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Abstract 12 

Trace conditioning and extinction learning depend on the hippocampus, but it remains 13 

unclear how ongoing neural activities in the hippocampus are modulated during different 14 

learning processes. To explore this question, we performed calcium imaging in a large 15 

number of individual CA1 neurons during both trace eye-blink conditioning and 16 

subsequent extinction learning in mice. Using trial-averaged calcium fluorescence 17 

analysis, we found direct evidence that in real time, as learning emerges, distinct 18 

populations of CA1 cells contribute to trace conditioned learning versus extinction 19 

learning. Furthermore, we examined network connectivity by calculating co-activity 20 

between CA1 neuron pairs, and found that CA1 network connectivity is different between 21 

conditioning and extinction and between correct versus incorrect behavioral responses 22 

during trace conditioned learning. However, the overall connectivity density remains 23 

constant across these behavioral conditions. Together, our results demonstrate that 24 

distinct populations of CA1 neurons, forming different sub-networks with unique 25 

connectivity patterns, encode different aspects of learning. 26 

Introduction 27 

 The hippocampus is critical for learning and memory in animals and humans. Early 28 

surgical lesions of the hippocampus in human patients, designed to alleviate intractable 29 
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epilepsy, resulted in severe memory loss and an inability to form new declarative or 30 

episodic memories1,2.  Hippocampal atrophy is also associated with diseases related to 31 

memory loss and cognitive decline including  dementia and Alzheimer’s disease3–7. Many 32 

mechanistic studies have highlighted the importance of the hippocampus for spatial, 33 

contextual, and associative learning in a variety of animal models8,9.  34 

Various experimental paradigms have been devised to probe hippocampal-35 

dependent forms of learning and memory. One such well-established paradigm is trace 36 

eye blink conditioning, which requires an intact hippocampus10–12. In this experimental 37 

design, subjects are presented with a conditioned stimulus (CS), such as a tone or light, 38 

which reliably predicts an unconditioned stimulus (US), such as a puff of air or electrical 39 

shock delivered to the subject’s eyelid. In trace conditioning, the CS and US are separated 40 

temporally by a quiescent trace interval. Over time, subjects will learn to associate the CS 41 

with the US, generating a behavioral conditioned response to the CS13–18. Trace 42 

conditioning acquisition depends on signaling at both nicotinic and muscarinic 43 

acetylcholine receptors (AChRs)19–26 and is mediated through NMDA receptor-dependent 44 

plasticity27.  45 

The hippocampus is also required for context-dependent extinction learning11. 46 

Extinction learning is traditionally considered new learning that overrides a previously 47 

learned relationship. In the example of trace conditioning, the subject learns that the 48 

previously established CS is no longer predictive of a subsequent US. Extinction learning 49 

after trace conditioning can be tested by the presentation of the CS without the associated 50 

US, and monitoring the strength or presence of a conditioned response. As new learning 51 

occurs, subjects will suppress their conditioned response to the previously predictive tone 52 
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or light. Extinction learning has also been shown to be NMDA receptor dependent28, and 53 

requires the involvement of hippocampal inhibitory neurons29 and adult neurogenesis30.  54 

While the hippocampus is known to be important in both trace conditioning and 55 

extinction learning, it remains largely unknown how individual hippocampal neurons 56 

selectively participate in this learning.  Two distinct functional populations related to fear 57 

conditioning and extinction have been reported in the amygdala31, and segregated 58 

populations of hippocampal CA1 neurons upregulate different genes for both fear 59 

conditioning and context-dependent fear extinction32, supporting the idea that trace 60 

conditioning and extinction learning involve distinct learning mechanisms encoded by 61 

different neurons. However, changes in CA1 populations were quantified at later time 62 

points, after learning occurred, leaving in question whether neural activity changes during 63 

learning, or is a result of plasticity changes in the minutes to hours after new learning. In 64 

this study, we sought to measure the ongoing neuronal activity of individual neurons 65 

during trace eye-blink conditioning and subsequent extinction learning to better 66 

understand the time course and mechanics of how these two types of learning might 67 

interact in the neural population.  68 

 In order to address these questions, we performed calcium imaging of individual 69 

CA1 neurons in mice over multiple days during the course of trace eye-blink conditioning. 70 

Calcium imaging allows us to measure hundreds to thousands of neurons simultaneously 71 

with single-cell resolution, across multiple trials and multiple days of learning33,34. Once 72 

conditioning was achieved, mice underwent a final conditioning session followed by 73 

extinction training, enabling us to track the same neuron population during both learning 74 

paradigms. Hippocampal-dependent trace conditioning is a learning task well suited to 75 
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calcium imaging because learning, and the associated CA1 neuronal responses, evolves 76 

gradually, unlike fear conditioning, where learning can occur as rapidly as a single trial.  77 

Using trial-averaged approaches we found that a significant fraction of CA1 78 

neurons showed CS-related responses for both trace conditioning and extinction learning.  79 

However, the identities of the cells differed between trace conditioning and extinction 80 

learning, suggesting two functionally distinct sub-populations of cells within the 81 

hippocampus CA1. To further understand how the neural populations reflect learning as 82 

it is occurring, we analyzed co-activity between CA1 neuron pairs on a trial-by-trial basis. 83 

Using this trial-by-trial analysis method, we found that populations of neuron pairs are 84 

differentially activated during trace conditioning versus extinction learning. In addition, this 85 

method revealed that during trace conditioning, neurons are also differentially co-active 86 

on trials during which the animal exhibited the “correct” versus the “incorrect” behavioral 87 

response, highlighting the potential of trial-by-trial co-activity analysis to detect features 88 

of network response.  89 

Results 90 

Conditioned responding increases across trace-conditioning sessions in a 91 

classical eye blink task and decreases during extinction 92 

 Trace conditioning experiments were performed in head-fixed mice (n=9 mice) that 93 

were positioned under a custom-built wide-field microscope (Figure 1A) equipped with a 94 

scientific (sCMOS) camera, as previously described33. Calcium activity in CA1 neurons 95 

was monitored via GCaMP6f fluorescence, which allows recording from hundreds of 96 

neurons simultaneously35–40 (Figure 1A). Prior to imaging, mice were injected with AAV-97 

Syn-GCaMP6f and implanted with a custom window that allowed optical access to dorsal 98 

CA1 (Figure 1C). 4-6 weeks after surgery, mice were habituated and then trained on a 99 
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classic trace eye-blink conditioning paradigm followed by an extinction training session 100 

(Figure 1B). The paradigm consisted of a 9500Hz, 350ms tone as a conditioned stimulus 101 

(CS), followed by a 250ms trace interval, followed by a 100ms gentle puff of air to one 102 

eye that served as the unconditioned stimulus (US) (Figure 1D). Eye behavior was 103 

monitored with a USB 3.0 Camera (Figure 1A,Ei). Animals were trained for 60-80 CS-US 104 

trials over 5-9 days, until they reached conditioned response criterion (conditioned 105 

response on 65% of trials). After reliable conditioned response to CS presentations was 106 

established, on the final day of imaging animals were given a block of 20-40 CS-US trials 107 

(last training session), followed by a block of CS-only extinction trials, where the CS was 108 

not followed by the US (extinction session, Figure 1B). In this paradigm, we could perform 109 

calcium imaging of the same neurons during both learning conditions, allowing us to track 110 

how activity of each neuron changes during extinction acquisition.  111 

 Behavioral response was quantified by segmenting the eye videos and averaging 112 

each frame to calculate a temporal trace of eyelid movement (Figure 1Ei-iii).  A movement 113 

threshold was calculated for each eye trace, fit to a uniform distribution equal to the 114 

average eye size. This thresholding method provided a consistent evaluation of 115 

behavioral response for each session across mice: eye closure with an amplitude above 116 

the threshold between the tone onset and puff onset (tone-puff window) was classified as 117 

a conditioned response (Figure 1Ei-Eiv).  Using this method, we were able to track the 118 

strength of the response to the CS, as well as the strong, persistent eye closure in 119 

response to the aversive US on each trial (Figure 1Eiv). This method also allows for 120 

consistent calculation of conditioned response within the training session (Figure 1Eiv-121 

1Ev) and across days (Figure 2A). Behavior was measured and scored according to this 122 
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metric across mice. Animals consistently showed more conditioned responding in the final 123 

20 trials of the last training session (70 ± 11%, mean ± s.d.) compared to the first 10 trials 124 

from the first training session (49 ± 26%, mean ± s.d., p=0.0278, one-tailed paired t-test, 125 

alpha<0.05 after Benjamini-Hochberg procedure). Additionally, animals consistently 126 

exhibited decreased conditioning responding during the final 20 trials of the extinction 127 

session (45 ± 21%, mean ± s.d., p=0.0134, one-tailed paired t-test, alpha<0.025 after 128 

Benjamini-Hochberg procedure) (Figure 2A-B).   129 

Calcium dynamics in CA1 reflect the behavioral responses during trace 130 

conditioning  131 

Imaging CA1 during trace conditioning allowed us to evaluate how activities of 132 

large neuron populations (324 ± 246 cells from n=8 mice, mean ± s.d.) are modulated 133 

between the first and final day of conditioning training. Furthermore, when extinction was 134 

introduced, we imaged the same neurons during trace conditioning and extinction 135 

learning, enabling us to investigate whether conditioning and extinction recruit unique cell 136 

populations or repurpose the same population.  In order to assess the activity of individual 137 

cells, imaging sessions underwent several stages of processing. Videos were motion 138 

corrected, a projection image was generated across each video, cells were segmented 139 

using a semi-automated software, and fluorescence traces for each cell were extracted 140 

and normalized for each imaging session (Figure 1C).   141 

 A distinct pattern of neuronal responses within the CA1 emerged after multiple 142 

days of trace conditioning (Figure 2Ci-Cii). Neuronal responses for each cell were 143 

averaged across all trials, and the entire population was sorted by average response 144 

intensity during the time period between the tone onset and puff onset (tone-puff window). 145 

During the last training session, after multiple days of conditioning, substantially more 146 
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neurons (11.3 ± 6.2%: mean ± s.d) exhibited an increased calcium response between the 147 

tone and puff, compared to the first day of training (5.6 ± 3.7%: mean ± s.d., p=0.0463, 148 

one-tailed paired t-test, Figure 2Ci-ii,D), suggesting enhanced CA1 recruitment across 149 

training sessions.  The percentages of cells that responded on the first and last sessions 150 

of training were both significantly greater than the percentages expected by chance 151 

(bootstrapped estimation, both: N=1000, p=0.026 & 0.016 for first and last session 152 

respectively, one-tailed bootstrap, alpha=0.05, Supp. Figure 1A). These findings suggest 153 

that CA1 neurons begin to encode the CS on the first day of training, and the number of 154 

neurons encoding the CS increased over several days of conditioning training. 155 

Extinction learning rapidly recruits new CA1 neurons  156 

 The last imaging day included a CS-US training session (referred to as “last 157 

training session”) immediately followed by 40 CS-only trials (“extinction session”), 158 

allowing all cells to be matched between the two sessions.  Behavioral analysis revealed 159 

that conditioned responding was significantly reduced as a result of extinction training 160 

(Figure 2B). When neuronal responses were averaged together and analyzed as 161 

described above, we found that 8.3 ± 5.4% (mean ± s.d.) of cells were responsive to CS 162 

during extinction session, which is significantly higher than the percentage expected by 163 

chance (bootstrapped estimation, extinction: N=1000, p=0.011, one-tailed bootstrap, 164 

alpha=0.05, Supp. Figure 1B).  165 

We compared the responses of individual cells to the CS during conditioning trials 166 

and extinction trials by plotting the neuronal responses of the entire population during the 167 

extinction session, but maintaining the sorting determined from the last training session. 168 

Interestingly, we discovered that most (78.2 ± 15.7%: mean ± s.d.) of the responsive cells 169 

during conditioning were no longer responsive during the extinction session (Figure 2Cii-170 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.980854doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.980854
http://creativecommons.org/licenses/by/4.0/


8 
 

iii). Further analysis of the responses during the extinction session, but resorting the 171 

population based on the average GCaMP6f fluorescence intensity during the tone-puff 172 

window of the extinction session itself, revealed another population of neurons that were 173 

responsive during extinction (Figure 2Civ). However, these cells were a largely novel 174 

population of cells that were not responsive to the tone during the previous conditioned 175 

learning, as most (67.2 ± 22.3%: mean ± s.d.) of the cells responsive during extinction 176 

exhibited no response on the last day of training (Figure 2Ciii-iv). CS-responsive neurons 177 

from the extinction session represented a statistically smaller proportion of the population 178 

relative to the CS-responsive cells from the last training session (8.3 ± 5.4%: mean ± s.d. 179 

versus 11.3 ± 6.2%: mean ± s.d.: p=0.016, one-tailed paired t-test, Figure 2D).  180 

The population of cells that responded to the CS (increased fluorescence during 181 

the tone-puff window) during the last training session were termed conditioned (CO) cells. 182 

In contrast, extinction (EX) cells were determined as those that responded to the CS 183 

during extinction. These populations were largely discrete, as only 21.8 ± 15.7% (mean ± 184 

s.d.) of CO cells were also EX cells, and similarly only 32.8 ± 22.3% (mean ± s.d.) of EX 185 

cells were also CS cells. These results suggest that during extinction learning, neurons 186 

are recruited to encode tone presentations rapidly and emerge in less than 40 trials. 187 

Additionally, we have identified two largely distinct populations of neurons that respond 188 

to the tone during either conditioning or extinction learning.   189 

Temporally and spatially distributed populations of neurons encode learning for 190 

either trace conditioning or extinction  191 

Because calcium events are sparse, we next considered the reliability of individual 192 

cell activation to the tone under both conditioned and extinction learning. Some cells 193 

showed responses to the CS on multiple conditioning or extinction trials (example CO 194 
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cells: Figure 3A; example EX cells: Figure 3B). However, most individual CA1 neurons 195 

exhibit highly diverse responses to the tone. CO cells responded to a highly variable 196 

number of trials during the last training session (5-78% of trials across all neurons from 197 

all mice), with a mean of 11.8 ± 4.9% (mean ± s.d.). Similarly, EX cells responded to 5-198 

63% of trials during the extinction session, with a mean of 10.1 ± 2.7% (mean ± s.d.) of 199 

trials during extinction training (Supp. Figure 2). These results indicate that for both 200 

conditioning and extinction, most neurons of the entire population contributed to encoding 201 

only about 10% of total trials in the session.   202 

Comparing the spatial distributions of cells suggests that both CO and EX cells are 203 

not significantly clustered near one another than would be expected by a random 204 

distribution of cell types in CA1 (Figure 3C,D).  3.0 ± 2.5% (mean ± s.d.) of cells within a 205 

100 µm radius of CO cells were other CO cells, which was not significantly different from 206 

that expected by random shuffling of cell identity (shuffled=1.9%, N=1000, p=0.17, one-207 

tailed bootstrap, alpha=0.05).  1.6 ± 1.5% (mean ± s.d.) of cells within a 100 µm radius of 208 

EX cells were other EX cells, which was also not significantly higher than expected by a 209 

random shuffling of cell identity (shuffled=1.3%, N=1000, p=0.24, one-tailed bootstrap, 210 

alpha=0.05). These analyses reveal that individual CO cells and EX cells respond on a 211 

sparse subset of trials, and that CO and EX cells were heterogeneously distributed within 212 

the CA1.  213 

Co-occurrence analysis reveals differential connectivity between sub-populations 214 

of neurons during either trace conditioning or extinction learning  215 

Most CO and EX neurons identified from trial-averaged responses responded on 216 

a relatively small percentage of trials, and some cells were so sparsely activated in 217 

response to the CS (Figure 4A) that they failed to reach the threshold to be identified as 218 
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either a CO or EX cell. Given that the majority of individual cells encode CS presentations 219 

with low response reliability, network or population responses might more faithfully reveal 220 

the role of the CA1 in learning and memory. Thus, we quantified network responses based 221 

on pairwise activity of the cell population on a trial-by-trial basis, which summarizes co-222 

activity across all neurons in a “co-occurrence matrix”. While pairwise correlation can give 223 

reliable measures over many trials or longer periods of time, the limited number of imaging 224 

data points (12) during the short (600ms) tone-puff window of this study made pairwise 225 

correlation unsuitable for tracking neuronal calcium responses. The presence of activity 226 

during the tone-puff window was determined for each neuron individually by comparing 227 

its calcium response between the tone onset and puff onset to an equal time period before 228 

the tone. For each trial, if a neuron’s calcium response increased during the tone-puff 229 

window, the neuron was assigned a 1, and no increase in activity was assigned a 0 230 

(Figure 4Bi).  Taking the outer product of this response vector yielded a co-occurrence 231 

matrix of all cell interactions in the population for a single trial based on the response 232 

values during the tone-puff window (Figure 4Bii). These single trial co-occurrence 233 

matrices were combined on specific subsets of trials and clustered using spectral 234 

biclustering to identify neurons that were highly co-modulated for those trials41 (Figure 235 

4Bii).  236 

Co-occurrence matrices were first generated for the last training session, and 237 

clustering was performed on each matrix to identify sub-populations of neurons that were 238 

co-active during the last session (Figure 4Ci).  Co-occurrence matrices were then 239 

generated for the extinction session, but the sorting within each extinction matrix was 240 

maintained from the last training session matrix (Figure 4Cii). Similarly to our results 241 
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observed with trial-averaged responses, the co-active sub-populations identified during 242 

the last training session mostly are not co-active during the extinction session. Re-243 

clustering the extinction session matrix revealed new clusters of highly co-active neuron 244 

pairs on extinction trials (Figure 4Ciii).   245 

These findings indicate that the pattern of activity within the entire CA1 population 246 

as a network is different between the last session and extinction session. To quantify 247 

network connectivity, we anatomically mapped co-activity as edges between co-active 248 

neurons (nodes) to generate network maps for the last training session and extinction 249 

session (Figure 4Di). We found a non-significant difference in the number of edges 250 

present in the last training session versus extinction session (34.0 ± 18.4% vs. 66.0 ± 251 

18.4%: mean ± s.d. of the total edges of the last training and extinction sessions 252 

combined, p=0.0550, two-tailed paired t-test, Figure 4E). Additionally, the connectivity 253 

density and average degree of the two maps across all mice were not significantly 254 

different from one another (p=0.218 & 0.6022 for density and degree respectively, two-255 

tailed independent t-test, Supp. Figure 3). When we overlaid the last training and 256 

extinction session maps for individual animals, however, we noticed that the edges were 257 

largely distinct (Figure 5Cii-iii), with only 5.1 ± 3.4% (mean ± s.d.) of total edges appearing 258 

on both the last training session and extinction session maps across animals (significantly 259 

smaller than the total number of edges in both behavioral conditions, p=0.0023 & 0.0001 260 

for last training and extinction sessions versus shared edges respectively, two-tailed 261 

paired t-test, Figure 5D). These findings indicate that while largely different pairs of 262 

neurons are co-active during the last training session versus the extinction session, the 263 
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involvement of the overall CA1 network (the connectivity density) remains constant during 264 

these two behaviors.  265 

Behavioral response during individual trials involves differential connectivity 266 

between CA1 neuron pairs  267 

 Because the co-occurrence matrix is based on individual trial responses, we used 268 

the co-occurrence matrix clustering technique to visualize the co-active neuron 269 

populations during “correct” versus “incorrect” trials based on the animal’s behavioral 270 

response in the last conditioning session. A correct trial was one in which the animal 271 

exhibited a conditioned response, and an incorrect trial was one in which the animal failed 272 

to produce a conditioned response. We first generated a co-occurrence matrix for correct 273 

trials only, and clustering this matrix revealed sub-populations of neurons that were co-274 

active during correct trials (Figure 5Ai). We then generated a co-occurrence matrix for 275 

incorrect trials, but maintained the sorting of the correct trials matrix (Figure 5Aii). Most of 276 

the neuron pairs that were co-active during correct trials were not co-active during 277 

incorrect trials. Re-clustering the incorrect trials matrix reveals separate sub-populations 278 

of cells that were co-active on incorrect trials (Figure 5Aiii).  279 

 We generated network maps for both correct and incorrect trial co-occurrence 280 

matrices to again investigate differences in activity patterns (Figure 5Bi). The correct trials 281 

map included 66.6 ± 22.8% (mean ± s.d.) of the total edges present during the last training 282 

session and the incorrect trials map included 38.7 ± 21.6% (mean ± s.d.) of these total 283 

edges (p=0.1355, two-tailed paired t-test, Figure 5C). The connectivity density and 284 

average degree of the incorrect trials network map were slightly smaller than those for 285 

the correct trials map, but not significantly (p=0.2258 & 0.2849 for density and degree 286 

respectively, two-tailed independent t-test, Supp. Figure 4). However, the edges were 287 
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again almost completely distinct (Figure 5Bii-iii). In fact, only 5.3 ± 8.0%: (mean ± s.d.) of 288 

total edges appear on both the correct and incorrect trial maps (p=0.0001 & 0.006 for 289 

correct and incorrect trials versus shared edges respectively, two-tailed paired t-test, 290 

Figure 5C). These findings again highlight the diverse co-activity among neuron pairs in 291 

the same behavioral task, but across different behavioral responses, while maintaining 292 

the overall CA1 network activation. 293 

 294 

Discussion 295 

 In this study, we provide the first detailed, real-time evidence that largely distinct 296 

populations of neurons within the hippocampus respond to a trace conditioned stimulus 297 

during either conditioned learning or extinction learning. It has been previously reported 298 

that two functionally distinct neuron populations are activated by fear conditioning and 299 

extinction in the amygdala31. A subsequent study looking at the CA1 region of the 300 

hippocampus in a contextual fear paradigm revealed distinct changes in gene 301 

phosphorylation states in fear conditioning and fear extinction in largely non-overlapping 302 

neural populations32.  However, in this study, cFos and pERK immuno-activity were used 303 

as markers of conditioning and extinction, and were measured hours to days after the 304 

respective training. These results provided the first important insight into the potential for 305 

distinct population encoding, but the indirect nature of the activity markers and the time 306 

course for immuno-quantification does not allow for the distinction between rapid or 307 

gradual evolution of conditioning and extinction neuron populations. Further, these 308 

markers could be dependent on new protein synthesis or long-term plasticity, and are not 309 

measures of the dynamic learning process that occurs during conditioning and extinction.  310 
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In order to better understand the dynamic relationship between conditioning and 311 

extinction learning in the hippocampus, and to further investigate whether distinct 312 

populations encode these learning events, we used calcium imaging to monitor the 313 

activity of individual cells throughout conditioning and extinction learning paradigms. We 314 

applied trace conditioning because (1) it lends the advantage of a singular defined 315 

stimulus to which neural activity can be easily aligned and measured between the two 316 

different paradigms, (2) it allows training for both conditioning and extinction to occur in 317 

the same imaging session, and (3) learning during trace conditioning evolves over 318 

multiple trials, unlike fear-based paradigms where learning often occurs over very few 319 

trials. Interestingly, we found that rate of conditioning was highly animal-dependent, 320 

evolving gradually in most animals and rapidly in a subset of mice that showed substantial 321 

responding to the CS within 15-20 trials. Although acquisition of trace eye-blink 322 

conditioning can occur over dozens of trials in a single session42, most of our animals 323 

showed gradual acquisition, strongly reflected in the increase in proportion of neurons 324 

that were active during the tone-puff window from the first day to the final, and in the 325 

increase in conditioned response rate after multiple days of training. Overall, our results 326 

support the idea that robust conditioned learning gradually evolves over many days as 327 

new neurons are recruited to encode the stimulus, and reflect previous electrophysiology 328 

studies in rabbits and rats where the time course of learning is slow and evolves through 329 

many CS-US pairings43,44. In contrast, extinction learning was rapid across all subjects; a 330 

new population of neurons that responded to the now extinguished tone emerged within 331 

one session of forty trials. Previous work has implicated the prefrontal cortex and septal 332 

cholinergic inputs to be critical to the process of extinction, and these pathways may play 333 
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a pivotal role in the rapidity of extinction neuron emergence45–47. More work will need to 334 

be done on this front to determine whether reducing or silencing these inputs could delay 335 

or block the emergence of extinction-selective neuron populations. In addition, it is 336 

possible that extinction learning can occur rapidly because a meaningful memory schema 337 

already exists. Studies probing updates in location encoding of familiar places suggest 338 

memory re-encoding can occur rapidly for spatial information48,49, and our observation for 339 

extinction learning may reflect a manifestation of this principle. Finally, EX neurons were 340 

found embedded in the pyramidal cell layer and were undistinguishable from CO neurons 341 

in terms of their activity profile. This finding suggests that EX neurons are likely excitatory 342 

pyramidal cells, which is consistent with the description of extinction-relevant neurons in 343 

the amygdala and p-ERK+ extinction cells in the hippocampus as excitatory neurons.  344 

Given the likelihood that EX cells are excitatory pyramidal cells, it is unlikely that 345 

EX neurons inhibit CO neurons directly, but may instead mediate the activity of 346 

interneurons that have a prominent role in suppressing CO neurons as extinction training 347 

evolves. Since EX activity can emerge rapidly, the mechanism of interaction between CO 348 

and EX activities may be an important future direction that could benefit the treatment of 349 

anxiety-based disorders such as post-traumatic stress disorder (PTSD), which is 350 

characterized by over-generalization of fearful stimuli to neutral contexts and impairments 351 

in development of extinction learning50–55.    352 

 Calcium imaging is a powerful tool to understand how large populations of neurons 353 

function at the population level. However, when investigating dynamic or rapid network 354 

changes, as in extinction learning, it can be difficult to decode the information present in 355 

the population using traditional analysis techniques. For example, we had low confidence 356 
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in the pairwise correlation values measured over the brief tone-puff window (600ms, 12 357 

data points) on a trial-by-trial basis.  Traditional single-trial analytic approaches usually 358 

cannot find meaningful correlations with such limited data. Thus, our development of a 359 

co-occurrence-based approach provides a robust way to measure and observe the trial-360 

by-trial evolution of the population responses, and a means to assess some cells’ 361 

contributions that might be otherwise overlooked, or overstated, in trial-averaged data. 362 

Additionally, it can be used to break down and compare trials by specific behaviors (i.e., 363 

correct versus incorrect) or other variables that may change across trials over time. 364 

Finally, the co-occurrence matrix allows us to consider connectivity maps of entire neuron 365 

populations, an intuitive way to visualize and investigate the patterns of neural activation. 366 

Overall, the co-occurrence matrix is a useful technique for monitoring the evolution of 367 

population responses over time from high-dimensional calcium imaging datasets. 368 

Using the co-occurrence matrices, we found that CA1 neurons’ connectivity 369 

changes drastically between conditioned learning and extinction training, but also 370 

between trials with the correct or incorrect behavioral response during conditioned 371 

learning. While some cell pairs may participate in both learning conditions, pairs of 372 

neurons are differentially activated during different types of learning, indicating a role of 373 

network activation and response in the CA1.  374 

Because the co-occurrence matrix provides information at single trial level, it 375 

allows the examination of variations between individual trials. In our analysis of correct 376 

and incorrect trials, we found that on any given trial, a very small number of neurons were 377 

active, indicating that trial encoding may depend on the contributions of large populations 378 

of sparsely active neurons. This provides enlightening information about how the 379 
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hippocampus may represent and encode behaviorally relevant stimuli. Our results 380 

indicate that on each trial only a subset of the appropriate sub-population is activated to 381 

encode the relevant features of that trial, but also that these subsets work together to 382 

create a larger network that represents learning across an entire session, which may be 383 

critical to the encoding or retrieval of learning and memory in CA1.  384 

Materials and Methods 385 

Animal Surgery and Recovery 386 

 All animal procedures were approved by the Boston University Institutional Animal 387 

Care and Use Committee.  A total of 9 female C57BL/6 mice, 8–12 week old at the start 388 

of the experiments, were used in these studies (Taconic; Hudson, NY). To estimate 389 

sample size, power analysis was based on effect size differences found in our previous 390 

trace conditioning calcium results recorded in the hippocampus33. Power analysis was 391 

performed using G*Power 3.1.9.6 (http://www.gpower.hhu.de), applying a one-tailed 392 

Wilcoxon signed-rank test utilizing α = 0.05 and a power (1-β) value of 0.80. Following 393 

arrival from the vendor, mice were allowed to habituate to the vivarium for 2+ weeks prior 394 

to surgery. Animals were group housed during this time. Animals first underwent viral 395 

injection surgery targeting the hippocampus under stereotaxic conditions (AP: -2.0 mm, 396 

ML: +1.5 mm, DV: -1.6 mm). Mice were injected with 250 nL of AAV9-Syn-397 

GCaMP6f.WPRE.SV40 virus obtained from the University of Pennsylvania Vector Core 398 

(titer ~6e12 GC/ml). All injections were made via pulled glass pipettes (diameter: 1.2 mm) 399 

pulled to a sharp point and then broken at the tip to a final inner diameter of ~20 μm. Virus 400 

was delivered via slow pressure ejection (10-15 psi, 15-20 ms pulses delivered at 0.5 Hz). 401 

The pipette was lowered over 3 min and allowed to remain in place for 3 min before 402 
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infusion began. The rate of the infusion was 100 nL/min. At the conclusion of the infusion, 403 

the pipette remained in place for 10 min before slowly being withdrawn over 2-3 minutes. 404 

Upon complete recovery (7+ days after virus injection, mice underwent a second 405 

procedure for the implantation of a sterilized custom imaging cannula (OD: 0.317 cm, ID: 406 

0.236 cm, height, 2 mm diameter), fitted with a circular coverslip (size 0; OD: 3mm) 407 

adhered using a UV-curable optical adhesive (Norland Products).  To access dorsal CA1, 408 

the cortical tissue overlying the hippocampus was carefully aspirated away to expose the 409 

corpus callosum. The white matter was then thinned until the underlying tissue could be 410 

visualized through the surgical microscope. The window was then placed and centered 411 

above the hippocampus. During the same surgery, a custom aluminum head-plate was 412 

attached to the skull, anterior to the imaging cannula.  413 

Animal Training and Trace Conditioning Behavioral Paradigm 414 

Mice were trained on a trace eye-blink conditioning task similar to what was 415 

described previously33. Animals were allowed at least 2 weeks to recover from window 416 

surgeries, followed with an additional 2-4 weeks of handling and habituation to being 417 

head-fixed underneath the microscope (Figure 1Bii).  Each animal received at least 3 418 

habituation sessions prior to the first recording day. Habituation was performed in the 419 

dark with the imaging LED illuminated to the same intensity as it would be for recording 420 

sessions. 421 

Following habituation, training for the eye-blink conditioning task began.  Each trial 422 

consisted of a 350 ms long 9500 Hz tone (conditioned stimulus - CS) at 78-84 dB followed 423 

by a 250 ms trace interval, followed by a 100 ms puff to the eye (unconditioned stimulus 424 

– US) at 4.2-6 psi (Figure 1Bi). The ambient noise level ranged between 55-60 dB. Inter-425 
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trial intervals for each presentation were pseudo-randomized within a recording session 426 

with an inter-trial interval of 35 ± 5 seconds.  The first 20 recording trials consisted of tone 427 

only presentation without the puff.  Animals were then presented with either 60 tone-puff 428 

trials per day for 8 days, or 80 tone-puff trials per day for 4 days.  The final recording 429 

session consisted of 20 or 40 tone-puff trials as the last learning session, followed by 40 430 

extinction trials, where the puff was removed but the tone continued for those trials.  431 

Behavioral stimuli were generated using a custom MATLAB script that delivered TTL 432 

pulses for the tone and puff via an I/O interface (USB-6259; National Instruments, Austin, 433 

TX).  Behavioral TTL pulses and imaging frame timing were digitized and recorded 434 

(Digidata 1440A; Axon CNS Molecular Devices, San Jose, CA or RZ5D Bioamp 435 

Processor; Tucker Davis Technologies, Alachua, FL) to align behavioral data and imaging 436 

frames.   437 

Mouse eye positioning was captured using a Flea3 USB 3.0 camera (FL3-U3-438 

13S2C-CS; Richmond, BC, Canada) and the Point Grey FlyCapture 2 software, after 439 

illuminating the eye and surrounding area with an IR lamp positioned approximately 0.05-440 

0.5 meters away from the mouse.   441 

Wide-field imaging 442 

 A custom-built wide-field microscope was used to record neuronal calcium 443 

responses during animal learning and behavior as previously described33.  Briefly, the 444 

animal was head-fixed below the microscope on an articulating base (SL20 Articulating 445 

Base Ball Stage; Thorlabs Inc, Morganville, NJ) and a custom-machined attachment for 446 

the headbar, with the animal being covered by an elastic self-adherent wrap to reduce 447 

movement during recording.  The microscope consisted of a scientific CMOS (sCMOS) 448 
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camera (ORCA-Flash4.0 LT Digital CMOS camera C11440-42U; Hamamatsu, Boston, 449 

MA) was used in conjunction with standard optics for imaging GCaMP6 and a 10x 450 

magnification objective (Leica N Plan 10 X 0.25 PH1 or Mitutoyo Plan Apo Long WD 451 

Objective 10 X 0.28).  Images yielded a field of view 1.343 mm by 1.343 mm (1024x1024 452 

pixels) and were acquired at a 20 Hz sampling rate and stored offline for analysis. 453 

Data Analysis 454 

Behavior Eye-Blink Segmentation and Analysis 455 

 First, each raw video was segmented using Fiji56 and the MorphoLibJ plugin57 to 456 

generate a binary mask video corresponding to the animal’s eye.  To do so, each frame 457 

of this binary video was summed and normalized by the average eye size to generate a 458 

trace corresponding to the percentage of eye closure over time.  First, image stacks were 459 

loaded as grayscale images, Gaussian filtered with a radius of 2, and thresholded to 460 

include only the eye range.  Videos were converted to binary, holes were filled, and the 461 

Particle Analyzer feature was used to exclude all ROIs on the edges of the videos above 462 

the thresholded value. The MorphoLibJ plugin57, was used to label connected 463 

components with a connectivity of 26.  A custom Jython script (StepIntegers.py) was used 464 

to determine the connected components that existed across all image frames, which were 465 

merged into one connected component.  Lastly, to capture any additional smaller 466 

connected components that commonly were created at or around the time of blinks, 467 

another custom Jython script (FindModalValues.py) was used to capture these remaining 468 

components which were then merged into the final connected component.  All other 469 

connected components not a part of this singular merged component were dropped from 470 

the binary mask stack which was saved for eye-blink trace generation. 471 
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Eye-blink traces over time were generated by summing the binary pixels corresponding 472 

to the segmented eye in each video frame and dividing by the average eye size across 473 

the whole video.  An eye conditioned response was classified by calculating a threshold 474 

of deviation from the standard eye sizing.  The threshold was calculated by fitting a line 475 

to the central 95 percentile of the full eye-trace, and a deviation of eye size below 2% 476 

from this line was classified as a conditioned response.  This is equivalent to when the 477 

residuals deviated by 2% from a uniform distribution fit to the eye trace that was equal to 478 

the average eye size.  Each time the eye-trace showed a decrease below this threshold 479 

between the tone onset and puff onset, that trial was classified as a conditioned response 480 

trial. For comparison of behavioral performance, the final 20 trials of behavioral 481 

responding were selected for analysis from the extinction training session and the final 482 

training session. Conditioned responding measured from the first session was limited to 483 

the initial 10 trials. Trials were divided as such to capture periods of stability within the 484 

process of learning, as speed of learning acquisition varied between individual mice. 485 

Movement Correction 486 

 Motion correction of videos was done using ptmc, an open-source, parallel python 487 

version (github.com/HanLabBU/ptmc) of an image stabilization process published 488 

previously33.  Briefly, each frame was motion corrected by median filtering each image to 489 

remove noise, homomorphic filtering the image for edge detection, and comparing the 490 

frame with a reference image to determine how many pixels to shift that specific frame.  491 

This process was run in parallel by first motion correcting the first multi-page tiff stack 492 

(2047 frames) with to an average projection image of the noisy, non-corrected video.  This 493 

corrected video stack was used to generate a new reference image that was sent out in 494 
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parallel with every frame across the whole video, including the first tiff stack used to 495 

generate the reference. 496 

Neuronal Trace Extraction 497 

 After motion correction, regions-of-interest (ROIs) corresponding to cells were 498 

selected using a semi-automated custom written MATLAB software called SemiSeg 499 

(github.com/HanLabBU/SemiSeg).  First, a projection image (Max-minus-Min) across the 500 

whole video stack was calculated for selecting ROIs.  This static frame was loaded into 501 

SemiSeg and the full boundary of the ROIs was selected by a user selecting a sub-region 502 

of the image that was thresholded to determine the corresponding pixels within that region 503 

that correspond to a cell.  After all cells were selected from the projection image, pixels 504 

corresponding to these ROIs were averaged together spatially to calculate a temporal 505 

trace for each neuron. 506 

 For sessions where ROIs were matched to one another, spatial ROI maps were 507 

co-registered using frame-wise cross-correlation.  ROIs were then matched using a 508 

greedy method that required the centroid of cells to be within 50 pixels of one another 509 

and had to have at least 50% of their pixels overlap, as was published previously58.  Cells 510 

that did not meet both of those criteria were removed from the matched dataset for 511 

comparison. 512 

Fluorescence Trace Normalization 513 

 Each neuron’s fluorescence trace was normalized after a local background 514 

subtraction calculated for each trace.  A local background trace was calculated by finding 515 

the centroid for each ROI, and measuring a circle approximately 10 cell widths in radius 516 

(100 pixels) and subtracting the area for the ROI from that circle.  The pixels in this local 517 
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background were averaged together spatially to measure a temporal background trace.  518 

Background traces were subtracted from each cell’s measured trace to remove local 519 

fluctuations from scattering in wide-field imaging.  The baseline calcium level was 520 

calculated for each cell by fitting a normal distribution to the lowest 50 percentile of the 521 

data and using the mean of this distribution as the baseline calcium level.  This baseline 522 

was subtracted from each locally corrected trace, and data was scaled by 5% of the 523 

maximum range of the full calcium trace. 524 

Determination of Increased Activity Cells 525 

 For trial-averaged analysis, all trials of the last training session were included. 526 

Fluorescence for the 12 data points (600 ms) within the interval between tone onset and 527 

puff onset (tone-puff window) was compared to the 12 data points prior to the tone.  As 528 

cells might have only randomly responded once across all trials during this time window, 529 

a threshold was selected to capture cells with regularly occurring or very strong responses 530 

to the tone.  Thus, a cell was classified as having increased if the average fluorescence 531 

during the tone-puff window was larger than the average fluorescence for the pre-tone 532 

window by 0.15.  This 0.15 value is equivalent to a neuron having a several 5% increases 533 

(normalized value of 1) on at least 6 trials on one end of the spectrum, or one large 30% 534 

increase (normalized value of 6) on the other end of the spectrum.  This was the threshold 535 

used for all statistics and for comparison with the network measure. All cells that 536 

increased in fluorescence by this 0.15 value during the last training session or extinction 537 

session were deemed conditioned (CO) or extinction (EX) cells, respectively. 538 

 539 

 540 
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Bootstrapping Procedure 541 

 Trial-averaged bootstraps were calculated for each mouse to determine what 542 

percentages of cells would be expected to increase in random recordings not tied to the 543 

tone-puff learning paradigm.  Timing between each pseudo-randomized tone-puff was 544 

maintained to account for any periodicity effects during the recording, and bootstraps 545 

were calculated by circularly permuting the tone-puff timing across all traces.  The number 546 

of shuffled permutations performed was 1000 for each mouse.  The timing of each new 547 

randomized tone-puff was averaged together across all shuffled trials, and the percentage 548 

of cells that increased between the tone and puff was measured.  The percentage of cells 549 

increased for each mouse was averaged together to get a population estimation of the 550 

mean number of cells expected to increase within the population, which could be 551 

compared to the measured percentage of the population that increased between the 552 

actual tone-puff across all trials. 553 

Spatial Cell Identity Bootstrapping 554 

 Bootstraps of shuffled cell identity distributions were calculated for comparison 555 

against the observed distribution of cell identities.  A 100 micron radius (76 pixels at 1.312 556 

microns/pixel) was drawn around each cell.  The number of segmented cells that existed 557 

within that spatial distribution were calculated and a percentage of either CO or EX cells 558 

was determined from the cell identities from the cells within that radius.  For bootstrapping, 559 

the same number of CO or EX cells that was segmented for each recording session were 560 

randomly selected and the same calculation within a 100 micron radius was calculated.  561 

The measured percentages were then compared to the bootstrapped values for statistical 562 

confidence. 563 
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Co-Occurrence Network Creation 564 

 Individual trial co-occurrence matrices were created for each pair of cells across 565 

every trial. For consistency in the co-occurrence analysis, the last 20 trials of the last 566 

training session were included. For each tone-puff window, the mean value of the 600 ms 567 

(12 data points) between the tone onset and puff onset was compared to the 600 ms 568 

before the tone.  If this value was greater than 1 on a normalized trace, corresponding to 569 

5% the maximum peak value of a trace, then the neuron was labelled as responding.  The 570 

result was a binary vector of 0s and 1s of length N, where N is the number of cells 571 

recorded in the population.  The outer product of this vector was taken with itself for the 572 

whole population to yield an NxN co-occurrence matrix.  This matrix is 1 if both the ith 573 

and jth cells were activated between the tone-puff, and 0 otherwise. 574 

 Once a co-occurrence network was generated for each trial, they could be 575 

combined for further analyses by summing on certain trials of interest. For this analysis, 576 

co-occurrence matrices were summed across either the last training session, the 577 

extinction session, “correct” trials of the last training session, or “incorrect” trials of the last 578 

training session. Once a trial combination map was created, spectral biclustering was 579 

performed for a 3x3 cluster pattern using the Python machine learning package scikit-580 

learn41,59.   581 

Network Map Generation 582 

 Anatomical spatial information was combined with the co-occurrence matrix to 583 

generate network maps using the Python library NetworkX. The centroid of each ROI was 584 

used as the position of the corresponding node, which represent the cells of the imaging 585 

session.  Since the co-occurrence matrix is symmetric, the lower triangular matrix is used 586 
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to generate the edges of the network. Co-activity between two cells is represented as an 587 

edge between the corresponding nodes. For example, the ith cell and jth cell would be 588 

connected by an edge if Ai,j  is non-zero, where A is the NxN co-occurrence matrix. The 589 

combined map of correct and incorrect edges was created by summing the co-occurrence 590 

matrices of correct and incorrect trials of the last training session.   591 

Quantification of Network Properties  592 

 Percentage of edges in each correct or incorrect network is calculated as: 593 

𝐸𝑖
𝐸𝑠

× 100 594 

 where 𝐸𝑖 is total edges in the individual network and 𝐸𝑠 is total edges in the session 595 

network (comprised  of both correct and incorrect trial edges).  Percentage of shared 596 

edges is calculated as: 597 

(𝐸𝑐 + 𝐸𝑖𝑐) − 𝐸𝑠
𝐸𝑠

× 100 598 

where 𝐸𝑐 is total edges in correct network and 𝐸𝑖𝑐 is total edges in incorrect network.  599 

 Python package NetworkX was used to calculate network density, which is defined 600 

as: 601 

2𝑚

𝑛(𝑛 − 1)
 602 

and degree is defined as: 603 

2𝑚

𝑛
 604 

where m is number of edges and n is number of nodes. 605 

 606 

 607 
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 778 

Figure 1. Experimental design and measurement of animal behavior. (A) Imaging 779 

and behavioral setup. The imaging setup consisted of a microscope with a sCMOS 780 

camera, standard wide-field fluorescence optics, and a 10x long working distance 781 

objective to image a head-fixed mouse.  For the behavioral paradigm, a speaker was 782 

positioned near the mouse and a cannula for directing an air puff was placed in front of 783 

the right eye. Eye responses were monitored using a USB 3.0 Camera. See methods for 784 
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full details. (B) Experimental timeline. Each animal was injected with AAV-Syn-GCaMP6f 785 

and allowed 1-2 weeks for virus expression before surgical window implantation above 786 

CA1.  The first training day was 4-6 weeks after surgery, and animals were trained and 787 

imaged for 5-9 days. (C) Full field of view and selected extracted traces. Maximum-788 

minimum projection for one motion corrected video to show example field of view of 789 

several hundred cells. Inset: Several selected cells and their corresponding normalized 790 

fluorescence trace recordings.  (D) Within trial design. Trials consisted of a 350 ms tone 791 

as the conditioned stimulus (CS), followed by a 250 ms trace interval with no sound, 792 

followed by a 100 ms puff of air to the eye as the unconditioned stimulus (US). (E) Video 793 

eye monitoring and segmentation. (Ei) Raw eye frames aligned to the CS, trace interval, 794 

and US windows shown above. (Eii) Eye frames after segmentation using Fiji56 and 795 

MorphoLibJ57. (Eiii) Extracted eye trace for one trial. Eye movement thresholds were 796 

calculated for each recording and used to classify whether the mouse eyelid moved 797 

enough to constitute a conditioned response. CR – conditioned response.  (Eiv) Eye trace 798 

for all 40 trials of a first training session from one example mouse. Red indicates eye 799 

opening, while blue indicates eye closure. Most trials show a conditioned response in blue 800 

after the tone but before the puff, and there is a strong blue band after the puff on every 801 

trial. (Ev) Extracted eye trace averaged over all trials shown in Eiv.  802 
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 804 

Figure 2. Conditioned responses and neuronal calcium responses increase during 805 

conditioning and decrease during extinction.  (A) Extracted eye traces across days.  806 

Red indicates eye opening, while blue indicates eye closure. (Ai) Eye trace for 10 tone-807 

only trials and the first 10 trials of the first training session from the same example mouse 808 

in Figure 1E.  Note the absence of a strong blue band at the time when the puff would 809 

normally occur in trials 1-10. Note the absence of blue (indicating absence of conditioned 810 

response) during the tone-puff window of the first few training trials (beginning trial 11).  811 

(Aii) Eye trace for all 20 trials of the last training session for the same example mouse. 812 

Note the blue band (indicating conditioned response) during the tone-puff window on most 813 

trials throughout the session. (Aiii) Eye trace for the last 20 trials of the extinction session 814 

for the same example mouse. Note the lack of conditioned response during the tone-puff 815 

window on most trials, and note the absence of a strong blue band at the time when the 816 
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puff would normally occur (as puff is removed during extinction). (B)  Quantification of 817 

conditioned response for all subjects during the first 10 trials of the first session, last 20 818 

trials of the last session, and last 20 trials of the extinction session. Conditioned response 819 

rate increased between the first and last training sessions, indicating learning among the 820 

mice. Conditioned response rate decreased between the last training session and the 821 

extinction session. CR – conditioned response, *p=0.0278 and alpha<0.05 for first vs last 822 

session, and p=0.0134 and alpha<0.025 for last vs extinction session, one-tailed paired 823 

t-test and Benjamini-Hochberg procedure. (C) Trial-averaged calcium recordings. (Ci) 824 

Top: Trial-averaged recordings sorted by average fluorescence between the tone and the 825 

puff for the first training session from an example mouse. Bottom: Zoomed inset of bottom 826 

20% of cells for first training session.  (Cii) The same as in Ci, for the last training session 827 

from the same mouse, sorted by average fluorescence between the tone and the puff for 828 

the last training session. More cells showed a consistent trial-averaged response for the 829 

last training session than during the first session, as seen by the green bands between 830 

tone and puff on the last training session.  (Ciii) Trial-averaged recordings (plotted as in 831 

Ci) of the extinction session, but cell sorting was maintained from the last training session 832 

to look at the spatially matched cells. Maintaining sorting revealed a reduction in response 833 

to the CS in previously CS-responsive neurons. (Civ) The same data as shown in Ciii, 834 

but resorted according to the fluorescence between the tone and the puff for the extinction 835 

session. Resorting on the extinction session alone shows a new population of cells 836 

responsive to CS during the extinction session.  (Di) Quantification of the proportion of 837 

cells responsive to the CS from the first session (yellow) and the last training session 838 

(red), *p=0.0463, paired one-tailed t-test. (Dii) Quantification of the proportion of cells 839 
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responsive to the CS from the last training session compared to the extinction session 840 

(blue), *p=0.016, paired one-tailed t-test.   841 
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 843 

Figure 3. Some neurons show robust responses to the tone during either 844 

conditioning or extinction learning, but not both.  (A) Responses across all trials for 845 

three neurons that show a reliable responding during the last training session, termed CO 846 

cells.  Outer columns are individual trials shown in gray and the average of each 10 trials 847 

shown in red.  The pink box corresponds to the tone and the orange box corresponds to 848 
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the puff.  Heat maps in the center show each trial for a 3-second time window surrounding 849 

the tone and puff presentations. Note some responses of these cells on early extinction 850 

trials, but much fewer on later extinction trials.  (B) The same as in A, for three neurons 851 

that exhibit a reliable responding for extinction trials, termed EX cells. Note the lack of 852 

response of these cells to the tone during the last training session. Also, note that both 853 

the CO and EX cells do not respond on every relevant trial, but show consistent 854 

responding across the full session.  (C) Spatial maps of all neuron masks from a 855 

representative animal, with CO cells in red and all other cells in gray. (D)  The same map 856 

as in C, with EX cells in blue and all other cells in gray.   857 
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 859 

Figure 4. Co-occurrence analysis provides a measure of population activity across 860 

individual trials. (A) Non-classified cell (neither CO nor EX) that highlights the 861 

heterogeneity of responses in the general population of cells, plotted as in Figure 3A and 862 

B. (B) Schematic of method for constructing single-trial co-occurrence matrices.  (Bi) A 863 

sub-population of cells for one trial that highlights the how the response pattern was 864 
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determined.  If a cell showed an increase in activity during the tone-puff window, 865 

compared to the pre-tone period, it was assigned a 1.  (Bii) The outer product was taken 866 

of the vector of responses across the population with itself to generate a single trial co-867 

occurrence matrix.  This is a binary matrix where if the ith and jth cells both increase 868 

during the tone-puff window there is a 1, but a 0 otherwise.  These individual trials can be 869 

combined as specific trials of interest, and clustered with spectral biclustering to identify 870 

neurons with the highest degree of co-activity across trial types.  (C)  Representative co-871 

occurrence matrices. (Ci) Clustering based on co-occurrence matrix for the last 20 trials 872 

of the last training session from an example mouse. Note the clusters of cell pairs with 873 

high co-activity during the last session. (Cii) Co-occurrence matrix for all trials of the 874 

extinction session, with sorting maintained from the last training session matrix. 875 

Maintaining sorting shows a lack in co-activity between the same cell pairs that were 876 

present in the co-active clusters of the last training session. (Ciii) The same data as 877 

shown in Cii, re-clustered. Re-clustering the extinction matrix reveals separate 878 

populations of cell pairs that are highly co-active during the extinction session. (D) 879 

Connectivity maps created from co-occurrence matrices. (Di) Connectivity maps created 880 

from the last training session co-occurrence matrix shown in Ci (top) and extinction 881 

session co-occurrence matrix shown in Cii and Ciii (bottom). (Dii) Last training and 882 

extinction session network maps, overlaid. Edges from the last training session are shown 883 

in red, edges from the extinction session in blue, and edges present during both sessions 884 

are shown in black. Insets: Zoom-ins of four nodes. Note that there are very few edges 885 

that overlap (colored black) between the two behavioral conditions. (E) Quantification of 886 

the proportion of total edges of the last training and extinction sessions that were present 887 
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during last training session (red), extinction session (blue), or both (gray). p=0.0550 for 888 

last vs extinction sessions, *p=0.0023 for last session vs shared and p=0.0001 for 889 

extinction session vs shared, paired two-tailed t-test.  890 
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 894 

Figure 5. Sub-populations of neuron pairs are differentially activated on trials with 895 

different behavioral responses. (A) Behaviorally-relevant co-occurrence matrices. (Ai) 896 

Clustering based on co-occurrence matrix of last training session trials on which the 897 

animal performed the correct behavioral response, for a representative animal. Note the 898 

clusters of highly co-active cell pairs. (Aii) Co-occurrence matrix for the trials from the last 899 

training session with the incorrect behavioral response for the same mouse. Sorting is 900 

maintained from the last training session to compare co-activity of the same cell pairs 901 

between behavioral conditions. Maintaining sorting shows the lack of strong co-activity 902 

during incorrect trials in the cell pairs that were highly co-active on correct trials. (Aiii) The 903 

same data as shown in Aii, re-clustered. Re-clustering reveals new populations of cell 904 

pairs that are highly co-active on trials with the incorrect behavioral response. (B) 905 
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Connectivity maps created from co-occurrence matrices. (Bi) Connectivity maps created 906 

from the correct trials co-occurrence matrix shown in Ai (top) and incorrect trials co-907 

occurrence matrix shown in Aii and Aiii (bottom). (Bii) Correct and incorrect trial network 908 

maps, overlaid. Edges from correct trials are shown in purple, edges from incorrect trials 909 

in teal, and edges present during both trial types are shown in black. Insets: Zoom-ins of 910 

four nodes. Note that there are very few edges that overlap (colored black) between the 911 

two behavioral conditions. (C) Quantification of the proportion of total edges of the last 912 

training session that were present during correct trials (purple), incorrect trials (teal), or 913 

both (gray). p=0.1355 for correct vs incorrect trials, *p=0.0001 for correct trials vs shared 914 

and p=0.006 for incorrect trials vs shared, paired two-tailed t-test.  915 

  916 
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 920 

Supplemental Figure 1.  (A) For the first session and last training session, bootstrapped 921 

distributions of the percentage of cells with an increase between the tone and puff after 922 

circularly shuffling the tone-puff locations 1000 times.  Dashed black line shows 923 

percentage measured with the non-shuffled (experimental) tone-puff locations.  (B)  924 

Bootstrapped distributions comparing the matched last session and extinction session 925 

recordings, computed similarly as in A.  926 

 927 
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 929 

Supplemental Figure 2. 930 

(A) Individual single trial responses for CO cell that shows an average level of responding 931 

on the last training session.  Outer columns have individual trials shown in gray, with the 932 

10-trial average shown in red.  The pink box corresponds to the tone interval, and the 933 

orange box corresponds to the puff.  Center heat-maps show each trial for the window 934 

surrounding the tone-puff time. (B) The same as in A, for an EX cell that exhibits an 935 

average level of responding for extinction trials. Note the lack of response of these cells 936 

to the tone during the last training session.  937 
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 940 

Supplemental Figure 3.  941 

(A) Average degree and (B) density of connectivity maps for the last training and 942 

extinction sessions across all animals, shown mean + s.d. p=0.6022 for average degree 943 

and p=0.2018 for density, paired two-tailed t-test.  944 
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 946 

Supplemental Figure 4.  947 

(A) Average degree and (B) density of connectivity maps for correct and incorrect trials 948 

across all animals, shown mean + s.d. p=0.2849 for average degree and p=0.2258 for 949 

density, paired two-tailed t-test.  950 

 951 
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