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Abstract

The global spread of SARS-CoV-2 requires an urgent need to find effective therapeu-

tics for the treatment of COVID-19. We developed a data-driven drug repositioning

framework, which applies both machine learning and statistical analysis approaches

to systematically integrate and mine large-scale knowledge graph, literature and tran-

scriptome data to discover the potential drug candidates against SARS-CoV-2. The

retrospective study using the past SARS-CoV and MERS-CoV data demonstrated that

our machine learning based method can successfully predict effective drug candidates
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against a specific coronavirus. Our in silico screening followed by wet-lab validation

indicated that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218, currently

in Phase I clinical trial, may be repurposed to treat COVID-19. Our in vitro assays

revealed that CVL218 can exhibit effective inhibitory activity against SARS-CoV-2

replication without obvious cytopathic effect. In addition, we showed that CVL218

is able to suppress the CpG-induced IL-6 production in peripheral blood mononuclear

cells, suggesting that it may also have anti-inflammatory effect that is highly relevant to

the prevention immunopathology induced by SARS-CoV-2 infection. Further pharma-

cokinetic and toxicokinetic evaluation in rats and monkeys showed a high concentration

of CVL218 in lung and observed no apparent signs of toxicity, indicating the appealing

potential of this drug for the treatment of the pneumonia caused by SARS-CoV-2 infec-

tion. Moreover, molecular docking simulation suggested that CVL218 may bind to the

N-terminal domain of nucleocapsid (N) protein of SARS-CoV-2, providing a possible

model to explain its antiviral action. We also proposed several possible mechanisms to

explain the antiviral activities of PARP1 inhibitors against SARS-CoV-2, based on the

data present in this study and previous evidences reported in the literature. In sum-

mary, the PARP1 inhibitor CVL218 discovered by our data-driven drug repositioning

framework can serve as a potential therapeutic agent for the treatment of COVID-19.

1. Introduction

The outbreak of the pneumonia named COVID-19 caused by the novel coronavirus

SARS-CoV-2 (2019-nCoV) has infected over 110,000 people worldwide by 8th March,

2020. Apart from China, other countries or regions including South Korea, Iran, and

Europe have reported a rapid increase in the number of COVID-19 cases, implying that

this novel coronavirus has posed a global health threat. Under the current circumstance

of the absence of the specific vaccines and medicines against SARS-CoV-2, it is urgent

to discover effective therapies especially drugs to treat the resulting COVID-19 disease
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and prevent the virus from further spreading. Considering that the development of a

new drug generally takes years, probably the best therapeutic shortcut is to apply the

drug repositioning strategy (i.e., finding the new uses of old drugs) [1, 2, 3] to identify

the potential antiviral effects against SARS-CoV-2 of existing drugs that have been

approved for clinical use or to enter clinical trials. Those existing drugs with potent

antiviral efficacy can be directly applied to treat COVID-19 in a short time, as their

safety has been verified in principle in clinical trials.

In this study, we applied a data-driven framework that combines both machine

learning and statistical analysis methods to systematically integrate large-scale avail-

able coronavirus-related data and identify the drug candidates against SARS-CoV-2

from a set of over 6000 drug candidates (mainly including approved, investigational

and experimental drugs). Our in silico screening process followed by experimental val-

idation revealed that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor, CVL218,

currently in Phase I clinical trial, may serve as a potential drug candidate to treat

COVID-19. Our in vitro assays demonstrated that CVL218 can exhibit effective in-

hibitory activity against SARS-CoV-2 replication in a dose-dependent manner and with

no obvious cytopathic effect. In addition, we found that in human peripheral blood

mononuclear cells (PBMCs), CVL218 is able to suppress the CpG-induced production

of IL-6, which has been reported previously to be of high relevance to the viral patho-

genesis of COVID-19, especially for those intensive care unit (ICU) patients infected by

SARS-CoV-2. Further in vivo pharmacokinetic and toxicokinetic studies in rats and

monkeys showed that CVL218 was highly distributed in the lung tissue and no apparent

sign of toxicity was observed, which makes it an appealing potential drug candidate for

the treatment of the novel pneumonia caused by SARS-CoV-2 infection. Moreover, our

molecular docking study suggested that CVL218 may bind to the N-terminal domain

of nucleocapsid (N) protein of SARS-CoV-2, providing a possible mode of its antiviral

action against SARS-CoV-2. Based on the data present in this study and previous
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known evidences reported in the literature, we also discussed several putative mech-

anisms of the anti-SARS-CoV-2 effects for CVL218 or other PARP1 inhibitors to be

involved in the treatment of COVID-19. Overall, our results indicated that the PARP1

inhibitor CVL218 identified by our drug repositioning pipeline may serve as an effective

therapeutic agent against COVID-19.

2. Results

2.1. Overview of our drug repositioning framework

The overview of our data-driven drug repositioning framework is shown in Fig-

ure 1A. We first constructed a virus related knowledge graph consisting of drug-target

interactions, protein-protein interactions and similarity networks from publically avail-

able databases (Methods). Three different types of nodes (i.e., drugs, human targets

and virus targets) within the knowledge graph were connected through edges describ-

ing their interactions, associations or similarities to establish bridges of information

aggregation and knowledge mining. We then applied a network-based knowledge min-

ing algorithm to predict an initial list of drug candidates that can be potentially used

to treat SARS-CoV-2 infection (Figure 1B and Methods). Next, we further narrowed

down the list of drug candidates with the previously reported evidences of antiviral

activities based on the text mining results from the large-scale literature texts, which

were derived through a deep learning based relation extraction method named BERE [4]

(Figure 1C and Methods), followed by a minimum of manual checking. After that, we

used the connectivity map analysis approach [5] with the gene expression profiles of

ten SARS-CoV-infected patients [6] to further refine the list of drug candidates against

SARS-CoV-2 (Figure 1D, Table 1, Table S1 and Methods). The above screening pro-

cess revealed that a poly-ADP-ribose polymerase 1 (PARP1) inhibitor PJ-34 could

potentially have the antiviral activities against SARS-CoV-2.
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2.2. Validation of our network-based knowledge mining results

To demonstrate that our computational pipeline for drug repositioning can yield

reasonably accurate prediction results, we also validated our network-based knowledge

mining algorithm (Figure 1B) using the retrospective data of the two coronaviruses

that are closely related to SARS-CoV-2 and had been relatively well studied in the

literature, i.e., SARS-CoV and MERS-CoV. With the aid of our developed text mining

tool BERE, we found that many of the drugs that had been reported previously in the

literature to have antiviral activities against the corresponding coronavirus, were also

among the top list of our predicted results (Table 2). For example, chloroquine, an

FDA-approved drug for treating malaria [7], which was previously reported to exhibit

micromolar anti-SARS-CoV activity in vitro [8], was also repurposed for targeting the

same virus by our prediction framework. Gemcitabine, which was originally approved

for treating certain types of cancers [9], was also predicted for targeting SARS-CoV

with validation by previous in vitro studies [10]. Cyclosporine, a calcineurin inhibitor

approved as an immunomodulatory drug [11], was observed to block the replication of

SARS-CoV [12], and also successfully predicted by our approach. Among the predicted

top list for MERS-CoV, miltefosine, which was approved for treating leishmaniasis [13],

was previously identified to have anti-MERS-CoV activity [14]. Chlorpromazine and

imatinib, which were used for treating schizophrenia [15] and leukemia [16], respectively,

were also selected by our computational pipeline as anti-MERS-CoV drugs and can be

validated by previous in vitro experiments [10]. Thus, the above retrospective study

illustrated that our computational framework is able to predict effective drug candidates

against a specific coronavirus.

2.3. CVL218 exhibits in vitro inhibitory activity against SARS-CoV-2 replication

As PJ-34 is still currently in the pre-clinical trial stage (DrugBank ID: DB08348, [17]),

we selected two PARP1 inhibitors, including olaparib and mefuparib hydrochloride

(CVL218) (Figure S1), that are currently FDA-approved and at Phase I clinical trial,
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respectively, for our initial study. We first conducted a pilot experimental test in vitro

(Methods) on the anti-SARS-CoV-2 activities of olaparib, CVL218 and several other re-

lated drugs (Figure 2A). We found that both PARP1 inhibitors olaparib and CVL218

exhibited inhibitory effects against SARS-CoV-2 replication. Nevertheless, CVL218

showed a much higher inhibition rate than olaparib. More specifically, olaparib inhib-

ited SARS-CoV-2 replication by 15.48% at a concentration of 3.2 µM, while CVL218

reached 35.16% reduction at a concentration of 3 µM.

Notably, the antiviral efficacy of CVL218 even surpassed arbidol, which is one

of the standard treatments for COVID-19 in the Diagnosis and Treatment Proto-

col for Novel Coronavirus Pneumonia (Trial Version 6) promulgated by the Chinese

government (http://www.nhc.gov.cn/yzygj/s7653p/202002/8334a8326dd94d329df

351d7da8aefc2/files/b218cfeb1bc54639af227f922bf6b817.pdf). In particular, ar-

bidol inhibited SARS-CoV-2 replication by 21.73% at 3 µM, much lower than that of

CVL218 at the same concentration (Figure 2A). In contrast, oseltamivir, zanamivir

(drugs used for preventing influenza virus infection) and baricitinib (JAK1/2 inhibitor,

which was recommended in [18] to treat COVID-19) showed no inhibitory activities

against SARS-CoV-2 at the concentration of 3 µM or 3.2 µM.

Based on the above pilot experimental results, we then chose CVL218 for subsequent

experimental studies. Our further in vitro assays (Methods) showed that CVL218 exhib-

ited effective inhibitory activity against SARS-CoV-2 replication in a dose-dependent

manner, with an EC50 of 5.12 µM (Figure 2B). We also assessed the cytotoxicity of

CVL218 by the CCK8 assay (Methods), and found that CVL218 had a CC50 of 91.05

µM in Vero E6 cells. In addition, immunofluorescence microscopy (Methods) revealed

that, at 14 h post SARS-CoV-2 infection, virus nucleoprotein (NP) expression in the

CVL218-treated cells demonstrated a dose-response relationship with the treated drug

concentrations, and was significantly lower upon CVL218 treatment compared with

that in the DSMO treated cells (Figure 2C). No obvious cytopathic effect was observed
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in the infected cells treated with CVL218 at 25 µM.

To systematically assess the inhibitory activities of CVL218 against SARS-CoV-

2, we also performed a time-of-addition assay (Methods) to determine at which stage

CVL218 inhibits viral infection. Remdesivir, which has entered the clinical trials for

the treatment of COVID-19 (https://clinicaltrials.gov/ct2/show/NCT0425765

6), was also tested in this assay for comparison. In particular, as compared to the

DMSO control group, both CVL218 and remdesivir showed potent antiviral activities

during the full-time procedure of the SARS-CoV-2 infection in Vero E6 cells (Fig-

ure 2D). The results of the time-of-addition assay indicated that CVL218 can partially

work against the viral entry and significantly inhibit the replication of virus post-entry,

while the remdesivir can only function at the post-entry stage (Figure 2D, 2E). All

together, the results of these in vitro assays indicated that CVL218 can be further

evaluated as a potential therapeutic agent for treating COVID-19.

2.4. CVL218 inhibits IL-6 production in PBMCs induced by CpG-ODN 1826

Recently it has become evident that interleukin-6 (IL-6) is one of the most impor-

tant cytokines during viral infection [19], and emerging clinical studies in humans and

animals have linked the excessive synthesis of IL-6 with the persistence of many viruses,

such as human immunodeficiency virus (HIV) [20], foot and mouth disease virus [21]

and vesicular stomatitis virus (VSV) [22]. In addition, an in vivo study in the Friend

retrovirus (FV) mouse model showed that IL-6 blockage can reduce viral loads and en-

hance virus-specific CD8+ T-cell immunity [23]. These findings supported a hypothesis

that rapid production of IL-6 might be a possible mechanism leading to the deleteri-

ous clinical manifestations in viral pathogenesis [24]. Recently published researches on

the clinical characteristics of severe patients with SARS-CoV-2 infection showed that

IL-6 was significantly elevated especially in those ICU patients, which caused excessive

activated immune response [25, 26, 27, 28, 29]. The pathological role of IL-6 in SARS-

CoV-2 infection indicated that IL-6 blockade may provide a feasible therapy for the
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treatment of COVID-19.

To test whether CVL218 is able to regulate the IL-6 production in vitro, we stim-

ulated the IL-6 production of the peripheral blood mononuclear cells (PMBCs) by

CpG-ODN 1826, which is an effective stimulator of cytokines and chemokines. Incuba-

tion of PBMCs with 1 µM CpG-ODN 1826 for 6 h (Methods) induced IL-6 production

by 40%, when compared to untreated cells (Figure 3). In the presence of CVL218,

the stimulatory effect of CpG-ODN 1826 was counteracted. Further study showed that

CVL218 inhibited the CpG-induced IL-6 upregulation in a time- and dose-dependent

manner (Figure 3). More specifically, exposure with CVL218 at concentrations 1 µM

and 3 µM for 12 h attenuated the CpG-induced IL-6 production by 50% and 72.65%,

respectively. These results provided an in vitro evidence to support CVL218 as a poten-

tial therapeutic agent for treating pro-inflammatory response caused by SARS-CoV-2

infection.

2.5. CVL218 possesses good pharmacokinetic and toxicokinetic characteristics in ani-

mals

2.5.1. CVL218 has the highest tissue distribution in lung of rats

We further performed in vivo pharmacokinetic and toxicokinetic evaluation of CVL218

in animals (Methods). We first examined the concentrations of CVL218 over different

tissues in rats at different time points post oral administration at different doses (Fig-

ure S2 and Table S2), which was also previously reported in [30]. Among seven tissues

(i.e., lung, spleen, liver, kidney, stomach, heart and brain), we observed that lung

had the highest CVL218 concentration, which was 188-fold higher compared to that of

plasma (Table 3). The observation that lung had the highest concentration of CVL218

was in line with the fact that the SARS-CoV-2 virus has the most pathological impact

in lung with high viral loads, which suggested that CVL218 has the potential to be used

for the indications of the lung lesions caused by SARS-CoV-2 infection, if its antiviral

profile can be established in animal models and clinical trials.
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Furthermore, we compared the pharmacokinetic data between CVL218 and arbidol,

a broad-spectrum antiviral drug commercialized in China since 2016, had been recom-

mended to treat the SARS-CoV-2-infected patients by the Chinese government. We

found that the pharmacokinetic parameters of CVL218 and arbidol were comparable,

with similar plasma concentrations and drug exposures (Table S3). Arbidol was mostly

distributed in stomach and plasma post administration in rats. In contrast, higher

distributions of CVL218 in tissues especially in lung rather than plasma compared to

those of arbidol indicated a superior pharmacokinetic profile of CVL218, which may

render it as a better potential antiviral treatment of SARS-CoV-2 infection in lung.

2.5.2. The toxicity study demonstrated a safety profile of CVL218 in rats

In rats after being orally administrated 20/60/160 mg/kg of CVL218 for 28 consec-

utive days and followed by 28 more days without drug administration (Methods), we

observed no significant difference in body weight of rats among different dosage and the

control groups (Figure 4A).

We next conducted a toxicokinetic analysis of CVL218 in rats (Methods). In par-

ticular, rats were given CVL218 20/60/160 mg/kg by oral gavage once a day for con-

secutive 28 days, followed by 28 days without CVL218 administration, to investigate

the reversibility of the toxic effects of the compound and examine whether there is

any potential delayed-onset toxicity of this drug in rats. The results showed that, the

maximum tolerable dose (MTD) and the no-observed adverse effect level (NOAEL)

were 160 mg/kg and 20 mg/kg, respectively. The exposure of female rats to CVL218

(AUC0−24) was 7605 h·ng/mL in day 1 and 6657 h·ng/mL in day 28, while that of male

rats (AUC0−24) was 9102 h·ng/mL in day 1 and 10253 h·ng/mL in day 28 (Table S4).

Based on the toxicokinetic results from the repeated dose studies, all rats survived after

a 28-day treatment period and showed no apparent signs of toxicity.
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2.5.3. CVL218 exhibits a favorable safety profile in monkeys

Monkeys were administered CVL218 (5, 20 or 80 mg/kg) by nasogastric feeding

tubes with a consecutive daily dosing schedule for 28 days, followed by a 28-day recovery

period (Methods). Only a slight decrease of body weight was observed in the high-

dose (80 mg/kg) group, and all changes were reversed after a 28-day recovery period

(Figure 4B), demonstrating a favorable safety profile for CVL218 in monkeys. Further

examination of the toxicokinetic data of CVL218 in monkeys showed that the increase

of the exposure of CVL218 (AUC0−24) was approximately dose proportional, and after

consecutive 28 days of drug administration, the accumulation was not apparent. The

exposure of female monkeys to CVL218 (AUC0−24) was 19466 h·ng/ml in day 1 and

18774 h·ng/ml in day 28 (Table S5), while that of male monkeys (AUC0−24) was 16924

h·ng/ml in day 1 and 22912 h·ng/ml in day 28. The maximum tolerable dose (MTD)

of CVL218 in monkeys was 80 mg/kg, and the dose of 5 mg/kg was considered as the

no-observed adverse effect level (NOAEL).

Overall, the above in vivo data showed that CVL218 possesses good pharmacokinetic

and toxicokinetic characteristics in rats and monkeys, and its high-level distribution in

the therapeutically targeted tissue (i.e., lung) may greatly favor the treatment of SARS-

CoV-2 infection.

2.6. Molecular docking suggests the interactions between PARP1 inhibitors and the N-

terminal domain of coronavirus nucleocapsid protein

As the previous studies have reported that the PARP1 inhibitor PJ-34 can target

the N-terminal domain (NTD) of the coronavirus nucleocapsid (N) protein to reduce its

RNA binding and thus impede viral replication [31, 32, 33], we speculated that olaparib

and CVL218 may also interact with the N protein of SARS-CoV-2 to perform the similar

antiviral function. To test this hypothesis, we conducted molecular docking to study

the potential interactions between these two drugs and the N-NTD of SARS-CoV-2

(Methods).
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The overall structure of HCoV-OC43 (another coronavirus phylogenetically closely

related to SARS-CoV-2) and SARS-CoV-2 share similar compositions of secondary

structure elements, including five conserved β strands and flexible loops (Figure 5A).

In addition, their sequences covering the corresponding binding pocket regions are well

conserved (Figure 5C). Thus, their structures may provide common molecular features

in terms of interactions with small molecules at this binding pocket. Therefore, we

also used the experimentally solved structure of HCoV-OC43-N-NTD complexed with

PJ-34 as a reference to analyze our docking results.

Our docking results (more details can also be found in Supplementary Materials)

showed that both CVL218 and olaparib can bind to the N-NTD of SARS-CoV-2 around

the same binding pocket as in the experimentally solved complex structure between PJ-

34 and the corresponding protein of HCoV-OC43, though with different binding poses

(Figure 5B). Examination of docked structures indicated that CVL218 exhibits stronger

binding ability than olaparib in terms of the hydrogen bond formation. Meanwhile, the

key residues (i.e., S51, Y109 and Y111) participating in the binding with the drugs on

SARS-CoV-2-N-NTD are also highly conserved among other viruses including SARS-

CoV, HCoV-OC43, mouse hepatitis virus (MHV) and infectious bronchitis virus (IBV)

(Figure 5C), suggesting that the N-NTDs of different viruses most likely display similar

binding behaviors for PJ-34, CVL218 or other PARP1 inhibitors. Overall, our docking

results indicated that CVL218 should be more effective in binding toward the nucleo-

capsid protein of SARS-CoV-2 compared to olaparib, thus better beneficial to intervene

the nucleocapsid-dependent assembly of viral genome and thus inhibit viral replication.

3. Discussion

In this study we reported a top down data integration approach by combining both

machine learning and statistical analysis techniques, followed by web-lab experimental

validation, to identify potential drug candidates for treating SARS-CoV-2 infection. We
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showed that the PARP1 inhibitor CVL218 discovered by our in silico drug repurposing

framework may have the therapeutic potential for the treatment of COVID-19. Al-

though we mainly conducted in vitro assays to experimentally validate the anti-SARS-

CoV-2 effects of olaparib and CVL218 due to limited time, it is natural to speculate

that other PARP1 inhibitors may also have antiviral activities against SARS-CoV-2

infection, based on our computational prediction and experimental validation results.

Based on the data present in this study and the previously known evidences re-

ported in the literature, we propose several potential mechanisms to help understand

the involvement of PARP1 inhibitors in the treatment of COVID-19 (Figure 6). First,

during the life cycle of the coronavirus, PARP1 inhibitors may inhibit the viral growth

through suppressing viral replication and impeding the binding of the nucleocapsid

protein to viral RNAs [31, 34, 35, 36], which can also be supported by our molecular

docking results (see Section 2.6). Second, PARP1 inhibitors have been previously re-

ported to play a critical role in regulating inflammatory response by modulating the

expression of pro-inflammatory factors such as NF-κB, AP-1, IL-6 and downstream

cytokines and chemokines [37, 38, 39, 40]. Also, it has been shown that the overacti-

vation of PARP1 promotes energy (NAD+/ATP) consumption and drives cell death,

exacerbating the inflammation response [37, 38, 39, 41]. PARP1 inhibitors thus may

repress the NF-κB-mediated pro-inflammatory signals, and reduce energy failure and

subsequent cell death induced by necrosis, thus providing a clinical potential for attenu-

ating the cytokine storm and inflammatory response caused by SARS-CoV-2 infection.

Third, ADP-ribosylation is a conserved post-translational modification on the nucle-

ocapsid proteins across different coronavirus lineages, implying that it may have an

important regulatory role for the structure packing of viral genome. Several previous

studies have demonstrated that PARP1 is critical for viral replication [35, 42, 43]. For

example, PARP1 has been reported to interact with hemagglutinin (HA) of influenza A

virus (IAV) and promote its replication by triggering the degradation of host type I IFN
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receptor [44]. In addition, the ADP-ribosylation of adenoviral core proteins displays an

antiviral defense mechanism [34]. Therefore, intervening the ADP-ribosylation medi-

ated interplay between PARP1 and viral proteins may be another important pathway

for PARP1 inhibitors to prevent SARS-CoV-2 infection. Of course, to throughly un-

derstand the anti-SARS-CoV-2 roles of PARP1 inhibitors, more experimental studies

and direct (clinical) evidences will be needed in the future.

Considering the pro-inflammatory role of PARP1, the therapeutic effects of PARP1

inhibitors in inflammatory-mediated diseases have been extensively studied over past

two decades [45, 46]. PJ-34, the early generation PARP1 inhibitor, has been suggested

in previous studies to have neuroprotective effects in stroke model and protect mice

from necroptosis-associated liver injuries by repressing the IL-33 expression [47, 48].

In addition, the FDA-approved PARP1 inhibitor, olaparib, has been reported to pro-

tect against the LPS (Lipopolysaccharide)-induced acute lung and kidney injuries in

a NF-κB-dependent manner in mice [49]. Numerous pre-clinical studies demonstrated

that PARP1 inhibitors play an essential role in a range of inflammatory injuries and

related diseases, especially the lung inflammatory disorders including ARDS (Acute

Respiratory Distress Syndrome), COPD (Chronic Obstructive Pulmonary Disease) and

asthma [40, 46, 50, 51]. All these studies suggest that PARP1 inhibitors are of high

relevance to the treatment of the novel pneumonia caused by SARS-CoV-2 infection,

possibly via their roles in modulating inflammatory response.

Notably, current pathological studies have shown that the severe patients infected by

SARS-CoV-2 generally have higher plasma levels of IL-2, IL-6, IL-10, TNFα, IFN-γ [25,

27, 28, 29], implying a high risk of the inflammatory-associated cytokine storm after vi-

ral infection. In addition, reduction and functional exhaustion of T cells have also been

observed in COVID-19 patients [27]. Therefore, blocking the overactive inflammatory

response may be an effective strategy for the treatment of COVID-19, particularly for

those ICU patients infected by SARS-CoV-2. Recently, tocilizumab, a monoclonal anti-

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.11.986836doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.11.986836


body drug targeting IL-6, has been recommended for the treatment of COVID-19 in the

Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)

promulgated by the Chinese government (http://www.nhc.gov.cn/yzygj/s7653p/20

2003/46c9294a7dfe4cef80dc7f5912eb1989/files/ce3e6945832a438eaae415350a8c

e964.pdf), which also highlights the vital role of anti-inflammatory response in current

therapeutics against SARS-CoV-2. Our in vitro study has showed that CVL218 can

effectively inhibit the IL-6 production induced by CpG in PBMCs (Figure 3). This

finding indicates that CVL218 may also possess the IL-6 specific anti-inflammatory

effect that is applicable to those severe patients infected by SARS-CoV-2.

PARP1 inhibitors are originally used for targeting homologous recombination repair

defects in cancers, and mainly categorized as oncology drugs. Thus, it would generally

need more safety data to justify any repurposing of PARP1 inhibitors for non-oncology

indications. Fortunately, there are numerous existing pre-clinical and clinical studies

on repurposing PARP1 inhibitors into non-oncological diseases, including the aforemen-

tioned acute diseases (e.g., acute respiratory distress syndrome (ARDS), stroke) [52]

and chronic diseases (e.g., rheumatoid arthritis and vascular diseases) [52, 53]. All these

evidences indicate the possibility of repurposing PARP1 inhibitors as a safe therapeu-

tic agent to treat the current acute lung disease caused by SARS-CoV-2 infection. In

addition, our pharmacokinetic and toxicokinetic data in rats and monkeys shown in

our study indicate that CVL218 may have a relatively acceptable safety profile to be

repositioned for the antiviral purpose. Moreover, CVL218 has been approved to enter

Phase I clinical trial in 2017 by National Medical Products Administration (NMPA)

in China for cancer treatment. The preliminary data from the Phase I clinical trial

have shown that CVL218 is well tolerated in ascending dose studies at doses as high as

1000 mg QD and 500 mg BID, and no Grade II and above adverse events have been

observed, which indicates that CVL218 is also quite safe and well tolerated in human.

Our pharmacokinetic examination in rats has shown that CVL218 has the highest
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level distribution in the lung tissue, 188-fold higher concentration compared to that

in plasma. Such a tissue specific enrichment in lung may bring an extra advantage

for CVL218 to be used for the anti-SARS-CoV-2 purpose, as lung is the therapeuti-

cally targeted tissue for COVID-19. Moreover, high level distribution in lung may also

suggest that only low dosage is needed in order to ensure the therapeutic efficacy of

CVL218 against SARS-CoV-2, which may further reduce the risk of adverse events.

Thus, CVL218 may have great potential to be repurposed as an effective therapeutic

agent to combat SARS-CoV-2 and prevent future epidemic outbreak.
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4. Methods

4.1. Construction of the virus-related knowledge graph

The virus-related knowledge graph was constructed for predicting the coronavirus

related drugs. In total seven networks were considered in the constructed knowl-

edge graph (Figure 1B), including a human target-drug interaction network, a virus

target-drug interaction network, a human protein-protein interaction network, a virus

protein-human protein interaction network, a drug molecular similarity network, a

human protein sequence similarity network, and a virus protein sequence similarity

network. The human target-drug interaction network was derived from DrugBank

(version 5.1.0) [17]. The virus target-drug interaction network was constructed from

the integrated data from DrugBank (version 5.1.0) [17], ChEMBL (release 26) [54],

TTD (last update 11 Nov, 2019) [55], IUPHAR BPS (release 13, Nov, 2019) [56],

BindindDB [57] and GHDDI (https://ghddi-ailab.github.io/Targeting2019-nCo

V/CoV_Experiment_Data/), with a cut-off threshold of IC50/EC50/Ki/Kd <10 µM. The

human protein-protein interaction network and the virus protein-human protein in-

teraction network were constructed from the integrated data from BioGRID (release

3.5.181) [58], HuRI [59], Instruct [60], MINT (2012 update) [61], PINA (V2.0) [62],

SignaLink (V2.0) [63] and innatedb [64]. The drug molecular similarity network was

obtained by calculating the Tanimoto similarities from Morgan fingerprints with a ra-

dius of 2 computed using the rdkit tool [65]. The protein sequence similarity networks

of both human and virus were obtained by calculating the Smith-Waterman similari-

ties of the amino acid sequences derived from UniProt [66] using a sequence alignment

software provided in [67]. Noted that we collected additional protein sequences of

SARS-CoV-2 from UniProt [66] and added them into the corresponding networks for

the final prediction. Those drugs without drug-target interactions or outside the Drug-

Bank database were removed from the corresponding networks. We then constructed

the virus-related knowledge graph by merging together all the nodes and edges of the
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above seven networks (Figure 1B). The constructed knowledge graph G = (V,E) is an

undirected graph, in which each node v ∈ V in the node set V belongs to one of the

node types (including drugs, human proteins, and virus proteins), and each edge e ∈ E

in the edge set E ⊂ V × V × R belongs to one of the relation types from the relation

type set R (including two drug-target interactions, two protein-protein interactions and

three similarities).

4.2. The network-based knowledge mining algorithm

The initial list of drug candidates targeting SARS-CoV-2 was first screened using a

network-based knowledge mining algorithm modified from our previous work [68, 69].

The goal was to capture the hidden virus-related feature information and accurately

predict the potential drug candidates from the constructed knowledge graph, which was

realized through learning a network topology-preserving embedding for each node.

More specifically, our model used a graph convolution algorithm [70] to gather and

update feature information for each node in the constructed heterogeneous knowledge

graph network from neighborhoods so that the network topology information can be

fully exploited. Suppose that we perform T iterations of graph convolution. At iteration

1 ≤ t ≤ T , the message mt
v passed to node v can be expressed as:

mt
v =

∑
r∈R

∑
u∈Nr(v),

e=(u,v,r)∈E

Au,v,rReLU(W t
rh

t−1
u + btr), (1)

where av,u,r stands for the weight for edge e = (u, v, r), Au,v,r = av,u,r∑
u av,u,r

, W t
r ∈ Rd×d

and btr ∈ Rd stand for the learnable parameters, ReLU(x) = max(0, x), and Nr(v) =

{u, u ∈ V, u 6= v, (u, v, r) ∈ E} denotes the set of adjacent nodes connected to v ∈ V

through edges of type r ∈ R.

Then the feature htv of node v is updated by

htv =
ReLU(W tconcat(ht−1

v ,mt
v) + ht−1

v + bt)

||ReLU(W tconcat(ht−1
v ,mt

v) + ht−1
v + bt)||2

, (2)
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where W t ∈ Rd×d and bt ∈ Rd stand for the learnable parameters, and concat(·, ·)

stands for the concatenation operation.

Finally, the confidence score su,v of the relation r between node u and node v is

derived from the learned node embeddings and the corresponding projection matrices,

that is,

su,v = htu
> ·Gr ·H>r · htv, (3)

where Gr, Hr ∈ Rd×k stand for the edge-type specific projection matrices.

We minimized the Bayesian personalized ranking (BPR) loss [71] for drug-target

interaction reconstruction, by regarding those edges not in the edge set E as missing

values rather than negative samples, that is,

∑
r∈R

∑
u,v,w,x∈V,
(u,v,r)∈E,
(w,x,r)/∈E

− log

[
σ(su,v − sw,x)

]
, (4)

where, su,v and sw,x stand for the confidence scores of the relation r between u and v

and between w and x, respectively, and σ(·) stands for the sigmoid activation function.

Intuitively, in the above loss function, the confidence scores of the node pairs (u, v) in

the edge set (i.e., (u, v, r) ∈ E) were encouraged to be higher than those of unseen pairs

(w, x) (i.e., (w, x, r) /∈ E).

We predicted the confidence scores under the relation of virus target-drug interac-

tions for each virus target-drug pair using Equation (3). Then the confidence scores

were averaged across all the proteins of a certain virus (e.g., SARS-CoV, MERS-CoV

or SARS-CoV-2), and the corresponding p-values were obtained by z-test. For each

virus, we selected those predictions with a p-value < 0.05 as drug candidates.

4.3. Automated relation extraction from large-scale literature texts

We used a deep learning based relation extraction method named BERE [4] to

extract the coronavirus related drugs from large-scale literature texts. More specifically,
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the sentences mentioning the two entities of interest, i.e., name (or alias) of a coronavirus

or coronavirus target, or name (or alias) of a drug, were first collected using a dictionary-

based name entity recognition method (string matching). For each pair of entities

(e1, e2), there are usually more than one sentence describing the underlying relations.

Therefore, we used a bag of sentences Se1,e2 , denoting the set of all the sentences

mentioning both e1 and e2, to predict the relation between these two entities.

We first encoded each sentence s ∈ Se1,e2 in a semantic and syntactic manner using

a hybrid deep neural network (h : s→ Rd), including a self-attention module [72], a bi-

directional gated recurrent unit (GRU) module [73] and a Gumbel tree-GRU module [4,

74]. Each sentence representation h(s) was then scored by a sentence-level attention

module to indicate its contribution to the relation prediction, that is,

β(s) =
exp (Ws · h(s))∑

s′∈Se1,e2
exp (Ws · h(s′))

, (5)

where β(s) ∈ R stands for the weight score, and Ws ∈ Rd×1 stands for the learnable

weight parameters. Finally, the relation was predicted by a binary classifier, based on

the weighted sum of sentence representations, that is,

re1,e2 = classifier

[ ∑
s∈Se1,e2

β(s) · h(s)

]
, (6)

where re1,e2 stands for the probability of the relation of interest between entities e1 and

e2 mentioned by the bag of sentences Se1,e2 .

The training corpus we used was curated automatically from nearly 20 million

PubMed (http://www.pubmed.gov) abstracts by a distant supervision technique [75].

In detail, the names (or aliases) of drugs or targets in sentences were first annotated

by a dictionary-based named entity recognition method (string matching), in which

the name dictionary was derived from DrugBank (version 5.1.0) [17], with ambiguous

names (e.g., common words) removed. Next, the label for each bag of sentences co-
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mentioning a drug-target pair of interest was annotated automatically by the known

drug-target interactions in DrugBank. The unlabeled corpus that we used in this work

for text-mining the coronavirus related drugs was obtained from approximately 2.2 mil-

lion PMC full-text articles, with entities of interest annotated using the aforementioned

named entity recognition approach. A coronavirus related drug was extracted as a hit

candidate if the model found a bag of sentences describing a relation between this drug

and a target in the coronavirus of interest.

4.4. Connectivity map analysis

We used the transcriptome analysis approach to further filter the potential drug

candidates for treating the COVID-19 patients infected by SARS-CoV-2. Due to the

lack of gene expression data from the SARS-CoV-2 infected patients, we used those from

the SARS-CoV infected patients to screen the potential therapeutic drug candidates

against COVID-19. Such a strategy is reasonable as SARS-CoV and SARS-CoV-2

are two closely related and highly similar coronavirus. First, the genome of SARS-

CoV-2 is phylogenetically close to that of SARS-CoV, with about 79% of sequence

identity [76], and the M (membrane), N (nucleocapsid) and E (envelope) proteins of

these two coronaviruses have over 90% sequence similarities [77]. In addition, the

pathogenic mechanisms of SARS-CoV-2 and SARS-CoV were highly similar [78].

In particularly, we collected the gene expression profiles of the peripheral blood

mononuclear cells (PBMCs) from ten SARS-CoV infected patients (GEO:GSE1739) [6].

The raw gene expression values were first converted into logarithm scale, and then the

differential expression values (z-scores) were computed by comparing to those of healthy

persons using the same protocol as described in [5], that is,

Zinfected =
Xinfected −median(Xhealthy)

C ·MAD(Xhealthy)
, (7)

MAD(Xhealthy) =median(|Xhealthy −median(Xhealthy)|), (8)
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where Zinfected stands for the z-scores of the SARS-CoV infected patients, Xinfected

and Xhealthy stand for the gene expression values in logarithm scale of the infected

and healthy persons, respectively, median(·) stands for the median operation, MAD(·)

stands for the median absolute deviation operation, and C = 1.4826 is a constant for

normalization. The p-values for all the genes with measured expression values during

the analysis were also computed based on the z-scores. The up- and down-regulated

genes were then identified using a cut-off threshold of p-value < 10−10. We used the

connectivity map (CMap) [5], which contains the cellular gene expression profiles under

the perturbation of 2428 well annotated reference compounds, to measure the associa-

tions of gene expression patterns between SARS-CoV infected patients and the reference

compound-perturbed cells. The connectivity map scores were computed based on the

up- and down-regulated gene sets of SARS-CoV infected patients using the web tool

(https://clue.io/query). Under the hypothesis that the gene expression pattern

resulting from the perturbation by a therapeutic compound should be negatively corre-

lated with that resulting from the coronavirus infection, we selected those compounds

that have significant negative connectivity map scores, that is, the list of drug can-

didates predicted to treat the coronavirus infected patients was obtained by selecting

the compounds with the connectivity map scores < −90, which was suggested by the

original paper [5].

4.5. Cells and virus

The African green monkey kidney Vero E6 cell line was purchased from the Cell

Resources Center of Shanghai Institute of Life Science, Chinese Academy of Sciences

(Shanghai, China) and cultured in DMEM medium (Gibco Invitrogen, no. 12430-054)

containing 10% fetal bovine serum (FBS; Gibco Invitrogen) at 37 ◦C with 5% CO2 at-

mosphere. BetaCoV/JS03/human/2020 (EPI ISL 411953), a SARS-CoV-2 virus strain,

was isolated from nasopharyngeal swab of a 40-year old female confirmed as COVID-19

case by reverse transcriptase polymerase chain reaction (RT-PCR) in December 2019.
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The virus was propagated in Vero E6 cells, and the viral titer was determined by the

50% tissue culture infective dose (TCID50) based on microscopic observation of cyto-

pathic effects. All the in vitro SARS-CoV-2 infection experiments were performed in a

biosafety level-3 (BLS-3) laboratory in Jiangsu Provincial Center for Diseases Control

and Prevention, Jiangsu, China.

4.6. Antiviral drugs

Potential antiviral drugs, including zanamivir, oseltamivir, remdesivir, baricitinib,

olaparib and arbidol, were all provided by MCE (Medchem Express, China). The

PARP1 inhibitor mefuparib hydrochloride (CVL218) with a purity of more than 99.0%

was provided by Convalife, Shanghai, China.

4.7. Cytotoxicity test and virus infection assay

The cytotoxicity of the tested drugs on Vero E6 cells was determined by the CCK8

assays (Beyotime, China). At 48 h post addition of the tested drugs, 20 µL CCK8

was added to each well and incubated at 37 ◦C for 1 h. Then optical density was

measured at 450 nm. The 50% cytotoxic concentration (CC50) values were calculated

using GraphPad Prism (GraphPad Software, USA). Vero E6 cells were seeded into

96-well plates with a density of 5 × 104 cells/well for incubation in DMEM medium

supplemented with 10% FBS for 16 h in an incubator with 5% CO2 at 37 ◦C, for cells

to reach 80% confluent. Then, cell culture medium of each well was removed, and PBS

was used to wash the cells once, before evaluating the antiviral efficacy of the drugs.

Four duplicated wells were made for each dose of drugs, and the cells were pre-treated

with different doses of antiviral drugs diluted by the cell maintenance solution (50 µL

per well) for 1 h. For the virus control and cell control wells, cell medium containing

DMSO or only medium of 50 µL per well was added. Next, pre-treated or untreated

cells in each well were infected with the virus with multiplicity of infection (MOI) of

0.05 for 2 h. After that, the virus-drug mixture was removed and cells were further
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cultured with fresh drug-containing medium at 37 ◦C with 5% CO2 atmosphere for 48

h. Then culture supernatant per well was harvested and inactivated at 56 ◦C for 30

min to further extract and quantify viral RNA.

4.8. Viral RNA extraction and quantitative real-time PCR (qRT-PCR)

Viral RNA was extracted from culture supernatant using the HP RNA Isolation

Kit (Roche) according to the manufacturer’s instructions. RNA was eluted in 30 µL

RNase-free water. Reverse transcription was performed with a SARS-CoV-2 nucleic

acid detection kit (BioGerm, China) according to the manufacturer’s instructions. The

PCR reaction system was configured as follows: 6 µL of qRT-PCR reaction solution, 2

µL of qRT-PCR enzyme mixture, 2 µL of primer probe and 2.5 µL of template, and the

reaction was performed as follows: 50 ◦C for 10 min, 95 ◦C for 5 min, followed by 40

cycles of 95 ◦C for 10 s, 55 ◦C for 40 s. The values of 2−∆CT were calculated according

to the CT value measured from the PCR instrument, to represent the relative virus

copies of the drug group to the control group. The virus replication inhibition rate (%)

was calculated as (1−2−∆CT )×100%. The dose-response curves were plotted according

to viral RNA copies and the drug concentrations using GraphPad Prism (GraphPad

Software, USA).

4.9. Time-of-addition assay

To facilitate the observation of the antiviral effects of drugs against SARS-CoV-2

at different timing, relative high doses of the tested drugs (CVL218 at 20 µM and

remdesivir at 10µM) were used for the time-of-addition assay. Vero E6 cells with a

density of 5 × 104 cells per well were treated with the tested drugs, or DMSO as

controls at different stages of virus infection. The cells were infected with virus at an

MOI of 0.05. The “Full-time” treatment was to evaluate the maximum antiviral effects,

with the tested drugs in the cell culture medium during the whole experiment process,

which was consistent with the descriptions in the virus infection assay. For the “Entry”
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treatment, the tested drug was added to the cells for 1 h before virus infection, and

then cells were maintained in the drug-virus mixture for 2 h during the virus infection

process. After that, the culture medium containing both virus and the tested drug

was replaced with fresh culture medium till the end of the experiment. For the “Post-

entry” experiment, virus was first added to the cells to allow infection for 2 h before the

virus-containing supernatant was replaced with drug-containing medium until the end

of the experiment. At 14 h post infection, the viral inhibition in the cell supernatants

of the tested drug was quantified by qRT-PCR, and calculated using the DMSO group

as reference.

4.10. Indirect immunofluorescence assay

Vero E6 cells were treated with CVL218 at 5 µM, 15 µM and 25 µM, respectively,

following the same procedure of “full-time” treatment. Infected cells were fixed with

80% acetone in PBS and permeabilized with 0.5% Triton X-100, and then blocked with

5% BSA in PBS buffer containing 0.05% Tween 20 at room temperature for 30 min.

The cells were further incubated with a rabbit polyclonal antibody against a SARS-CoV

nucleocapsid protein (Cambridgebio, USA) as primary antibody at a dilution of 1:200

for 2 h, followed by incubation with the secondary Alexa 488-labeled goat anti-rabbit

antibody (Beyotime, China) at a dilution of 1:500. Nuclei were stained with DAPI

(Beyotime, China). Immunofluorescence was observed using fluorescence microscopy.

4.11. Western blot assay

NP expression in infected cells was analyzed by Western blot. Protein samples were

separated by SDS-PAGE and then transferred onto polyvinylidene difluoride mem-

branes (Millipore, USA), before being blocked with 6% Rapid Block Buff II (Sangon

Biotech, China) at room temperature for 10 min. The blot was probed with the anti-

body against the viral nucleocapsid protein (Cambridgebio, USA) and the horseradish

peroxidase-conjugated Goat Anti-Rabbit IgG (Abcam, USA) as the primary and the
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secondary antibodies, respectively. Protein bands were detected by chemiluminescence

using an ECL kit (Sangon Biotech, China).

4.12. CpG-PDN1826 induced IL-6 production in PBMCs

Peripheral blood mononuclear cells (Yicon, China) were cultured at 37 ◦C at con-

centration 5% CO2 atmospheric on a 96-well plate in RPMI1640 cell growth medium

(Corning, Cat.10-040-CVR). For stimulation, PBMC cells were incubated with 1 µM

CpG-ODN1826 (InvivoGen, Cat. tlrl-1826). To test whether CVL218 can inhibit IL-

6 production, 1 µM and 3 µM concentrations of CVL218 were added to cell culture

medium for 6 and 12 h, respectively. The concentration of IL-6 was determined by

ELISA using a commercial kit (Dakewe Biotech, Cat. 1110602).

4.13. Pharmacokinetics and toxicity study

Sprague-Dawley rats were purchased from Shanghai Laboratory Animal Center,

China. The animals were grouped and housed in wire cages with no more than six

per cage, under good laboratory conditions (temperature 25 ± 2◦C; relative humidity

50 ± 20%) and with dark and light cycle (12 h/12 h). Only healthy animals were

used for experimental purpose. The pharmacokinetics and biodistribution study in

Sprague-Dawley rats was approved by Center for Drug Safety Evaluation and Research,

Shanghai Institute of Materia Medica, Chinese Academy of Sciences. A total of 144

Sprague-Dawley rats with each sex were used for toxicity study. Animals were ran-

domly separated into four groups (18/sex/group). CVL218 was administered at doses

of 20, 40, 60 and 160 mg/kg. For all the groups, 20 rats (10/sex/group) were randomly

selected and euthanized at day 28, and their sections of various tissues and organs were

obtained and frozen. Ten (5/sex/group) animals were euthanized after a 28-day drug

free period, and their sections of tissues and organs were obtained and frozen. Six

(3/sex/group) were euthanized after the blood-samples were obtained. For pharma-

cokinetic and toxicity evaluation, clinical symptoms, mortality and the animals’ body
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weight were examined. Serum (0.5 mL) was collected to analyze toxicokinetics at dif-

ferent time points post drug administration. The plasma concentration-time data were

analyzed using a non-compartmental method (Phoenix, version 1.3, USA) to derive the

pharmacokinetic parameters.

4.14. Biodistribution study

Thirty Sprague-Dawley rats were randomly divided into three time point groups

(3/sex/group). At 3, 6 and 8h after CVL218 administration, animals were sacrificed,

and the brain, heart, lung, liver, spleen, stomach and kidney tissues were collected.

Tissue samples were washed in ice-cold saline, blotted with paper towel to remove

excess fluid, and weighed. Tissue samples were fluid, weighted and stored at −20 ± 2

◦C until the determination of drug concentration by LC-MS-MS.

4.15. Toxicity study in cynomolgus monkeys

Healthy male and female cynomolgus monkeys aged 3–4 years were purchased from

Guangdong Landau Biotechnology, China. The animals were maintained in accordance

with the Guide for the Care and Use of Laboratory Animals.

Cynomolgus monkey (5/sex/group) were selected using a computerized random-

ization procedure, and administered CVL218 by nasogastric feeding at dose levels of

0 (control), 5, 20, 80 mg/kg. Individual dose volumes were adjusted weekly based on

body weight of monkeys. The monkeys were observed twice daily for viability/mortality

and for any change in behavior, reaction to treatment or ill-health. Electrocardiograms,

intraocular pressure, rectal temperature and body weight were recorded. For all the

groups, 2/3 of the animals were randomly selected and euthanized at day 28. The re-

maining animals were euthanized after a 28-day drug free period. Blood samples were

taken before and at 0.5, 1, 2, 4, 8 and 24 h post-dose on days 1 and 28 of the treat-

ment period. Pharmacokinetic evaluation was performed using a non-compartmental

method (Phoenix, version 1.3, USA) and pharmacokinetic parameters were calculated
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for individual monkeys.

4.16. Statistical analysis

All data represent the means ± standard deviations (SDs) of n values, where n cor-

responds to the number of data points used. The figures were prepared using GraphPad

Prism (GraphPad Software, USA). The statistical significance was calculated by SPSS

(ver.12), and two values were considered significantly different if the p-value is < 0.05.

4.17. Molecular docking

The docking program AutoDock4.2 [79] was used to model the molecular interactions

between PARP1 inhibitors CVL218 and olaparib to the N-terminal domain of the N

protein of SARS-CoV-2 (SARS-CoV-2-N-NTD). The structure of SARS-CoV-2-N-NTD

used for molecular docking was built from homology modeling [80]. The AutoGrid

program was used to generate a grid map with 60×60×60 points spaced equally at

0.375 Å for evaluating the binding energies between the protein and the ligands.
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Figure 1 (preceding page): Schematic illustration of our drug repositioning pipeline

for discovering the potential drugs to treat the COVID-19 disease. (A). The overview

of our drug screening pipeline. The initial drug set for screening contains 6255 drug

candidates, mainly including 1786 approved drugs, 1125 investigational drugs and 3290

experimental drugs. The number of drug candidates after each filtering step is also

shown. (B). The network-based knowledge mining module. Seven individual networks

containing three types of nodes (i.e., drugs, human targets and virus targets) and the

corresponding edges describing their interactions, associations or similarities are first

constructed based on the known chemical structures, protein sequences and relations

derived from publically available databases. Then a deep learning based method, which

learns and updates the feature representation of each node through information aggre-

gation, is used to predict the potential drug candidates against a specific coronavirus.

(C). The automated relation extraction module. The structure of each sentence from

the literature texts is first learned from the encoded word features using the Gumbel

tree gated recurrent unit technique [4, 74]. Then the learned sequence structures as

well as the corresponding encoded word features are fed into a relation classifier to au-

tomatically extract the relations between two entities from large-scale documents in the

literature. (D). The connectivity map (CMap) analysis module. The transcriptome pro-

files of the Peripheral Blood Mononuclear Cell (PBMC) samples from the SARS-CoV

infected patients and healthy persons are compared to derive the query gene expression

signatures, which are then correlated to the drug-perturbed cellular expression profiles

in the connectivity map [5] to filter out the anti-SARS-CoV drug candidates.
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Figure 2 (preceding page): The in vitro anti-SARS-CoV-2 activities of the tested drugs.

(A). The in vitro inhibition rates of multiple tested drugs on SARS-CoV-2 replication

at individual concentrations. (B). The concentration-dependent inhibition curve of

CVL218 against SARS-CoV-2 replication and its cytotoxicity results. (C). Visualization

of virus nucleoprotein (NP) expression of the infected cells upon treatment of CVL218

at 14 h post the SARS-CoV-2 infection using fluorescence microscopy. (D). Time-of-

addition results on the inhibition of CVL218 and remdesivir against SARS-CoV-2 in

vitro. The viral inhibitory activities of CVL218 and remdesivir were measured at “full-

time”, “entry”, and “post-entry” stages, respectively. (E). Virus NP expression in the

infected cells upon the treatment of CVL218 and remdesivir was analyzed by Western

blot.
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Figure 3: CVL218 attenuates the CpG-induced IL-6 production in a time- and dose-

dependent manner.
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Figure 4: Effects of CVL218 on body weight in rats (A) and monkeys (B). Rats and

monkeys were orally administered 20/60/160 mg/kg and 5/20/80 mg/kg of CVL218,

respectively, for 28 consecutive days and then followed by 28 more days without drug

administration.
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Figure 5 (preceding page): The modeled structure of the N-terminal domain of nu-

cleocapsid protein (N-NTD) of SARS-CoV-2 complexed with PARP1 inhibitors. (A).

Overall complex structures of HCoV-OC43-N-NTD (i.e., the N-NTD of HCoV-OC43)

bound to PJ-34 (PDB ID: 4kxj), and SARS-CoV-2-N-NTD (i.e., the N-NTD of SARS-

CoV-2) bound to CVL218 and olaparib (both modeled by AutoDock4.2) in ribbon

view. The structure of SARS-CoV-2-N-NTD that we used for docking simulation was

derived from homology modeling [80], with residues ranging from 47 to 177 (GenBank:

QHD43423). (B). Detailed molecular interactions between the coronavirus N-NTDs

and PARP1 inhibitors. Left panel: The experimentally solved complex structure of

HCoV-OC43-N-NTD (cyan ribbon) bound to PJ-34 (yellow sticks). Middle panel: The

modeled complex structure of SARS-CoV-2-N-NTD (purple ribbon) bound to CVL218

(yellow sticks). Right panel: The modeled complex structure of SARS-CoV-2-N-NTD

(purple ribbon) bound to olaparib (yellow sticks). The key residues interacting with

the inhibitors are shown as green sticks. The hydrogen bonds are denoted as pink

dashes. (C). Multiple sequence alignment (performed using MUSCLE [81]) of the N-

NTDs among SARS-CoV-2, SARS-CoV, HCoV-OC43, mouse hepatitis virus (MHV)

and infectious bronchitis virus (IBV). The virus names are listed on the left with avail-

able PDB codes shown in the parentheses. The sequence of SARS-CoV-2-N-NTD was

obtained from GenBank (QHD43423). Secondary structure elements of HCoV-OC43-N

are depicted above the sequence alignment. Asterisks indicate the key residues inter-

acting with the inhibitors. The residues conserved among all five viruses are shaded

in red, the residues with the percentage of conservation larger than 50% are shaded in

green, and the similar residues are shaded in yellow.
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Figure 6 (preceding page): The putative mechanisms for PARP1 inhibitors to combat

the COVID-19 disease, derived based on the data present in this study and the known

antiviral activities of PARP1 inhibitors previously reported in the literature. (A).

Schematic diagram showing the possible antiviral mechanisms of PARP1 inhibitors in

the life cycle of coronavirus in human cells. PARP1 inhibitors have been previously re-

ported in the literature to suppress viral replication and imped the binding of nucleocap-

sid protein to viral RNAs, thus preventing the virus infection [31, 34, 35, 36]. (B). Po-

tential protective effects of PARP1 inhibitors in the treatment of COVID-19. The anti-

inflammation effects of PARP1 inhibitors may be achieved through two possible molec-

ular pathways. The first one is to modulate the expression of pro-inflammation factors

such as NF-κB, AP-1, IL-6 and downstream cytokines and chemokines [37, 38, 39, 40].

The second possible pathway is to prevent the overactivation of PARP1 and thus avoid

the depletion of NAD+ and ATP, and the consequent cellular energy failure and cell

death caused by necrosis [37, 38, 39, 40]. (C). The potential antiviral effects of PARP1

inhibitors through suppressing the ADP-ribosylation of viral proteins and interven-

ing the host-pathogen interactions, thus resulting in the inhibition of viral replica-

tion [34, 35, 42, 43].
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Table 1: The top list of drug candidates identified by the connectivity map analysis

using the gene expression profiles of the peripheral blood mononuclear cell (PBMC)

samples of ten SARS-CoV-infected patients [6]. The connectivity map score [5] of

−90.0 was used as the cut-off threshold to determine the top list, i.e., only those drug

candidates with the connectivity scores of the query ranked to the top 10% of the

reference perturbations were selected. Two PARP1 inhibitors (i.e., veriparib and PJ-

34) were chosen into the top list (shown in bold).

Connectivity Map Score Compound BRD ID Name Description

−98.94 BRD-K87142802 Veliparib PARP inhibitor

−95.37 BRD-A35338386 NECA Adenosine receptor agonist

−95.26 BRD-K11853856 PJ-34 PARP inhibitor

−92.96 BRD-A53952395 Prilocaine Local anesthetic

−91.8 BRD-K32977963 Eugenol Androgen receptor antagonist

−91.56 BRD-A09495397 Bicuculline GABA receptor antagonist

−91.32 BRD-K82164249 Andarine Androgen receptor modulator
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Table 2: Selected examples of the predicted drug candidates against SARS-CoV or

MERS-CoV that can be validated by the literature evidences in a retrospective study.

The drug candidates were first predicted using our network based knowledge mining al-

gorithm with a cut-off threshold of p-value < 0.05. Then the identified drug candidates

were validated using an automated relation extraction method from the large-scale

literature texts, followed by a minimum of manual checking.

Drug name Virus Original targetsa Original indicationsb Referencesc

Chloroquine SARS-

CoV

Fe(II)-protoporphyrin IX (Plasmodium

falciparum)

Malaria [8, 82]

Gemcitabine SARS-

CoV

Ribonucleoside-diphosphate reductase

large subunit (Human)

Cancer [10, 82]

Cyclosporine SARS-

CoV

Calcineurin subunit B type 2 (Human) Prophylaxis of organ rejection, severe

active rheumatoid arthritis (RA)

[12]

Indomethacin SARS-

CoV

Prostaglandin G/H synthase 1 and 2

(Human)

Symptomatic management of rheuma-

toid arthritis

[83]

Curcumin SARS-

CoV

Peroxisome proliferator-activated re-

ceptor gamma (Human)

Various pro-inflammatory diseases [84] [85]

PJ-34 SARS-

CoV

Poly-ADP-ribose polymerase 1 (Hu-

man)

Experimental allergic encephalomyeli-

tis [86]

[87]

Hesperetin SARS-

CoV

Sterol O-acyltransferase 1 (Human) Lowering cholesterol [88] [89]

Miltefosine MERS-

CoV

P-glycoprotein 1 (Human) Mucosal, cutaneous, visceral leishmani-

asis

[14]

Chlorpromazine MERS-

CoV

Dopamine D2 and D1 receptors, 5-

hydroxytryptamine receptor 1A and

2A, Alpha-1A and -1B adrenergic re-

ceptors, Histamine H1 receptor (Hu-

man)

Schizophrenia and other psychotic dis-

orders

[10, 82]

Imatinib MERS-

CoV

BCR-ABL fusion kinase (Human) Leukemia [82, 90]

a. The parenthesis indicates the organism of the target(s).

b. Drug indications stand for the official indications approved by the FDA, obtained

from DrugBank [17], unless other references are stated.

c. References stand for the supporting literatures.
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Table 3: Comparison of the tissue to plasma concentration ratios between CVL218

and arbidol in rats. The concentrations of CVL218 over different tissues of rats were

measured at the 180 min time point following 20 mg/kg oral administration. The

concentrations of arbidol over different tissues of rats at the 15 min time point following

54 mg/kg oral administration were obtained from the literature [91, 92]. Means and

standard deviations are shown.

Tissue
Tissue to plasma concentration ratio

CVL218 Arbidol

Lung 188.364 ± 28.467 0.553 ± 0.392

Spleen 54.897 ± 6.250 0.110 ± 0.060

Liver 46.780 ± 5.215 0.204 ± 0.062

Kidney 41.307 ± 5.391 0.055 ± 0.040

Stomach 22.133 ± 7.130 4.920 ± 2.159

Heart 16.514 ± 1.348 0.028 ± 0.015

Brain 9.728 ± 1.130 0.011 ± 0.002
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Supplementary Materials

Detailed docking results on the interactions between PARP1 inhibitors and the N-terminal

domain of the nucleocapsid protein of SARS-CoV-2

We noticed that the binding surface of HCoV-OC43-N-NTD with PJ-34 consists of

the N-terminal loop, β2 and β3 strands (Figure 5B left panel). The oxygen and nitrogen

atoms on the 6-phenanthridinone of PJ-34 form three hydrogen bonds with S64 (3.1

Å), Y126 (3.0 Å) and F66 (water-mediated) of HCoV-OC43-N-NTD. In addition to

the hydrogen network, the aromatic ring of phenanthridinone on PJ-34 participates in

π-stacking with H104 on β2 strand and Y124 on β3 strand. Compared to CoV-OC43-

N-NTD, the binding pocket of SARS-CoV-2-N-NTD encompassed by β2 strand, β3

strand and loops is approximately similar in structural compositions, but more spacious,

which may facilitate to bind with larger molecules. As shown in the Figure 5B (middle

panel), CVL218 can be reliably docked inside the pocket of SARS-CoV-2-N-NTD with

key residues including Y111 on β2 strand, R92 on β3 strand, as well as S51 and E118

on loops. Among them, Y111 forms a bifurcated hydrogen bond to the oxygen atom

of the benzofuran ring and the nitrogen atom of the amide group on CVL218 with a

distance of 2.6 Å and 3.1 Å, respectively. In addition, R92 further stabilizes the CVL218

molecule by forming a hydrogen bond with the oxygen atom of the amide group on the

benzofuran ring. The nitrogen atom of the amine close to the benzene ring of CVL218

also forms a hydrogen bond of distance 2.8 Å with the side chain of E118. In addition to

the hydrogen network which plays an essential role in CVL218 binding, the hydrophobic

interactions involved by T49, Y109, and Y112 of SARS-CoV-2-N-NTD also contribute

to the molecular interaction.

The binding surface of olaparib on SARS-CoV-2-N-NTD is similar but not exactly

the same to that of CVL218. The two carbonyl groups of olaparib form hydrogen

bonds with residues S51 and R149 of SARS-CoV-2-N-NTD with distances 3.0 Å and

3.3 Å, respectively. In addition, the residues around the binding surface (i.e., R88, R92,
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Y109, Y111, R149, P151) participate in the interaction with olaparib via hydrophobic

interactions.
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Figure S1: Structures of PARP1 inhibitors mentioned in this study.
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Figure S2: Tissue distribution characteristics of CVL218 in rats, with the highest

concentration in lung. The concentrations of CVL218 in different tissues were measured

at the 3/6/8 h time points after 20 mg/kg oral administration to rats. With the

extension of administration time, the concentration of CVL218 in each organ decreased

in a time-dependent manner.
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Table S1: The top list of perturbational classes identified by the connectivity map

analysis using the gene expression profiles of the peripheral blood mononuclear cell

(PBMC) samples of ten SARS-CoV-infected patients [6].

Connectivity map score Perturbational classes

−40.84 PARP inhibitor
−37.31 RNA Polymerase Enzymes LOF
−37.27 DNA synthesis inhibitor
−36.55 GABA receptor antagonist
−29.62 MDM inhibitor
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Table S2: Comparison of the tissue distributions of CVL218 and arbidol in rats,

following 20 mg/kg and 54 mg/kg oral administrations, respectively.

Drugs
Dose Time

Lung Spleen Liver Kidney Stomach Heart Brain
(mg/kg) (min)

CVL218 20

180 69318±10476 20202±2300 17215±1919 15201±1984 8145±2624 6077±496 3580±416

360 18858±2365 6358±1058 2187±859 3903±594 1871±813 1390±292 998±220

480 4183±847 1475±324 213±88 993±327 569±293 275±80 317±55

Arbidola 54

5 933±837 48±35 104±82 79±54 8210±5410 72±47 101±67

15 2603±1848 519±281 963±290 259±190 23180±10170 132±69 50±10

360 833±397 143±51 262±175 58±21 52750±3059 41±28 31±21

a. The concentrations of arbidol in different tissues of rats at 5/15/360 min time

points with 54 mg/kg oral administration were obtained from [92].
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Table S3: Comparisons of pharmacokinetic parameters in rats between CVL218 and

arbidol following 20/40 mg/kg and 18/54 mg/kg oral administrations, respectively.

Drugs Dose Gender Tmax Cmax AUC0−t AUC0−∞ MRT0−∞ t1/2

(mg/kg) (h) (ng/mL) (ng·h/mL) (ng·h/mL) (h) (h)

CVL218

20

male 4.0 (4.04̃.0) 234 ± 35 1070 ± 176 1111 ± 192 3.91 ± 0.19 1.19 ± 0.09

female 3.0 (2.03̃.0) 502 ± 80 2196 ± 228 2222 ± 241 3.16 ± 0.41 1.1 ± 0.16

total 3.5 (2.04̃.0) 368 ± 157 1633 ± 643 1666 ± 639 3.54 ± 0.50 1.15 ± 0.13

40

male 3.0 (2.04̃.0) 510 ± 259 2802 ± 967 2830 ± 983 4.51 ± 0.18 1.3 ± 0.33

female 2.0 (2.03̃.0) 940 ± 117 5220 ± 1113 5242 ± 1115 4.05 ± 0.43 1.29 ± 0.21

total 2.5 (2.04̃.0) 725 ± 296 4011 ± 1620 4036 ± 1620 4.28 ± 0.39 1.3 ± 0.24

Arbidola
18 male 0.28 ± 0.11 1002 ± 298 1956 ± 895 2224 ± 1058 - 3.6 ± 1.2

54 male 0.18 ± 0.06 4711 ± 2361 6790 ± 2749 7558 ± 2877 - 3.3 ± 0.7

a. The pharmacokinetic data of arbidol were obtained from [91].
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Table S4: Toxicokinetic parameters of CVL218 in rats in a four-week toxicity study.

Toxicological parameters

Day 1 Day 28

Group Gender Dose Tmax Cmax AUC0−24 Tmax Cmax AUC0−24

(mg/kg) (h) (ng/mL) (h·ng/mL) (h) (ng/mL) (h·ng/mL)

1

M 20

Mean 3.00 261 2373 3.00 147 1004

SD 0.00 124 2000 0.00 61.0 431

N 3 3 3 3 3 3

F 20

Mean 3.00 314 1674 3.00 147 797

SD 0.00 56.2 382 0.00 35.7 197

N 3 3 3 3 3 3

2

M 60

Mean 5.00 513 6784 3.00 611 5610

SD 0.00 119 1592 0.00 114 1343

N 3 3 3 3 3 3

F 60

Mean 5.30 708 9092 2.30 453 4090

SD 2.50 137 549 1.20 115 312

N 3 3 3 3 3 3

3

M 160

Mean 6.00 659 9102 5.30 824 10253

SD 1.70 77.1 1776 2.50 268 3008

N 3 3 3 3 3 3

F 160

Mean 2.30 614 7605 3.00 629 6657

SD 1.20 122 1056 2.00 213 4592

N 3 3 3 3 3 3
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Table S5: Toxicokinetic parameters of CVL218 in monkeys in a four-week toxicity

study.

Toxicological parameters

Day 1 Day 28

Group Gender Dose Tmax Cmax AUC0−24 Tmax Cmax AUC0−24

(mg/kg) (h) (ng/mL) (h·ng/mL) (h) (ng/mL) (h·ng/mL)

1

M 5

Mean 2.2 119 528 2.8 48 215

SD 0.4 31.7 138.2 1.3 12.5 62.3

N 5 5 5 5 5 5

F 5

Mean 4 76 451 3.8 36 172

SD 1.4 38.8 239.8 1.6 20.3 77.7

N 5 5 5 5 5 5

2

M 20

Mean 4 440 4838 5 239 2111

SD 2.5 162.4 2086.4 0.0 91.1 1186.8

N 5 5 5 5 5 5

F 20

Mean 4.6 479 4963 4.6 322 2779

SD 0.9 100.5 1189.5 0.9 125.4 1458

N 5 5 5 5 5 5

3

M 80

Mean 3.4 1372 16924 6.8 1582 22912

SD 0.9 617.4 8831.1 1.6 416.6 8859.6

N 5 5 5 5 5 5

F 80

Mean 5.2 1389 19466 5.6 1403 18774

SD 1.8 387.5 5535.4 2.5 489.6 6179.1

N 5 5 5 5 5 5
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