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Abstract

Chromosomes segregate differentially relative to distinct subnuclear structures, but this genome-wide
compartmentalization, pivotal for modulating genome function, remains poorly understood. New ge-
nomic mapping methods can reveal chromosome positioning relative to specific nuclear structures.
However, computational methods that integrate their results to identify overall intranuclear chromo-
some positioning have not yet been developed. We report SPIN, a new method to identify genome-
wide nuclear spatial localization patterns. As a proof-of-principle, we use SPIN to integrate nuclear
compartment mapping (TSA-seq and DamID) and chromatin interaction data (Hi-C) from K562 cells
to identify 10 spatial compartmentalization states genome-wide relative to nuclear speckles, lamina,
and nucleoli. These SPIN states show novel patterns of genome spatial organization and their relation
to genome function (transcription and replication timing). Comparisons of SPIN states with Hi-C sub-
compartments and lamina-associated domains (LADs) from multiple cell types suggest constitutive
compartmentalization patterns. By integrating different readouts of higher-order genome organiza-
tion, SPIN provides critical insights into nuclear spatial and functional compartmentalization.
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MAIN TEXT

In human and other higher eukaryotic cells, interphase chromosomes are organized spatially within the
cell nucleus (Kumaran et al., 2008; Bonev and Cavalli, 2016), such that their packaging and folding lead
to dynamic interactions between genomic loci (Dekker et al., 2013). A key determinant of this intranu-
clear chromosome packaging are the interactions between chromosomes and heterogeneous constituents
in the nucleus – in particular, nuclear compartments or nuclear bodies – including nuclear pore com-
plexes, lamina, nucleoli, and nuclear speckles (Spector, 2006; Dundr and Misteli, 2010). Earlier work
demonstrated the important connections between spatial localization of chromosome regions and gene
expression regulation (Kumaran et al., 2008; Takizawa et al., 2008; Van Steensel and Belmont, 2017).
Therefore, characterizing nuclear compartmentalization is crucial towards a comprehensive delineation
of the roles of nuclear organization in different cellular conditions (Dekker et al., 2017). Unfortunately,
our understanding of the genome-wide chromatin interaction with different nuclear compartments re-
mains surprisingly limited.

The advent of whole-genome mapping methods for chromatin interactions such as Hi-C has shown
that, at megabase resolution, chromosomes are spatially segregated into A/B compartments genome-
wide (Lieberman-Aiden et al., 2009). A/B compartments exhibit distinct correlations to active euchro-
matic and inactive heterochromatic regions of the genome, respectively, although such strict, binary
compartment separation is mostly partial (Kempfer and Pombo, 2019). Indeed, higher coverage Hi-C
data generated from the human lymphoblastoid (GM12878) cells revealed that A/B compartments can
be divided into five primary subcompartments, A1, A2, B1, B2, and B3, which harbor more refined as-
sociations with various functional features such as gene expression and histone modification (Rao et al.,
2014). However, the observations of chromosome spatial association with nuclear compartments derived
from Hi-C are limited and intrinsically indirect.

Several genome-wide mapping methods have enabled more direct examination between chromosome
regions and specific nuclear compartments. In Guelen et al. (2008), DamID was utilized to measure con-
tact frequencies between chromatin with nuclear lamina, revealing that∼35% of the human genome form
lamina-associated domains (LADs). Recently, TSA-seq was developed to estimate cytological distance
of chromatin toward nuclear speckles and nuclear lamina (Chen et al., 2018). Even though TSA-seq
data show strong correlation with DamID, there are also clear differences. Most notably, the transitions
of DamID scores are typically much more abrupt than TSA-seq maps that show gradual changes of
signals over a chromatin trajectory (Chen et al., 2018), reflecting the differences in the methods, i.e.,
TSA-seq for molecular distance vs. DamID for contact frequency. In addition, Chen et al. (2018) (and
later Xiong and Ma (2019)) showed that TSA-seq scores relative to speckles and lamina are correlated
with Hi-C subcompartments although TSA-seq directly measures distance to the subnuclear structures.
These results manifested the potential of an integrative framework that simultaneously analyzes different
but complementary mapping data to offer a more complete view of nuclear compartmentalization.

Here, we develop a new computational method called SPIN (Spatial Position Inference of the Nu-
clear genome) to identify genome-wide chromosome localization patterns relative to multiple nuclear
compartments. SPIN integrates TSA-seq, DamID, and Hi-C in a unified framework based on hidden
Markov random field (HMRF). As a proof-of-principle, we apply SPIN to TSA-seq (for nuclear speckle
and nuclear lamina), DamID (for nuclear lamina and nucleoli), and Hi-C data derived from K562 cells
to identify genome-wide spatial localization states. The “SPIN states” reveal new and more detailed
correlations with other features of genome structure and function, such as Hi-C subcompartments, topo-
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logically associating domains (TADs) (Dixon et al., 2012; Nora et al., 2012), histone modification, levels
of transcriptional activity, and DNA replication timing. Comparisons with Hi-C subcompartments and
LADs from multiple cell types suggest constitutive patterns of compartmentalization. We also identify
possible molecular determinants and sequence-level features that modulate different compartmentaliza-
tion. Taken together, SPIN is an effective integrative method that combines different genome-wide map-
ping approaches of nuclear genome organization to ascertain global patterns of spatial localization of the
chromosomes, which provide critical insights into nuclear spatial and functional compartmentalization.

Results

Overview of the SPIN method

The overview of the SPIN method is illustrated in Fig. 1a. Our goal is to identify genome-wide spa-
tial compartmentalization patterns of the chromosomes by integrating TSA-seq (Chen et al., 2018) and
DamID (Guelen et al., 2008; Meuleman et al., 2013) data together with Hi-C. TSA-seq and DamID
provide complementary information to measure distance and contact frequency between chromosome
regions and subnuclear structures. The rationale of including Hi-C is that the pairwise genomic regions
spatially interacting with each other more often than expected (from Hi-C) are more likely to share
similar spatial compartmentalization patterns. We formulate this objective by using the hidden Markov
random field (HMRF) (Zhang et al., 2001; Koller et al., 2009), in which nodes represent non-overlapping
genomic bins (with a size of 25kb) and edges represent either significant Hi-C interactions or adjacent
genomic bins (see Methods). We assume that each node is associated with an unobserved spatial local-
ization state that SPIN aims to reveal (“SPIN state”). The observations on each node include signals
from TSA-seq and DamID for defined nuclear compartments. Given the observed data on each genomic
bin across the entire genome, the goal of SPIN is to solve the estimation problem by maximizing the
likelihood of assigning spatial compartmentalization states. Thus the output of SPIN contains spatial
localization state assignment, which is originally hidden, for each genomic bin throughout the genome.

SPIN is different from previous methods for chromatin domain segmentation based on a hidden
Markov model (HMM) (Meuleman et al., 2013; Zheng et al., 2015; Marco et al., 2017) where chromatin
interaction is not utilized. Although SPIN shares similarity in its goal with Segway-GBR (Libbrecht
et al., 2015), the regularization in Segway-GBR uses significant Hi-C interactions as prior such that pairs
of interacting genomic loci are encouraged to have the same label in genome annotation, which is not
necessarily appropriate for refined spatial localization states of the chromosomes (see Supplementary
Results for more detailed comparisons). In addition, the transition probabilities between different states
learned in SPIN generalize such constraints so that chromatin regions in spatial proximity would have
similar localization with more diverse patterns.

Note that in principle the input of SPIN on each genomic bin can also include functional genomic
signals such as histone modifications, replication timing, and transcription levels. However, in this work
we explicitly limit the input signals to those that directly measure the spatial position of chromatin (TSA-
seq and DamID) and use functional genomic data to evaluate the functional correlations of different SPIN
states genome-wide.
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SPIN identifies genome-wide patterns of nuclear compartmentalization

In this implementation of SPIN to infer genome-wide nuclear compartmentalization patterns, we used
TSA-seq and DamID mapping data in K562 for nuclear speckles (TSA-Seq), lamina (DamID and TSA-
Seq), and nucleoli (DamID). Nucleoli DamID data, generated using a Dam methylase fusion with a
nucleolar targeting peptide repeat (4xAP3 (Scott et al., 2010)) is new; all remaining data are as published
previously (Chen et al., 2018; Leemans et al., 2019). Details of the new nucleolar DamID mapping
are described elsewhere (van Schaik et al. manuscript in prep.). Hi-C data for K562 are from Rao
et al. (2014). Details of data processing for TSA-seq, DamID, and Hi-C are in the Supplementary
Methods. We partition the genome (chromosome 1-22 and X) into consecutive non-overlapping 25kb
bins, which constitute the graph structure for the HMRF model in SPIN. Edges are derived from Hi-
C and the adjacent genomic bins (including those caused by large-scale structural variants in K562)
(Methods and Supplementary Methods). Fig. 1b shows an example of the input signals from different
measurements and the SPIN state output annotations.

We identified 10 SPIN states that represent major nuclear compartmentalization patterns in K562.
These 10 SPIN states are: Speckle, Interior Active 1, 2, 3 (Interior Act1, Interior Act2, Interior Act3),
Interior Repressive 1, 2 (Interior Repr1, Interior Repr2), Near Lamina 1, 2 (Near Lm1, Near Lm2),
Lamina Like, and Lamina. The genome-wide percentage of each state is shown in Fig. 1c. The name of
these states are partially informed by comparing to various functional genomic data, especially for the
Interior states (see later), even though the input for SPIN does not use any functional genomic data.

In Fig. 1c, we show that each SPIN state has distinct distributions of TSA-seq and DamID signals
for the input data, reflecting the spatial position for compartmentalization. For example, the Speckle
state has the highest SON TSA-seq signals and the lowest lamina/nucleolus signals as compared to other
states. Notably, although we group multiple states into larger classes such as Interior Active, Interior
Repressive, and Near Lamina, the refined states do show their distinct patterns. For example, the Inte-
rior Repr2 state has similar DamID LaminB and TSA-seq LaminB as compared to Interior Repr1, but
its DamID nucleolus score is significantly higher while its SON TSA-seq score is significantly lower
(p-value<2.2E-16). A recent report identified Nucleolus Associated Domains (NADs) in mouse embry-
onic fibroblasts and found that there are two types of NADs (Vertii et al., 2019): Type I NADs localize
more frequently with both nucleoli and nuclear lamina and Type II NADs localize with nucleoli but do
not overlap with lamina. We also observed such distinctions related to nucleoli from our SPIN states for
spatial localization. The Interior Repr2 state has similar enrichment of DamID nucleolous scores as com-
pared to the Near Lm1-2, Lamina Like, and Lamina states, but the Interior Repr2 state has significantly
lower enrichment with DamID LaminB and LaminB TSA-seq (Fig. 1c) (p-value<2.2E-16).

The identified SPIN states provide a comprehensive view of the spatial localization of the chromo-
somes in the nucleus relative to multiple subnuclear compartments, including nuclear speckles, nuclear
lamina, and nucleoli (see the cartoon in Fig. 1d). We compared the SPIN states to DNA FISH (fluo-
rescence in situ hybridization) imaging data. In Fig. 1e, we show three genomic regions (with detailed
genomic coordinates) that correspond to different SPIN states with comparisons to DNA FISH data
from Chen et al. (2018). The probe in the FISH image of the Speckle state has an average distance of
0.16µm from nuclear speckle (SON protein). The probe in the FISH image of the Lamina state has an
average distance of 0.98µm from nuclear speckles and is located <0.5µm from the nuclear periphery.
The probe in the FISH image of the Interior Act1 state has an average distance of 0.47µm from nuclear
speckles. The comparison further suggests the reliability and advantage of having genome-wide SPIN
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states relative to multiple nuclear compartments.

SPIN states provide spatial interpretation for Hi-C subcompartments

The five primary Hi-C subcompartments (A1, A2, B1, B2, and B3) defined from Rao et al. (2014),
which exhibit strong associations with various genomic and epigenomic features, provide more detailed
compartmentalization patterns from Hi-C data than the binary A/B compartment separation. However,
the spatial localization context of Hi-C subcompartments has not been clearly revealed except that Chen
et al. (2018) used the Hi-C subcompartments to identify the two transcriptional hot-zones based on TSA-
seq scores by comparing to A1/A2 subcompartments (defined in GM12878 which has extremely high
coverage Hi-C data). The recently developed algorithm SNIPER (Xiong and Ma, 2019) facilitates the
identification of subcompartments in Hi-C data with low to moderate coverage and provides the Hi-C
subcompartment annotations specifically in K562. Here we directly compare the 10 SPIN states with
Hi-C subcompartments in K562.

Fig. 2a shows the overall comparison of Hi-C subcompartments in different SPIN states. Specifically,
we found that the Speckle and Interior Act1 states are strongly associated with A1 subcompartment (fold
change enrichment 8.5 and 4.7, p-value<2.2E-16; Supplementary Methods). Interior Act2 is strongly as-
sociated with A1, A2, and B1 subcompartments (fold change enrichment 3.8, 3.2, and 3.6, respectively,
p-value<2.2E-16). Interior Act3 is enriched with A2 subcompartment (fold change enrichment 3.1,
p-value<2.2E-16). The Interior Repr1 and Interior Repr2 states have more B1 subcompartment (fold
change enrichment 2.8, and 5.3, p-value <2.2E-16). We found that the Lamina Like state is strongly en-
riched with B2 subcompartment (fold change enrichment 4.95, p-value<2.2E-16), while Lamina state is
associated with both B2 and B3 subcompartments (fold change enrichment 3.16 and 5.58, p-value<2.2E-
16). Together, different SPIN states have a strong correlation with different Hi-C subcompartments,
supporting that Hi-C subcompartments reflect spatial positions relative to nuclear structures. However,
the SPIN states offer a much more direct and refined interpretation of Hi-C subcompartments in terms
of spatial compartmentalization. For example, although the Speckle, Interior Act1, and Interior Act2
states are all enriched with A1 subcompartment, they show distinguishable distributions regarding SON
TSA-seq signals (Fig. 1c). This suggests that SPIN is able to further subdivide Hi-C subcompartment
annotations into additional distinguishable spatial states of nuclear compartmentalization.

SPIN states stratify patterns of transcription activity and histone modification

Earlier studies have shown the correlation between the genome compartmentalization patterns and tran-
scriptional activities (Lieberman-Aiden et al., 2009; Rao et al., 2014; Xiong and Ma, 2019). We sought
to assess whether the SPIN states, which offer more detailed compartmentalization patterns, further strat-
ify the transcriptional activity based on spatial locations of the chromatin. We first compared the SPIN
states with 11 histone modification ChIP-seq datasets in K562 from the ENCODE project, including
H3K79me2, H3K27ac, H3K9ac, H3K4me2, H3K4me3, H3K4me1, H3K9me3, H3K36me3, H2A.Z,
H3K27me3, and H3K9me1. Overall, we found that the SPIN states have strong correlation with histone
modifications (Fig. 2a). In addition, we also show that by adding Hi-C data into the SPIN model we
can achieve state calling to better stratify histone modifications as compared to the baseline HMM-based
model (Fig. S1). From the SPIN states, as chromatin localization changes from nuclear periphery to
the interior (i.e., lamina to speckle axis), we observed a dramatic increase of ChIP-seq signal p-value
of active histone marks (e.g., H3K27ac, H3K4me1, H3K4me3, H3K9ac) and, in general, a decrease in
repressive marks (e.g., H3K9me3) (Fig. S2). Specifically, histone marks that are associated with tran-
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scriptional activation, including H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, and H3K79me2,
show a dramatic increase of signal in the Speckle state (>5-fold increase on average, p-value<2.2E-16)
(Fig. 2a). This result is consistent with previous studies that transcriptionally active chromatin regions
are spatially localized preferentially near nuclear speckle and towards the interior (Chen et al., 2018;
Van Steensel and Belmont, 2017). In contrast, heterochromatin mark H3K9me3 shows stronger presence
in the Lamina state (p-value<2.2E-16), agreeing with earlier reports that LADs are often heterohchro-
matin with inactive genes (Meuleman et al., 2013; Van Steensel and Belmont, 2017; Zheng et al., 2015).
In addition, the H3K27me3 mark, known to be associated with repressed transcription (Ferrari et al.,
2014), is more abundant in Interior Repr2 (p-value<2.2E-16) compared with the Near Lm1 and Inte-
rior Repr1 states (Fig. 2a). Importantly, we found that there is an increase of DamID nucleolus signals
in Interior Repr2 compared with the Interior Repr1 and also the Interior Act states (Fig. 1c), suggesting
a possible localization preference of Interior Repr2 towards the nucleolus. This is in concordance with
the recent report that H3K27me3 marks are enriched on Type II NADs (Vertii et al., 2019), which are
found associated with nucleoli but not with LADs. Our results suggest that SPIN states reflect different
associations with histone marks, and chromatin enriched for H3K27me3 and H3K9me3 have distinct
spatial localization preferences.

To further demonstrate that the SPIN states clearly stratify functional genomic signals, we analyzed
the patterns of histone modification signals across the transition boundaries between neighboring SPIN
states. We selected the top six boundary types that are most frequently observed (Fig. 2b). Since SPIN
states do not distinguish DNA strands, we therefore merged transition patterns in both directions on the
genome. For example, Lamina to Near Lm2 transition and Near Lm2 to Lamina transition are consid-
ered as the same type of transition boundary for this analysis. For each transition type, we calculated
the average histone modification signals at +/- 200 kb surrounding the transition boundaries. We found
that many histone modifications show a clear, dramatic change across the SPIN state transition bound-
aries (Fig. 2c, Fig. S3). In particular, the active histone marks, such as H3K4me1 and H3K27ac, show
a pronounced, >2-fold signal increase, when the chromatin trajectory is going from Interior Act1 to
Speckle. H3K9me1 signals exhibit a gradual rather than a sharp increase across the transition bound-
aries (Fig. S3). Additionally, we observed the opposite trend of signal enrichment across the boundaries
for the repressive marks such as H3K27me3 and H3K9me3 (Fig. 2c). We further compared histone
mark changes at the transition boundaries of SPIN states when the boundaries were defined by Hi-C
subcompartments in K562 (Xiong and Ma, 2019). This reveals a sharper transition of histone marks at
SPIN state boundaries as compared to Hi-C subcompartments (Fig. S3; especially H3K9me1, H3K9me3,
H3K4me1, H3K4me2, H3K4me3), further suggesting that SPIN states offer a more accurate and refined
definition of nuclear compartmentalization as compared to Hi-C subcompartments.

Next, we explored how transcription varies in different SPIN states. We compared SPIN states with
GRO-seq data that measures through run-on transcription the density of engaged RNA Pol2 polymerases
across protein coding genes in K562 (Fig. 2d). We found that genes in the Speckle and Interior Act
states have high transcription levels, as expected, with average FPKM >40 for these run-on transcripts.
The majority of the top 10% transcribed genes (over 90%) are from the Speckle or Interior Act states.
In contrast, genes in the Lamina and Interior Repr states are highly repressed. In addition, as shown in
Fig. 2e for the consecutive SPIN states, transcription in Interior Act vs. Interior Repr exhibit significant
difference (t-test, p-value<2.2E-16), despite the fact that both states are likely to localize at relatively
similar radial positions in the nucleus (based on TSA-seq). Also, genes in the Near Lm and Lamina Like
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states have higher transcription compared with the Lamina state (t-test, p-value = 5.689E-11). These
analyses suggest that the SPIN states demarcate spatial patterns of chromosome regions in fine-scale
separated into transcriptionally active and repressed regions.

SPIN states are predictive of DNA replication timing

DNA replication timing (RT) is a vital genome function that is highly aligned with large-scale compart-
mentalization (Dileep et al., 2015). To further evaluate the functional connections of the SPIN states, we
generated 7-fraction Repli-seq data for K562, where each fraction corresponds to the DNA replicated
during 6 stages of S-phase as well as G2-phase representing the very latest DNA to replicate (Supple-
mentary Methods). For each genomic bin (5kb), we calculated the percentage of DNA replicated in
each fraction which was used to compute the fold change score of SPIN states on different replication
fractions. We found that RT can be clearly stratified by the SPIN states (Fig. 3a). The Speckle and
Interior Act states are found in early replicated regions (S1, S2, fold change score >1.5). The Inte-
rior Repr1, Interior Repr2, Near Lm1 and Near Lm2 states are replicated in the middle of S phase (S3,
S4, fold change score >1.3). The Lamina Like and Lamina states are replicated late (S5, S6 and G2,
fold change score >1.3). Overall, the SPIN states show a striking separation of the multi-fraction Repli-
seq. In addition, using the definition of constitutive and developmentally-regulated replication domains
(RDs) (Dileep et al., 2015), we found the SPIN states have distinct correlation with different patterns of
constitutive and developmental RDs (Fig. 3b). Constitutive RDs can be further separated as constitutive
early (CE) and constitutive late (CL) domains. We found that 85% of the genomic regions in Speckle
state is CE and 55% Lamina state is CL. In contrast, other SPIN states contain a higher proportion of
developmentally-regulated RDs. In Fig. 3c, we show that the SPIN states also correlate with evolution-
ary patterns of RT between human and non-human primates based on the annotations from Yang et al.
(2018). Here the RT patterns are in five groups: early (all primate species have early RT), late (all pri-
mate species have late RT), weakly early (4 out of 5 species have early RT), weakly late (4 out of 5
species have late RT), and unconserved (the rest). Collectively, these analyses reveal a strong correlation
between the detailed nuclear spatial compartmentalization identified by SPIN and the DNA RT program
as well as its constitutive patterns in different cell types and across different species.

Next, we sought to investigate the functional significance of SPIN states in terms of how important
the SPIN states are, among other epigenomic features, in predicting RT. We built a predictive framework
based on a random forest regression model to predict the multi-fraction Repli-seq signals along the
genome by using the SPIN states together with various histone mark data (Fig. 3d) (see Methods). We
specifically calculated the importance of each input feature based on how much each feature decreases
the weighted impurity in a decision tree in the random forest. We found that the SPIN state is the most
important feature, followed by H3K9me1, H3K9ac, H3K4me1, and H3K36me3, which are the top 5
most informative features (Fig. S4).

Together, the comparison with multi-fraction Repli-seq demonstrates that, by integrating different
nuclear genome mapping data (TSA-seq, DamID, and Hi-C), the SPIN states delineate the detailed con-
nections between nuclear compartmentalization and replication timing.

SPIN states offer new perspectives for other nuclear organization units

We evaluated the significance of the SPIN states with respect to providing new insights for other nuclear
genome features. We assessed the interplay between the SPIN states and the known 3D genome structural
features, including LADs, TADs, and chromatin loops. We also asked whether the SPIN states are
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indicative of the constitutive patterns of nuclear compartmentalization across different cell types.
By combining TSA-seq and DamID, we identified several types of nuclear periphery states with

different localization relative to nuclear lamina (Lamina, Lamina Like, and Near Lm1-2, Fig. 1c). To
further assess how each SPIN state corresponds to LADs across multiple cell types, we used DamID
LaminB data in 6 human cell lines from the 4DN portal, including HCT116, K562. RPE-hTERT, HAP-
1, HFFc6, and H1-hESC (see Table S1). Based on the assignment of LADs in 6 cell lines, we separated
LADs into two categories: constitutive LADs (cLADs) and facultative LADs (fLADs). cLADs are
defined as genomic regions characterized as LADs in at least 5 out of 6 cell lines. fLADs are defined
as genomic regions characterized as LADs in at least 2 but fewer than 5 cell lines. In Fig. 4a, we show
that there is a large difference between cLADs and fLADs in terms of the overlap with different SPIN
states. 71% of cLADs are in the Lamina state in K562 as well as 22% in Near Lm2, 3% in Lamina Like,
and 3% in Near Lm1 in K562. In contract, for fLADs, only 23% are in K562 Lamina state, but 39%
are in Near Lm2 and 23% are in Near Lm1 in K562. This suggests that the SPIN states in one cell
type (i.e., K562 in this study) can already separate fLADs and cLADs, as well as extending the concept
of LADs into two separate categories. These results are consistent with the recently reported HiLands
chromatin domains relative to the nuclear lamin based on both DamID LaminB and histone marks (in
mES cells) (Zheng et al., 2015, 2018), where HiLands-B and HiLands-P are two distinct chromatin states
that correspond to the facultative and constitutive LADs. For the two types of LADs, both the Lamina
SPIN state and HiLands-P have higher DamID LaminB signals and higher H3K9me3 modification, while
the Near Lm SPIN state and HiLands-B have lower DamID LaminB signals and higher H3K27me3
enrichment.

Next, we compared the SPIN states with ChIA-PET chromatin loops and TADs derived from Hi-
C. For CTCF-mediated ChIA-PET chromatin loops, we discarded loops within 25kb range to focus
on longer range interactions. We found that most loops are formed within the same SPIN states with
more loops towards the interior states with higher transcriptional activity (Fig. 4b). We also observed
similar results in Pol2-mediated ChIA-PET loops (Fig. S5). For TADs defined by the directionality
index (DI) method (Dixon et al., 2012), we found that the TADs tend to stay within the same SPIN state.
Specifically, 82.3% of TADs have only one SPIN state labeled. It is rare (0.4%) that one TAD spans more
than two different SPIN states. Importantly, we observed the increase of TAD size when the SPIN state
trajectory is changing from the nuclear interior to the periphery, with the average TAD size as 1.12Mb
in the Lamina state and 0.19Mb in the Speckle state, respectively (Fig. 4c and Fig. 4e). The boundaries
of the SPIN states are close to TAD boundaries and CTCF peaks than expected at random (Fig. 4d)
(p-value <2.2E-16). We calculated the Hi-C insulation score (Lajoie et al., 2015) to represent TAD
boundary strength. We found that the insulation score on the Speckle state is on average 2 times higher
than the score in the Lamina state (Fig. 4e), indicating that there are stronger TAD/subTAD boundaries
in the Speckle states (Supplementary Methods). In addition, we performed analysis for TAD-TAD level
interactions and showed that TADs from the same SPIN state tend to form spatially separated cliques
(Fig. S6 and Supplementary Results). Taken together, these results show that SPIN states stratify TADs
and chromatin loops by providing spatial context.

We sought to analyze how conserved the spatial compartmentalization patterns are across different
cell types. Here we use Hi-C subcompartments in multiple cell lines as an estimation of chromosome
spatial localization in different cell types. As we have already shown, Hi-C subcompartments are highly
correlated with SPIN states although the SPIN states provide more detailed and explicit compartmen-
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talization views relative to subnuclear bodies. We compared the SPIN states in K562 with the SNIPER
Hi-C subcompartments across 9 human cell types (Xiong and Ma, 2019), including K562, GM12878,
HAP1, HeLa, HMEC, HSPC, HUVEC, IMR90, and TCell. We calculated the SNIPER Entropy score
as the metric of conservation for Hi-C subcompartments across cell lines (Fig. S7). The Speckle state
has the lowest SNIPER entropy score (0.1 on average), strongly suggesting that Hi-C subcompartments
on Speckle (mostly A1) are largely conserved across cell lines (Fig. 4e). The Lamina Like and Lamina
states (mostly B2 and B3 subcompartments) also have relatively low SNIPER entropy scores (0.75 on
average). The most dynamic SPIN states across cell types are Interior Repr2 and Near Lm1. This com-
parison with cross-cell type SNIPER Hi-C subcompartments suggests that different SPIN states have
distinct patterns across cell types with Speckle being the most conserved state.

Discussion

In this work, we developed SPIN, a probabilistic graphical model that integrates TSA-seq, DamID, and
Hi-C to provide a comprehensive view of genome-wide nuclear compartmentalization to nuclear speck-
les, nuclear lamina, and nucleolus. We identified 10 SPIN states in K562 based on TSA-seq and DamID
data together with Hi-C. We showed that different SPIN states represent different spatial localization
preferences within the nucleus. Further analysis indicates that SPIN states have strong correlation with
and also better stratify other functional genomic features, such as histone modification, transcription ac-
tivity, and DNA replication timing, suggesting that the detailed SPIN states have important relationships
to genome function. The SPIN states also facilitate the identification of potential molecular determinants
and sequence features that may play roles in modulating nuclear genome compartmentalization (see Sup-
plementary Results, Figs. S8, S9, S10, and S11), paving the way for further experimental validation to
pinpoint the mechanisms that give rise to specific compartmentalization. Our computational framework
is flexible to incorporate more data for other nuclear structures (such as PML bodies, nuclear pores, and
pericentromeric heterochromatin) when they become available to achieve even more complete character-
ization of nuclear compartmentalization. We therefore expect that SPIN has the potential to become an
important method for revealing nuclear compartmentalization in different cellular conditions.

Nuclear compartmentalization analysis has primarily focused on A/B compartments based on Hi-C
data. Although five major Hi-C subcompartments were revealed in (Rao et al., 2014) in GM12878 cells,
such analysis has not been possible in other datasets with low to moderate coverage until recently (Xiong
and Ma, 2019). Additionally, prior work on LADs and inter-LADs also made the binary distinction of
chromatin domains associated with the nuclear lamina, where LADs and inter-LADs largely correspond
to A/B compartment separations. Our SPIN states significantly advance our understanding of the de-
tailed spatial localization patterns, much beyond binary separation of the chromatin domains in terms
of nuclear compartmentalization. Importantly, we have demonstrated that SPIN states offer new spa-
tial interpretation of Hi-C subcompartments, clarifying the compartmentalization patterns of specific
subcompartments relative to nuclear speckles, the nuclear lamina and nucleolus. Besides, SPIN states
reveal more refined compartmentalization patterns as compared to Hi-C subcompartments, supported by
comparisons with other genomic and epigenomic features.

Our SPIN states can be further evaluated and compared using other analysis methods, e.g., polymer
simulations (Nuebler et al., 2018), 3D genome structure population modeling (Hua et al., 2018), and in-
tegration between chromatin interactome and regulatory network (Tian et al., 2020). In addition, recently
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published new genome-wide mapping methods (Quinodoz et al., 2018; Beagrie et al., 2017; Zheng et al.,
2019) and approaches for assessing chromatin interaction dynamics (Finn et al., 2019; Belaghzal et al.,
2019) could be incorporated into our framework. In this work, we made additional attempt to reveal
the patterns of consecutive SPIN states on the chromosomes to reveal potential chromatin fiber trajec-
tories with distinct functions (see Supplementary Results, Fig. S12), which can be further validated by
Oligopaints/OligoSTORM imaging (Beliveau et al., 2012; Nir et al., 2018; Bintu et al., 2018).

The molecular determinants that modulate the maintenance and movement of compartmentalization
remain largely elusive. Earlier microscopy studies identified genes associated with chromatin targeting
to specific nuclear structure (e.g., Hsp70 transgene (Khanna et al., 2014)). Very recent work from Falk
et al. (2019) postulated the roles of molecular determinants for the global changes of chromosome com-
partmentalization, although the exact players have yet to be identified. Our SPIN states facilitate the
identification of potentially important sequence features for specific compartmentalization, which pro-
vides promising tool to help elucidate the mechanisms that maintain and modulate compartmentalization.
We made initial effort to identify sequence features enriched in different SPIN states (Supplementary
Results, Figs. S8, S9, S10, S11). This can be further facilitated by SPIN compartmentalization states
in other cell types to prioritize important sequence features. Such analysis can be validated by genome
engineering experiments. Overall, SPIN represents an important step forward in developing integrative
computational tools to offer new perspectives of spatial organization of the chromosomes in the nucleus
and their interplay with various subnuclear structures.
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Methods

Data acquisition, processing, and availability

TSA-seq and DamID data

K562 cells were obtained from the ATCC. For TSA-seq, the cells were cultured following the ENCODE
project recommendations. For DamID, the cells were cultured according to 4DN guidelines following
the ATCC recommendations. TSA-seq data generation of SON and lamin B was described and reported
in Chen et al. (2018). DamID of lamin B1 data generation was described and reported in Leemans
et al. (2019). For nucleolus DamID, a tandem repeat of 4 copies of the nucleolus targeting domain of
AP3D1, linked with flexible GGSGG-linkers (4xAP3 in short (Scott et al., 2010)), was codon optimized
for expression in human cells (IDT). NheI and SalI restriction sites were added on the flanks and used to
replace the LMNB1 gene with the 4xAP3 repeat in the Dam expression vector. The 4xAP3 Dam vector
was used to generate nucleolus contact data identical to LMNB1 DamID-seq (Leemans et al. (2019),
van Schaik et al. manuscript in prep.). Sequencing reads from TSA-seq and DamID were first mapped
to the human reference genome (hg38; chromosome 1-22 and X). For TSA-seq data, PCR duplicates
were removed using Samtools (Li et al., 2009) (rmdup command with default parameters). Next, for
TSA-seq data, we calculated the number of reads mapped in sliding 20kb windows with 1kb step size on
the genome. The normalized TSA-seq enrichment score was calculated as the log2 ratio of read counts
between TSA pull-down sample and the input normalized by sequencing depth (Chen et al., 2018).
The TSA-seq score was further smoothed by using Hanning window of length 21 following the same
smoothing approach used in Chen et al. (2018). For DamID data, scores were similarly calculated as
the log2 ratio of mapped reads between Dam-target and Dam-only samples (Meuleman et al., 2013).
The signal was then averaged on sliding 20kb windows with 1kb step size with additional smoothing
by Hanning window of length 21. The smoothed TSA-seq and DamID signals were binned in 25kb
resolution.

Hi-C data

We obtained the Hi-C data of K562 cells from (Rao et al., 2014). Both intra-chromosomal and inter-
chromosomal interactions were processed at 25kb resolution and VC SQRT normalization was applied
to the Hi-C contact matrices. Hi-C data extraction and normalization were performed using Juicer (Du-
rand et al., 2016). For intra-chromosomal contact maps, we calculated the log2 ratio between observed
(O) over expected (E) interactions (i.e., O/E) for each pair of interactions. The rationale is to consider
genomic loci (not necessarily close on 1D distance) that share spatial localization with higher than ex-
pected genome-wide Hi-C interaction patterns to facilitate the identification of compartmentalization.
For inter-chromosomal interactions, the expected number of interactions was set to be uniformly dis-
tributed between genomic loci on different chromosomes. For each chromosome, we fitted a Weibull
distribution for Hi-C contacts and kept those interactions with p-value < 10−5 as significant interactions
for subsequent steps as input to the SPIN method. For each inter-chromosomal interaction, we also
used p-value < 10−5 as cutoff for significant interactions but for each pair (i, j) we required that all
neighboring pairs between i± 1 and j ± 1 should be also significant to increase the reliability of added
edge.
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Multi-fraction Repli-seq

Multi-fraction Repli-seq was performed using an extension protocol to the E/L Repli-seq (Marchal et al.,
2018). Briefly, K562 interphase cells were labeled with BrdU and sorted into 7-fractions (S1, S2, S3,
S4, S5, S6, and G2) (Supplementary Methods). Note that cells in G1 fraction were collected at the very
early side of G1 peak and are sequenced without BrdU Immunoprecipitation (IP), therefore we used
G1 fraction as a control to remove copy number and mappability bias. For each Repli-seq fraction,
we mapped the sequenced reads to the reference genome hg38. Then we calculated read counts on
10kb sliding windows with 1kb step size. The total number of mapped reads were then normalized to 1
million read counts per fraction. The raw signals of each window were normalized by the signals from
G1. Genomic bins with 0 mapped reads in G1 were considered as unmappable regions. For each 1kb bin,
the replication timing signal was calculated as the percentage of the total signal over the seven fractions.
Finally, the replication timing signals were also binned in 25kb resolution.

Other epigenomic data and annotations

We compared SPIN states with other epigenomic datasets, such as Hi-C subcompartments, TADs, LADs,
ChIP-seq, and GRO-seq. For Hi-C subcompartments, we used the K562 Hi-C subcompartment anno-
tation produced by SNIPER (Xiong and Ma, 2019). Hi-C subcompartments in additional cell types
were also from Xiong and Ma (2019). K562 histone mark and transcription factor ChIP-seq data were
obtained from the ENCODE project (Consortium et al., 2012). Datasets with replicates were merged.
For data sets with no processed p-value available, we used MACS2 (Zhang et al., 2008) to calculate
ChIP-seq p-values (for narrow peak call, command bdgpeakcall is used). We downloaded CTCF and
POLR2A ChIA-PET in K562 from the ENCODE project. ChIA-PET reads were processed using ChIA-
PET Tool (Li et al., 2010) with default parameters. As for TADs, we used the DI method (Dixon et al.,
2012) to call TADs based on 10kb resolution Hi-C. In addition, we used CaTCH (Zhan et al., 2017) to
call hierarchical TADs. To identify LADs, we used a hidden Markov model to identify LADs and inter-
LADs from K562 DamID LaminB data (Guelen et al., 2008). LADs annotations in additional cell types
were collected from 4DN data portal. See Supplementary Methods for additional data analysis details
by comparing to SPIN states.

All datasets used in this work are listed in Table S1.

Algorithm description of the SPIN method

Overall design of the model

SPIN (Spatial Position Inference of the Nuclear genome) is developed based on a type of probabilistic
graphical model called hidden Markov random field (HMRF) (Zhang et al., 2001; Koller et al., 2009),
with the goal to identify genome-wide patterns of nuclear compartmentalization by integrating TSA-seq,
DamID, and Hi-C (see Fig. 1a for the model overview). HMRF can be represented as an undirected graph
G = (V,E), where each node i ∈ V represents a non-overlapping 25kb genomic region andE represents
the set of edges. For each node i, the observation Oi ∈ Rd is a vector of 1D TSA-seq and DamID signals
on the genomic bin. Specifically, in this study these observations are TSA-seq SON for nuclear speckle,
TSA-seq LaminB for nuclear lamina, DamID LaminB for nuclear lamina, and DamID 4xAP3 nucleoli.
The edges (i, j) ∈ E in the graph G represent: (1) Significant Hi-C interactions between two genomic
loci (see Hi-C data processing); (2) Adjacent nodes on the chromosome; (3) Since K562 is a cancer cell
lines, we specifically consider adjacencies introduced by large structural variations (see Supplementary
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Methods).
Each node i has a hidden state Hi, which represents the spatial localization of genomic bin i relative

to multiple nuclear compartments. Hi is only dependent upon Oi and the neighbors of i, i.e., N(i) =

{j|j ∈ V, (i, j) ∈ E}. Given the number of states k (see below on how we estimate k), our goal is to
estimate the hidden states Hi for all nodes that maximize the following joint probability:

P (
−→
H,
−→
O ) ∝ 1

Z

∏
i∈V

PV (Oi|Hi)
∏

(i,j)∈E

PE(Hi, Hj) (1)

where
−→
H represents the hidden states of all nodes, Hi is the hidden state of node i, PV (Oi|Hi) cor-

responds to the potential of node i that the observation is Oi given the hidden state Hi. PE(Hi, Hj)

corresponds to the edge potential between two nodes i and j with hidden states Hi and Hj . Z is the
constant used for normalization:

Z =
∑
−→
H

∏
i∈V

PV (Oi|Hi)
∏

(i,j)∈E

PE(Hi, Hj)

 (2)

We assume that the observation of Oi given hidden state Hi = ha follows a multivariate Gaussian
distribution, i.e.,

PV (Oi|Hi = ha) =
1√

(2π)d|Σha |
exp

{
−1

2
(Oi − µha)T [Σha ]−1(Oi − µha)

}
(3)

whereOi follows multivariate Gaussian distributionN(µha ,Σha) given stateHi = ha. The edge potential
is defined by the transition probability between neighbor states ha and hb.

PE(Hi = ha, Hj = hb) ∝ t(ha, hb) (4)

Initialization and model parameter estimation

To initialize PV (Oi|Hi) for each node i, we estimate it based on a Gaussian mixture model with given
number of states k. Here Gaussian mixture model assumes that the input data from TSA-seq and DamID
for a given state are generated from a mixture of multivariate Gaussian distributions. We have:

Pθ(Oi) =
∑
ha∈H

P (Oi|Hi = ha)× π(Hi = ha) (5)

where Pθ(Oi) represents the mixture of k Gaussian distributions of different types of observed signals,
π(Hj = ha) is the mixture proportion of the hidden states.

To initialize PE(Hi, Hj), we estimate it by the transition probability of initial states called from the
Gaussian mixture model. For each bin i, we choose Hi to be the state ha that maximizes P (Hi = ha|Oi)

of Gaussian mixture model. The initial transition matrix between two state ha and hb can be calculated
as: ∑

(i,j)∈E [1(Hi = ha)1(Hj = hb)]∑
(i,j)∈E [1(Hi = ha) + 1(Hj = hb)]

(6)

where 1 is the indicator function.
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We use the Expectation-Maximization (EM) algorithm to estimate the parameters in the model, in-
cluding parameters to define node potential and edge potential. At iteration t, we assume that our estimate
of model parameters from previous iteration is θt−1. The goal of the EM algorithm is to maximize the
expected value of the log likelihood. By using mean-fied approximation (Celeux et al., 2003; Zhang,
1992), we maximize the following Q function:

Q(θt|θt−1) = EP ( ~H| ~O,θt−1)

[
logP ( ~H, ~O | θt)

]
(7)

Q(θt|θt−1) ∝
∑
i∈V

∑
ha∈H

P (Hi = ha|Oi, θ
t−1) logP (Oi|Hi = ha, θ

t)

+
∑
i∈V

∑
ha∈H

P (Hi = ha|Oi, θ
t−1) logP (Hi = ha|N(i), θt)

(8)

where N(i) represents the neighboring nodes of node i, and we can use the estimated hidden states from
last iteration to approximate:

P (Hi = ha|N(i), θt) =
∏

j∈N(i)

PE(Hi = ha, Hj = hθ
t−1

j ) (9)

where hθt−1

j is the loopy belief propagation estimated hidden state for node j at iteration t − 1. We also
have:

P (Oi|Hi = ha, θ
t) =

1√
(2π)d|Σha

θt
|

exp

{
−1

2
(Oi − µhaθt )T [Σha

θt
]−1(Oi − µhaθt )

}
(10)

where Oi follows multivariate Gaussian distribution given state Hi = ha.
The first part on the right-hand side of Eqn. 8 corresponds to the node potential and the second part

corresponds to the edge potential.
In the E-step, we compute the expected states of all nodes. Given the parameter estimation θt−1, we

calculate the posterior probability:

P (Hi = ha|Oi, N(i), θt−1) =
P (Oi|Hi = ha, θ

t−1)P (Hi = ha|N(i), θt−1)∑
h′a∈H

P (Oi|Hi = h′a, θ
t−1)P (Hi = h′a|N(i), θt−1)

(11)

In the M-step, we use the maximum likelihood estimation (MLE) to maximize the Q function:

θt∗ = arg max
θt

Q(θt|θt−1) (12)

Loopy belief propagation for state estimation

Given the parameters and observations in the graph, the hidden state inference problem is solved by the
loopy belief propagation (LBP) algorithm (Murphy et al., 1999). LBP works by passing messages among
neighboring nodes in the Markov random field structure. Each node passes messages to neighboring
nodes when it has received all incoming messages. The passed message from node i to node j about
hidden state Hj = hb is calculated as:

mi→j(Hj = hb) =
∑
ha∈H

PV (Oi|Hi = ha)× PE(Hi = ha, Hj = hb|Oi, Oj)×
∏

k∈N(i)\j

mk→i(Hi = ha)


(13)
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where H is the set of all states, mi→j(Hj = hb) represents the message passing from node i to node j
about hidden state Hj = hb. N(i) \ j refers to the neighbors of node i other than node j. The complete
message passed between nodes should be normalized before sending. We normalize the sum of message
mi→j to be 1, i.e.,

mi→j(Hj = hb) =
mi→j(Hj = hb)∑

h′b∈H
mi→j(Hj = h′b)

(14)

After we send messages from all nodes to their neighbors, we calculate the belief of each nodes based
on the node potential and the incoming messages. The belief of node i with hidden state Hi is calculated
as:

b(Hi = ha) =
1

Z ′
× PV (Oi|Hi = ha)×

∏
k∈N(i)

mk→i(Hi = ha) (15)

where Z ′ is the normalization constant:

Z ′ =
∑
ha∈H

PV (Oi|Hi = ha)×
∏

k∈N(i)

mk→i(Hi = ha)

 (16)

Belief is the normalized product of all incoming messages and node potentials, which approximates the
marginal probability of each node. Based on belief, we can update the estimated states of each node. To
do that, we simply go through all possible hidden states and choose the one with highest belief. LBP
runs by iteratively passing messages among neighboring nodes and updating all messages to be sent
simultaneously based on previous incoming messages. At the first iteration the initial messages are all
set to 1 before they are normalized. As for the termination condition, we will stop iterations if there is
no change of belief or maximum iteration number is reached. We set the maximum iteration to 500 but
the method can typically terminate within 100 iterations. All computations are performed in log space to
avoid numerical underflow.

Estimation of the number of states

To estimate the number of states, we applied the Elbow method on the input TSA-seq and DamID data
based on K-means clustering. Specifically, we assessed the total within-cluster sum of squares as a
function of the number of clusters. The total within-cluster sum of squares is calculated as:

K∑
k=1

∑
i∈Ck

4∑
j=1

(Oij −Okj)
2 (17)

where K is the number of states, Ck is the set of cluster k, j refers to the 4 different input data types
(TSA-seq and DamID). Okj is the average score for data j in cluster k. We determined the appropriate
cluster number K where additional cluster would not lead to much improvement in terms of the total
within-cluster sum of squares. We found that the appropriate number of states may range from 10 to 15
(Fig. S13). However, results with different state number within the range showed minor difference. We
therefore set K=10 in this work.

Method for predicting DNA replication timing from SPIN states

We developed a predictive model to demonstrate that multi-fraction Repli-seq can be predicted based
on SPIN states and histone marks signals. The model takes SPIN states and 11 histone modification
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ChIP-seq signals as input, and the 7 fraction Repli-seq score as predictive output. Here we used 25kb
as window size. We then calculated the average ChIP-seq signals (p-value given by MACS2) with
each window for 11 histone marks, H2A.Z, H3K27me3, H3K4me1, H3K4me3, H3K9ac, H3K9me3,
H3K27ac, H3K36me3, H3K4me2, H3K79me2, and H3K9me1. Regions with missing values in any
dataset were discarded. The discrete SPIN states were transformed into integer numbers ranging from
1 to 10, ranked by the distance from nuclear speckles (1 as Lamina state and 9 as Speckle state). The
predicted Repli-seq score for each bin is a 7-dimension vector, where each dimension corresponds to a
specific fraction (S1-S2, and G2).

We then utilized the random forest regressor in scikit-learn (Pedregosa et al., 2011). For the prediction
model, the input contains SPIN states and histone marks averaged over 25kb bins. The performance of
our model was measured by the average R2 score between real Repli-seq signal and the predicted one in
all fractions. We performed a cross-validation on different chromosomes to avoid over-fitting, where we
left out one chromosome as test set, and used the remaining chromosomes as training set. The process
was repeated for every chromosome and then the results from each fold were averaged. To improve the
predictive performance, we performed a parameter scanning for the random forest model and used the
parameter set with the highest R2 score on the training set. The parameters that were tuned include the
number of trees (1000), the maximum number of features in each tree (square root of the total number
of features), and the maximum depth of the tree (100). The feature importance reported by the random
forest regressor was used to select informative features.

We were able to achieve 0.95 R2 score on the training set and 0.923 R2 score on the testing set with
consistent performance across chromosomes (Fig. S4).
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Code Availability

The source code of SPIN can be accessed at: https://github.com/ma-compbio/SPIN.
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Comparison with constitutive and developmentally-regulated replication timing (RT) domains. The barplot shows what percentage of each
SPIN state belongs to constitutive early, constitutive late, and developmentally-regulated RT domains, respectively. c. Comparison with RT
evolutionary patterns defined by Phylo-HMGP (Yang et al., 2018) between human and other non-human primate species. d. A Genome
Browser view of the prediction of Repli-seq signals based on the SPIN states together with histone marks. The tracks are (from top to
bottom): histone modifications, SPIN states, multi-fraction Repli-seq, and the predicted Repli-Seq signals. The three highlighted regions in
light blue are examples of early replicating domains. The two highlighted regions in light orange are examples of late replicating domains.
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Figure 4: Comparison between the SPIN states and other nuclear organization units. a. Percentage of constitutive LADs (cLADs) and
facultative LADs (fLADs) in SPIN states Lamina, Lamina Like, and Near Lm1-2. cLADs and fLADs are called from DamID data from 6
different human cell lines. b. SPIN states of ChIA-PET significant interaction pairs (CTCF-mediated chromatin loops). c. Size of the TADs
within each SPIN states. TADs are called by the Directional Index (DI) method. d. SPIN states boundaries are close to TADs boundaries
and CTCF peaks. e. A Genome Browser snapshot of the SPIN states together with TADs and cross cell-type Hi-C subcompartments.
K562 Hi-C contact map is shown at the top. TADs are called by the DI method. Hi-C subcompartments in multiple cell lines (Xiong and Ma,
2019) are shown at the bottom. Two highlighted regions in light blue are constitutive B3 subcompartments that correspond to the Lamina
SPIN state. The light gray region has more dynamic subcompartment annotations in different cell types. The light orange region highlights
a constitutive A1 subcompartment that corresponds to the Speckle SPIN state.
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