components with the resting-state 

network maps used in our analyses. High levels of overlap were observed for salience, lFPN and rFPN 

maps and our sample-derived components. The DMN was represented over several components, 

though division of the DMN into smaller components in ICA is common.  
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The current study benefits from several strengths. Most notably, we evaluated homophily of resting-

state connectivity in three different social networks comprising students of the same gender and 

similar age and education level, eliminating by design these demographic variables as possible 

sources of confound for neural homophily. Cohorts were evaluated as independent samples and 

then as individual studies in meta-analyses, ensuring sufficient statistical power of the overall 

analysis to find neural homophily. Homophily based on cognitive ability has been reported at a 

higher rate among girls compared with boys 5 and polygenic scores for educational achievement are 

more homogenous in women’s female social networks compared with men’s male social networks 7. 

As intelligence and cognitive control are reflected in the resting-state connectivity 16, we therefore 

anticipated that an all-female sample would exhibit stronger homophily of resting-state connectivity 

than a mixed-gender or all-male sample. Based on these attributes, our study was appropriately 

designed to identify homophily at the resting-state connectivity level. 

These results contribute to the homophily literature by suggesting that homophily at the neural level 

may require some external stimulus that engages individuals in social or cognitive thoughts before 

synchronisation or similarities in connectivity are evident. To further our understanding of how our 

brain functioning is shaped by social factors, future research should examine the exact conditions 

under which neural homophily can be observed.  

 

Methods 

Participants 

For the social network component of the study, individuals 12-14 years of age in years 8 (cohort 1: 

n=59; cohort 2: n=51) and 9 (cohort 3: n=65) were recruited from a private girls’ day and boarding 

school in the United Kingdom (as part of a larger study). Participants were recruited during 2017 and 
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2018 from total year group pools of 62 (cohort 1), 53 (cohort 2) and 75 (cohort 3) students, 

corresponding to inclusion rates of 95%, 96% and 87%, respectively.  

The study was approved by the University Research Ethics Committee. All research was conducted in 

accordance with relevant guidelines, students gave informed written assent to take part in the study 

and consent was obtained from legal guardians.  

Individuals from cohorts 1, 2 and 3 were also invited to take part in the functional magnetic 

resonance imaging (fMRI) component of the study. Twenty-eight students from cohort 1, 17 

students from cohort 2 and 34 students from cohort 3 were recruited into the fMRI study (cohorts 1-

fMRI, 2-fMRI and 3-fMRI, respectively); of these, 5 participants from cohort 1-fMRI and 6 from 

cohort 3-fMRI had unusable data due to artefacts caused by dental braces. Children with braces 

were excluded from cohort 2-fMRI at the time of screening. This resulted in the final inclusion of 68 

students in the fMRI component of the study, consisting of 23 (cohort 1-fMRI, 12-13 years of age), 

17 (2-fMRI, 12-13 years of age) and 28 (3-fMRI, 13-14 years of age) students in respective cohorts.  

Exclusion criteria pertaining to all groups consisted of standard safety-related contraindications for 

MRI.  

The study was well powered to detect an effect of social distance on neural similarity at rest, based 

on an in-house simulation (see Supplementary Materials: Study Power). 

Data acquisition 

The social network data were acquired in class using an online survey administered with 

SurveyMonkey (SurveyMonkey Inc., San Mateo, California, USA). Social network data were acquired 

in October and November of 2017 (cohorts 1 and 3) and 2018 (cohort 2), one-to-two months after 

the start of the academic year. Students had been registered at the school for a maximum of one 

(cohorts 1 and 2) or two (cohort 3) years when the survey took place. Students were asked to rate 

how much time they voluntarily spent with each member of their year group (roster-and-rating 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2020. ; https://doi.org/10.1101/788208doi: bioRxiv preprint 

https://doi.org/10.1101/788208
http://creativecommons.org/licenses/by-nc-nd/4.0/


method) as well as nominate up to five students in their year group whom they considered their 

“best friends”. Participants were asked to report on social interactions within their own year group 

only. As mentioned in the Results, nomination data gave similar outcomes to roster-and-rating and 

so is not discussed further. Investigators were blinded to the identity of students. 

Social network characterisation 

Social network analysis was performed using the igraph package in R 42,43 (Details in Supplementary 

Materials). Data were included only for individuals who took part in the social network survey; any 

non-reciprocated ties or outgoing social ties with those not participating in the survey were 

removed.  

 

MRI analysis 

Structural and resting-state functional MRI data were acquired using a Siemens Magnetom 

Prisma_fit 3T scanner. Details of MRI data acquisition and pre-processing are provided in the 

Supplementary Materials: Functional MRI Data Analysis. 

Analysis of pre-processed data is illustrated in Figure 3. First, motion-corrected fMRI data were 

divided into 272 parcels using a whole-brain parcellation scheme 44 combining parcels from the 

Human Brainnetome Atlas 45 and the probabilistic MR atlas of the human cerebellum 46. Mean BOLD 

time series were extracted from each parcel and the Pearson’s correlation coefficient was 

determined for each pair of parcels (nodes) in MATLAB 2016a (MathWorks, USA). This produced a 

weighted, undirected whole-brain matrix of functional connectivity for each participant, which could 

be used for inter-subject correlations (all self-self nodal connections were removed and matrices 

were z transformed prior to further analysis). The z-transformed whole-brain matrix of subji was 

vectorised and correlated with the (vectorised) z-transformed whole-brain matrix of subjj, then subjk, 

then subjl, and so on. This method provides a measure of the similarity of connectivity strength in 
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whole-brain networks within participant pairs. Prior to further analysis, correlation strengths were 

standardised within each cohort to have a mean of 0 and a standard deviation of 1. 

Resting-state network comparisons were performed in a similar manner (see Supplementary 

Materials: Resting State Analysis and Supplementary Materials: Fig. S7). 

 

Main Analyses: Dyadic similarities in functional connectivity as a function of social proximity 

To test our main hypotheses, we examined whether similarities in resting-state connectivity and 

brain network characterization were explained by social proximity. In this set of analyses, each 

student dyad (pair of students) in the fMRI cohort was described by two independent variables: 

social distance between the two students (e.g. distance of 1, 2 or 3) and whether or not their 

community affiliation was the same (‘yes’ (1) or ‘no’ (0)).  

Using pairs of students (dyads) as the unit of analysis creates dependence in the data, caused by the 

involvement of every student in multiple dyads (cross-nesting) 47 48. Using ordinary least-square 

methods in such data potentially increases Type-1 error rates. We accounted for this dependence 

structure by including each dyad member (student) as a random variable in a linear mixed effects 

(LME) model with crossed random effects (analysed using the lme4 package 49 in R; see 

Supplementary Materials: LME Model Specification for more details and see 50, for a similar model 

specification). Any subject-specific effects on the dyadic outcomes are therefore accounted for in the 

model 51. Dependent variables were similarities in whole-brain connectivity and resting-state 

network (DMN, salience network, lFPN and rFPN) connectivity. For each dependent variable, we 

tested a model with social distance as the independent variable, and tested another model with 

community affiliation as the independent variable. Cohorts were initially analysed separately to 

preserve their independence (given that we did not measure social ties between the different year 
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groups). We then integrated the regression coefficients of the LME models from three cohorts using 

a random-effect meta-analysis with the Metafor package 52 in R. 

Effects of demographic data as well as their interactions with social distance or community affiliation 

were also included in a second series of models to determine whether boarding status (i.e. whether 

students matched in their boarding status [boarding or day student]) and ethnicity (i.e. whether or 

not students reported belonging to the same ethnic group) affected the relationship between social 

proximity and similarity in resting state connectivity between students. As only one student from 

each fMRI cohort was left-handed, we elected not to include handedness as a covariate. 

 

Exploratory analyses: graph theory measures of connectivity 

For each individual in the fMRI cohorts, graph metrics of brain connectivity were derived using the 

Brain Connectivity Toolbox 31 in MATLAB (2016a). We were specifically interested in measures of 

brain modularity, node-level strength and node-level diversity, as these measures are designed to 

deal with the full interconnectedness of weighted functional brain networks 53. Each of these 

measures are defined further in the Supplementary Materials: Brain Network Characterisation. 

As for the main analyses, graph measures of connectivity were compared between all student dyads 

within each cohort. Similarities in nodal strength and nodal diversity were determined by the 

Pearson’s correlation coefficient between two members of a dyad, whereas modularity (represented 

by a single value for each participant) was determined by the absolute difference between members 

in the dyad (see Supplementary Materials: Error! Reference source not found.S8 for details). 

Methods for the data-driven approach to prediction of social proximity from neural similarity are 

provided in the Supplementary Materials. 
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