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Abstract 

Motivation: Multi-gene expression assays are an attractive tool in revealing complex regulatory 

mechanisms in living organisms. Normalization is an indispensable step of data analysis in all those 

studies, since it removes unwanted, non-biological variability from data. In targeted qPCR assays the 

normalization is typically performed with respect to prespecified reference genes, but the lack of 

robust strategy of their selection is reported in literature, especially in studies concerning circulating 

microRNAs (miRNA). 

Results: Previous studies concluded that averaged expressions of multi-miRNA combinations are 

more stable references than single genes. However, due to the number of such combinations the 

computational load is considerable and may be hindering for objective reference selection in large 

datasets. Existing implementations of normalization algorithms (geNorm, NormFinder and 

BestKeeper) have poor performance as every combination is evaluated sequentially. Thus, we 

designed an integrative tool which implemented those methods in a parallel manner on a graphics 

processing unit (GPU) using CUDA platform. We tested our approach on publicly available 

microRNA expression datasets. As a result the times of executions decreased 19-, 105- and 77-fold 

respectively for geNorm, BestKeeper and NormFinder.  

Availability: NormiRazor is available as web application at norm.btm.umed.pl. 

Contact: Wojciech Fendler, wojciech_fendler@dfci.harvard.edu.  
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Introduction 

Despite the boom of next-generation sequencing techniques, quantitative RT-PCR (qPCR) assays 

remain a popular method for evaluating gene expression. Furthermore, due to recent advances in 

design of highly specific probes this method is becoming effective for analysis of short non-coding 

RNAs (Jensen et al., 2011). Although such experiments are easy to conduct and non-expensive, they 

are burdened with a problem of unwanted, non-biological variability in obtained data. Such 

variability comes mainly from inequality of RNA concentrations, slight differences in samples’ 

handling and devices’ operation and changes in experimental environment. Since it cannot be 

avoided at the prelaboratory or laboratory levels, this undesirable component of variation should be 

removed by a data pre-processing operation, called normalization (Livak and Schmittgen, 2001). 

Otherwise, those inaccuracies could shadow true biologically relevant differences. Many 

normalization strategies have been already suggested, but the problem is still considered open to new 

proposals, especially in those areas where intensive studies have been started only recently (Faraldi 

et al., 2019; Drobna et al., 2018). One of such fields, that prompted our group to review available 

normalization algorithms, is research on circulating microRNAs (miRNAs) as potential biomarkers 

(Fendler et al., 2017; Elias et al., 2017). In past years, circulating miRNAs were shown as very 

promising diagnostic tools in cancer research (Nakamura et al., 2016; Ogata-Kawata et al., 2014), 

radiation exposure (Małachowska et al., 2019), diabetes (Satake et al., 2018), cardiology (Nonaka et 

al., 2019) and numerous other areas. Problems with finding optimal normalization strategy often 

pose a major obstacle in translating results of research into clinically applicable diagnostic tools 

(Tiberio et al., 2015; Witwer and Halushka, 2016). In such studies, the first stage usually consists in 

screening the whole miRNA expression profile in order to identify those miRNAs, which are 

expressed differentially in the studied condition in comparison to the control group. At this stage, 

normalization is best performed using a statistical characteristic of samples (e.g. mean expression). It 

is routinely done when the data comes from high-throughput qPCR (Mohammadian et al., 2013) or 

RNA sequencing (Zyprych-Walczak et al., 2015). 

However, the approach described above is impossible to apply when the qPCR assay targets only 

few differentially expressed miRNAs (or genes). The mean expression cannot be used as reference in 

this scenario as the miRNAs are chosen on the basis of between-group differences. Therefore, in 

such situations, normalization must be performed with respect to endo- or exogenous control genes 

or total input RNA (Schwarzenbach et al., 2014). Exogenous controls are the RNA (synthetic or 

coming from other species) that are artificially introduced to the sample in known amounts for the 

purpose of quality control of consecutive cycles of PCR reaction and normalization procedures. In 
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contrast, endogenous reference genes originate from a tissue sample itself and are selected for their 

known and experimentally validated, stable expression, in most cases unchanged by pathological 

conditions or other clinical factors. In miRNA expression experiments either some stably expressed 

miRNAs or other small RNAs are chosen as those references. However, there is still no consensus on 

choosing proper internal references for qPCR miRNA studies, especially in biofluids (Marabita et 

al., 2016; Corral-Vazquez et al., 2017). 

Literature review (Drobna et al., 2018; Faraldi et al., 2019; Peltier and Latham, 2008; Sauer et al., 

2014) revealed that the most commonly used method of selecting reference miRNAs is the 

application of algorithms that were previously designed for identification of housekeeping genes for 

RNA tissue expression studies: geNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 

2004) and BestKeeper (Pfaffl et al., 2002). In these methods potential reference genes are ranked 

according to their respective stability scores and the most stable one is applied as a normalization 

factor. Although this approach is commonly used (if any systematic procedure of finding reference 

genes is applied at all), it has recently been questioned by members of our research team (Pagacz et 

al., 2020) as an inadequate method of selecting normalization factors.  

A new algorithm was therefore proposed that instead of analyzing only single miRNAs, also 

calculates stability scores for all of their combinations in geNorm (GN), NormFinder (NF or NFG 

when samples’ groups are provided) and BestKeeper (BK). It was proven that combination-based 

normalizers are statistically better than single reference genes in terms of stability. Moreover, it was 

showed that in many cases the most stable reference is formed by averaging expression of 2 or 3 

miRNAs that do not necessarily score the highest when analyzed separately. While the gain in 

finding more stable references is evident, the major obstacle in practical application of this procedure 

is its computational cost that grows with the number of miRNAs in a dataset and the number of 

elements in a combination. Initial multi-thread implementation in Python (Pagacz et al., 2020) 

revealed the problem of long execution times for larger datasets which could not be solved in a fully 

satisfactory way by CPU parallelization. Following the observation that computations for each of the 

combinations are independent from one another, we decided to reimplement the proposed algorithm 

to run on graphical processing units (GPUs). With this idea in mind, we designed a high-speed 

parallel processing software platform for unbiased combinatorial reference gene selection for 

normalization of expression data - NormiRazor. 

  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.11.986901doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.11.986901
http://creativecommons.org/licenses/by-nd/4.0/


4 

Implementation 

Implementation for combination-based references 

Following (Pagacz et al., 2020), we redesigned the three most popular normalization algorithms in 

the transcriptomic community, geNorm, BestKeeper and NormFinder, to facilitate calculations of 

rankings for combination-based references. At the same time, we reimplemented them in Compute 

Unified Device Architecture (CUDA) model and encapsulated in a self-contained web application 

called NormiRazor. 

The comprehensive combination-based method of identifying reference circulating miRNAs, 

described in the Introduction section, consists of several operations in the following order: 

1. Reading and preprocessing input data. 

2. Determination of all possible 2- and 3-element combinations of input miRNAs. 

3. Calculation of stability indices for single genes by geNorm, BestKeeper and NormFinder. 

4. Calculation of stability indices for combinations by the same algorithms and creating 

rankings of combinations according to their stability. 

5. Aggregation of results from all normalization algorithms and choice of recommended 

references among combinations. 

6. Normalization of input dataset with respect to selected reference (on user request). 

Step 1 consists of reading data (gene expression and samples’ group designation), checking format 

correctness and handling missing values. Step 2 creates the list of all combinations of given length 

that serves later as a queue of tasks distributed for parallel processing on a GPU. In step 3 single 

genes are ranked by decreasing stability. Additionally, to reduce computation times for larger 

datasets (e.g. from NGS), we limit the analysis to 250 genes with the highest stability. Step 4 

assesses stability of all combinations and, as the most computationally expensive one, is executed on 

a GPU. Finally, steps 5-6 summarize the results and allow the user to normalize their data to one of 

the recommended references. This whole process is also illustrated in Fig. 1A. 
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Figure 1: Flow diagram of normalization application execution. A: The whole algorithm; B: A detailed view of 

operations executed for each batch of input data in CUDA implementation; C: Subdivision of execution time for Python 

and CUDA implementation for the purpose of benchmarking. Colors: gray – operations on CPU, green – operations on 

GPU, blue – steps involving both GPU and CPU, orange – operations running on multiple CPU threads. 

 

Performance optimization 

Firstly, the algorithm generates a list of all potential combination-based references. The only 

optimization for this part with respect to previous Python implementation was rewriting it as a C++ 

recursive function. Similarly, the aggregation of all previously generated results does not perform 

very intensive computations, so it is also executed on CPU.  

Calculation of stability indices for combinations presented the greatest area of optimization in the 

form of: 

1. Reducing redundant parts of calculations to a single execution (mathematical optimization). 

2. Parallel implementation on CUDA-enabled GPU. 
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3. Limitation of miRNAs set size by the exclusion of those that are the least probable to form 

stable combinations. 

Mathematical optimization consisted mainly in limiting operations repeated in every iteration to only 

one execution. Formal algebraic description of the algorithms and some minor modifications 

introduced by us are presented in detail in Appendix. It was also applicable to Python 

implementation, but it still have not resulted in achievement of reasonably short execution times that 

researchers looking for reference miRNA would accept. Thus, observing that calculation for each 

combination are relatively simple, totally independent from one another and identical in terms of 

computations and differ only by data, we decided to utilize GPU with its SIMD (single instruction, 

multiple data) processing paradigm. CUDA technology was chosen due to its established position in 

research applications, especially in bioinformatics and widespread availability of CUDA-enabled 

GPUs. Finally, we decided to limit number of potential miRNAs to 250, which is sufficient for a 

typical dataset containing 150-250 miRNA, detectable in majority of samples and as such suitable to 

serve as reference genes. Still, the dataset of such size generates from 551300 to 2573000 unique 3-

miRNA combination to analyze. 

We divided the main part of the application into three separate paths, each of them corresponding to 

the proposed normalization algorithm. We then implemented them as CUDA C kernels embedded 

into a C++ application (scheme in Fig. 1B), as to achieve maximal performance improvement. In 

order to further optimize the application, we decided to implement most of the components of the 

entire procedure on our own with parameters tailored to our needs rather than using more general 

third-party solutions. 

 

Results generation in NormiRazor 

At the beginning the stability values for single miRNAs are calculated by three normalization 

algorithms. Since the outputs of those methods are not comparable, for the purpose of selection of 

the best individual microRNAs, they are normalized to the range [0, 1]. Then, the program calculates 

their average across the algorithms and on this basis identifies the list of up to 250 most stable 

candidates that are later used to form the combination-based references. 

Combination stability calculation is performed on a GPU and starts with generation of combination-

based reference by averaging expression of 2 or 3 miRNAs from the above mentioned list. When 

stability of each newly formed potential reference is calculated, this combination is treated as an 

additional gene, appended to the original expression dataset. Resulting stability of a combination and 

its ranking in the dataset is saved for the comparison with all other combinations of miRNAs. The 

combinations are sorted by their ranking and then their stability values, in result of which a separate 
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list is generated for each normalization algorithm. New standardized rankings from value range [0,1] 

are assigned to the combinations based on their position in sorted list, generated by particular 

algorithm. The results of all algorithms are aggregated by averaging the rankings from all 

normalization algorithms applied and the list of the best normalizers based on the outcome of this 

procedure is generated. We decided to present the top 5 combinations to the user and then allow 

them to normalize their dataset with such a reference, while the complete results are available for 

download. 

Finally, having identified the need for a readily available tool for users with limited experience in 

programming, we designed graphical user interface (GUI) for our algorithm that is available on our 

institution’s server at norm.btm.umed.pl. 

 

Benchmark 

We decided that the main measure of efficiency and user-friendliness of our application would 

simply be total execution time, since it is the most discernible for the end user and ultimately affects 

their experience the most. As a way of providing an insight into the particular parts of operation of 

the application, we also measured the execution times of some distinct parts of the algorithm, 

including purely computational one, named "kernel" in the results section. We performed time of 

execution tests on datasets either with varying number of miRNAs (test 1) or samples (test 2). In the 

first set of tests, we used subsets of expression set GSE75389, available in Gene Expression 

Omnibus (GEO), and we adjusted the number of miRNAs from 50 to 400 with a step of 50, while we 

always included all 8 available samples. Benchmark with a varying number of samples (10 to 50, 

step of 10) was based on another GEO dataset - GSE90828. In this second benchmark we included 

156 miRNAs without missing data. For both tests, separate experiments were performed for 2- and 

3-element references (mean expression of 2 or 3 miRNAs, respectively). Each measurement was 

repeated 5 times and the result is presented as mean with standard deviation. 

For the purpose of testing the performance improvement of the proposed computing method, we 

employed two benchmarking platforms. The system specifications of both platforms are presented in 

Suppl. Table 1. We used the Python algorithms implementations from (Pagacz et al., 2020) as a 

baseline for our comparisons.  

Finally, an example of NormiRazor practical application is presented where we attempted a 

biologically-oriented validation of references found by our application. It is based on the experiment 

described in (Mestdagh et al., 2009). Dataset GSE121513, which contains miRNA expression 

profiles obtained by qPCR of 95 neuroblastoma (NB) samples with and without amplification of 

MYCN gene, was used. MYCN is a transcription factor that binds to miR-17-92 promoter and is 
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known to affect expression of a few miRNAs. According to TransmiR v2.0 (Tong et al., 2019), 

experimentally validated targets of MYCN are: mir-106a, mir-17, mir-18a, mir-19a, mir-19b, mir-

20a and mir-92a. Thus, we can expect that their expression should differ between MYCN-amplified 

and MYCN-non-amplified samples and observing such difference indicates that correct 

normalization was applied. We tested this assumption with data normalized to different references, 

including the ones found by NormiRazor. 

All datasets used in tests are publicly available and were generated by qPCR panel assays. Thus, the 

data were expressed as qPCR quantification cycles (Cq) that reflect number of replication cycles after 

which each miRNA becomes detectable; thus, lower values of Cq indicates higher miRNA 

expression (Livak and Schmittgen, 2001). 
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Results 

Comparison of total execution time between CUDA and Python implementation for 3-miRNA 

references is shown in Fig. 2. We observed that the total execution time for 3-miRNA references and 

kernel execution time can be accurately modeled by following relations (for both implementations): 

• geNorm: 

𝑡 = 𝑎 ⋅ (
𝑁

100
)
𝐿𝐶+2

 

• BestKeeper and NormFinder: 

𝑡 = 𝑎 ⋅ (
𝑁

100
)
𝐿𝐶

 

with N being the number of miRNAs in a dataset, LC the number of miRNAs in a combination-based 

reference and a regression coefficient. Division by 100 was included to limit the range of values 

produced after exponentiation. Curves generated in accordance to the above models are shown in 

Fig. 2. 

 

Figure 2: Comparison of total execution time of Python and CUDA implementations for 3-element normalizers on 

dataset with varying number of miRNAs. Points represent mean and SD of 5 repeated experiments (SD is usually almost 

negligible), curves are model predictions. Benchmark on platform 1. 
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For the purpose of quantitative comparison, we defined a speed-up gained by CUDA implementation 

as: 

𝑆𝑃 =
𝑎𝑃𝑦

𝑎𝐶𝑈𝐷𝐴
 

where aPy and aCUDA are coefficients from models for Python and CUDA implementations, 

respectively. Standard deviation (SD) of the speed-up was calculated according to (Dunlap and 

Silver 1986) as: 

𝑆𝐷(𝑆𝑃) =

√𝑆𝐷(𝑎𝑃𝑦)
2
+ (

𝑎𝑃𝑦
𝑎𝐶𝑈𝐷𝐴

)
2

⋅ 𝑆𝐷(𝑎𝐶𝑈𝐷𝐴)
2

𝑎𝐶𝑈𝐷𝐴
 

 

Table 1: Speed-up gained by the CUDA implementation with respect to the previous Python version. Benchmark on 

platform 1. 

Speed-up 
± SD 

total kernel 

Combination length 3 2 3 

GN 
18.7 

 ± 0.6 
19.3 

 ± 1.8 
18.3 

 ± 0.6 

BK 
104.7 
 ± 4.2 

12887.5 
± 1846.3 

21993.4 
 ± 1479.2 

NF 
76.5 

 ± 2.2 
6195.2 

 ± 1035.1 
11877.1 
 ± 433.5 

NFG 
84.0 

 ± 3.3 
6665.7 

 ± 1105.0 
13164.5 
 ± 595.6 

 

Obtained speed-ups for 3-miRNA combinations were the highest in case of BestKeeper with 

execution of whole algorithm 100 times faster in CUDA than in Python and the lowest in geNorm 

with the program still running almost 20 times faster than before (Table 1 and Suppl. Table 2). In the 

cases of BestKeeper and both versions of NormFinder computational cores (kernels) of algorithms 

were sped up from about 6000 to almost 22000 times, depending on particular setting, while in the 

case of geNorm the kernel speed-up was comparable with the total speed-up (Suppl. Fig. 1). A 

difference of such magnitude was caused by the distribution of execution time between particular 

operations. From tables in Fig. 3, one can observe that GPU-related operations still take the majority 

of the execution time of geNorm, which is not the case for BestKeeper and NormFinder. Therefore, 

the speed-up of the two latter methods affects the whole execution speed-up to a smaller extent than 
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in case of geNorm. The computational core takes the majority of time of GPU operations only in 

geNorm, while in BestKeeper and NormFinder greater fraction of time is needed for memory 

allocation and copying data than for actual calculations (Fig. 3). Distribution of execution time 

between all (CPU and GPU) operations is presented in Suppl. Fig. 2 and for comparison similar plot 

for Python implementation is shown in Suppl. Fig. 3. 

Analogical analysis was performed with varying number of samples in dataset (test 2) and the results 

are shown in Suppl. Fig. 4 and 5. We also performed a comparison of efficiency of GPUs in two 

benchmark platforms and we obtained very similar kernel execution times in both of them (Suppl. 

Fig. 6). 

 

 

Figure 3: Distribution of execution time between GPU-related operations in CUDA implementations for 3-element 

normalizers. Tables below the graphs indicate percentage of the total execution time (CPU+GPU) dedicated to operations 

on GPU. Test 1 on platform 1. cudaMalloc: memory allocation on GPU, memcpyHtD: copying data from RAM to GPU 

memory, memcpyDtH: copying data from GPU memory to RAM. 

 

Our next goal was to check the validity of identified references when they are applied to real data. 

Fig. 4 presents the distribution of qPCR Cq values (mean-centered) after different normalization 
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protocols were applied to the data. In panel A, no normalization was applied, thus sample means and 

range of values were clearly different between samples. The next two panels (B and C) present the 

effects of normalization to the best 3-miRNA-based reference (averaged expression of miR-1976, 

miR-30d-5p and miR-214-3p) and normalization to the mean of miRNAs detected in all samples, 

respectively. Those 2 approaches equalized distributions of Cq, such that distributions in all samples 

became very similar. Additionally, methods B and C do not produce discernibly different results; 

thus, they may be equally useful. In panels D (original reference 1) and E (original reference 2), 

references which were proposed in (Schlosser et al., 2015) by the authors of the chosen dataset, were 

used. Finally, panel F shows detrimental consequences of using a very poor reference (mean of miR-

144-3p, miR-1909-3p, miR-451a, identified as the worst by NormiRazor) and highlights how a poor 

choice in this regard may spawn false positive findings. 

Figure 4: Effect of different normalization schemes on miRNA expression in GSE75389. No normalization (A); 

normalization: to 3-miRNA reference selected by NormiRazor (B); to mean expression of miRNAs expressed in all 

samples (C); to references from original article: mean expression of miR-142-3p and miR-320a-3p (D), mean expression 

of miR-766 and miR-3909 (E); to the worst reference found by NormiRazor (F). Included are only miRNA present in at 

least 75% of samples; boxes show interquartile range, central line is median, whiskers indicate 5. and 95. percentile. 

 

Effect of normalization methods on variability of miRNA expression between samples was presented 

in Fig. 5. We observed that normalization to mean expression (gray curve) and normalization to a 

reference identified by our algorithm (blue curve) produced very similar distributions of expression 
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variances. Moreover, both of them as well as normalization to the original reference 1 (solid green 

line) were significantly different than lack of normalization plotted in red (p<0.0001 in Kolmogorov-

Smirnov test for all comparisons). Standard deviation of expression was on average lowered after of 

those normalization, excluding purposefully selected worst reference; thus, we conclude that all of 

these approaches effectively reduce variability. Original reference 2, on the contrary, does not 

produce distribution different from the one obtained without any normalization (p=0.1201). It is also 

clear that normalization to poor reference introduces additional amount of variability and is actually 

worse than lack of normalization (p<0.0001). 

Figure 5: Cumulative distribution of standard deviations of miRNA expression in samples from GSE75389 when 

different normalization schemes are applied. 

 

Finally, we demonstrated applicability of references found by NormiRazor in differential expression 

analysis on the exemplary neuroblastoma dataset (GSE121513). The results of this biologically-

oriented validation are presented in Fig. 6. We calculated the fold changes (FC) of miRNA 

expression between MYCN-amplified and non-amplified neuroblastoma samples after applying 

different normalization schemes. Fig. 6 shows FC values for miRNAs that are known to be affected 

by MYCN and thus we expected that their expression should be different between two types of 

neuroblastoma. Whenever statistically significant (FDR-corrected p<0.05) difference was detected, 
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we placed an asterisk above the respective bar. When no normalization was employed, none of 

miRNAs of interest were found differentially expressed. When a poor reference was tested, only one 

difference became significant and obtained fold-changes were highly variable. Differential 

expression analyses after all proper normalizations detected differential expression of 7 out of 9 

experimentally validated miRNAs (miR-19a, miR-17-5p, miR-18a, miR-18a*, miR-19b, miR-20a, 

miR-92). Thus, it must be stated that a proper normalization (either to mean expression or the 

internal reference) is essential for conclusions of the study. 

 

Figure 6: Results of biologically oriented validation on data from GSE121513. Fold-change of miRNA expression 

between MYCN-amplified and non-amplified neuroblastoma cells is shown with confidence interval when different 

normalization approaches are applied. Confidence interval is calculated on the assumption that Cq values from qPCR are 

normally distributed.  
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Discussion 

In the present study we proposed a new GPU-based computational approach to the recently 

published (Pagacz et al., 2020) extensive algorithm searching for reference miRNAs. Since the 

algorithm is based on an analysis of averaged expression of 2 or 3 miRNA as potential reference, it is 

highly computationally demanding. We identified that majority of calculations are easily 

parallelizable and can be implemented on a GPU. In our testing environment we observed that the 

GPU version runs from 20 up to more than 100 times faster than a previous multicore Python 

implementation. Speed-ups in such a range seem to be typical for GPU reimplementation of 

bioinformatics algorithms that previously run on CPU. For instance, GBOOST – the tool for a gene-

gene interaction analysis – achieved a 40-fold speed-up with respect to its CPU predecessor BOOST 

(Yung et al., 2011). Even better results were reported by the authors of CUDA-miRanda that is 

described as 166-times faster than miRanda (Wang et al., 2014). Obviously, interpreting such results, 

one must take into account characteristics of a particular testing platform (model of CPU and GPU), 

however, it is still clear that in many applications GPU computing is beneficial. 

In the case of searching for reference genes/miRNA, the execution time of an algorithm is an 

essential part of the user experience. Since finding the reference is only a small, although important 

part of gene expression experiment, upon which following actions depend, no researcher would 

accept waiting for the results for an extended period. The longest computational section in our 

application, namely calculating stabilities for 3-element references by geNorm, takes about 100 

seconds with a list of 250 candidate miRNAs, which was set as a technical limit in the final web 

application. Thus, taking into account the queuing of tasks and aggregation of results, reference 

miRNAs could be found in about 15 min, which we believe to be an acceptable waiting period. 

Another important aspect to consider is the quality of identified references. Previous work of our 

team showed that averaged expression of 2 or 3 miRNA is a more stable reference than any single 

miRNA with the measure of stability defined as a score from BK, GN and NF (Pagacz et al., 2020). 

In this study, we additionally showed that references found by NormiRazor effectively reduce 

variation of miRNA expression. The comparison with the normalization with respect to the mean of 

all miRNA (considered sometimes as the most reliable one (D’haene et al., 2012)) did not show 

significant differences in the variability reduction capability. 

Many studies stress that normalization strongly affects interpretation of experimental results (Corral-

Vazquez et al., 2017; Faraldi et al., 2019; Matoušková et al., 2014). Considering the last stage of our 

validation, we fully agree with this statement. Differential miRNA expression, that was expected to 

be observed due to MYCN amplification, was detected when normalization was performed by our 
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algorithm and by the method proposed in the article, upon which this part of validation analysis was 

based (Mestdagh et al., 2009). When our approach is applied those differences are even more 

pronounced, so actually a careful, statistical choice of reference miRNA may be even better than the 

normalization to the mean expression. It seems contradictory to the results reported by Mestdagh et 

al. (Mestdagh et al., 2009) who argued that the normalization to mean is the most effective method. 

This may be caused by them comparing their solution only with some limited set of candidate small 

non-coding RNA (in majority not belonging to the miRNA family), while we scanned all miRNAs 

expressed in all samples together with their 2- and 3-element combinations.  

The entire computing suite is available as a web application. Distributed in this form it is 

independent of users’ computer hardware and software and it does not require the possession of any 

CUDA-enabled GPU. Compared with previous solutions, it definitely has several advantages. Initial 

implementations of geNorm, BestKeeper and NormFinder are already about 15 years old and are not 

directly compatible with new software. First version of geNorm as VBA applet for Microsoft Excel 

is no longer available, since according to its website it is “no longer compatible with latest versions 

of Excel, slow, buggy, difficult to use” (https://genorm.cmgg.be/). Currently geNorm is implemented 

in commercial qbase+ software, which however is not freely available to the research community. 

Similarly, BestKeeper cannot be downloaded from its original source. Besides, BestKeeper analysis 

was originally limited to at most 10 candidate genes that with currently available computational 

resources is no longer a reasonable limitation. NormFinder macro for Microsoft Excel is the only one 

that is still available and working even with newest version of Microsoft Office suite. Although it 

would not be effective for extensive search in combination-based approach, we must acknowledge its 

stability, that is relatively uncommon in case of bioinformatics tools (Mangul et al., 2019). Some 

newer implementations have been developed for all the above-mentioned algorithms. NormFinder 

was rewritten in R and became part of some packages including NormqPCR and SlqPCR. GeNorm 

and BestKeeper are included in ctrlGene R package. GeNorm belongs also to NormqPCR. They are 

all in use, but they require R programming skills from their users, who often are biologists or 

medical doctors rather than data scientists. RefFinder (Xie et al., 2012) is the only freely available 

tool that combines all 3 algorithms together. A broad review of software packages for identification 

of reference genes states that all implementations produce consistent results (De Spiegelaere et al., 

2015), however they are still capable of analyzing only single genes and not their combinations. 

Ultimately, our tool provides researchers working with gene expression data with an easy to use, fast 

resource for reference variable selection. Its intended and tested field of application are RT-qPCR 

studies (both panel and targeted) of miRNA expression, however, we are convinced that it can be 
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applied in other omic studies that need to account for technical variability between the samples, 

similarly to original geNorm, BestKeeper and NormFinder.  
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