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ABSTRACT 

Dealing with confounds is an essential step in large cohort studies to address problems such as unexplained                 
variance and spurious correlations. UK Biobank is a powerful resource for studying associations between              
imaging and non-imaging measures such as lifestyle factors and health outcomes, in part because of the large                 
subject numbers. However, the resulting high statistical power also raises the sensitivity to confound effects,               
which therefore have to be carefully considered. In this work we describe a set of possible confounds                 
(including non-linear effects and interactions) that researchers may wish to use, to arrive at more valid                
conclusions in their studies using such data. We include descriptions of how we can estimate the confounds,                 
and study the extent to which each of these confounds affects the data, and the spurious correlations that may                   
arise if they are not controlled. Finally, we discuss several issues that future studies should consider when                 
dealing with confounds. 
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1. Introduction - The problem of dealing with confounds  

UK Biobank (UKB) is a rich prospective epidemiological study. The value of this resource is its size (as of early                    
2020, imaging data from more than 40,000 subjects has been processed and released), richness, and the                
possibilities it offers to combine very different types of information such as genetics, and brain structure and                 
function [Elliott, 2018]. The UKB brain imaging component has been described in [Miller, 2016], and the                
processing and quality control described in [Alfaro-Almagro, 2018]. 
 
Dealing with this amount of information without careful treatment of possible confounding factors is problematic               
for a number of reasons: spurious associations can be induced between pairs of otherwise independent               
variables; the significance of real associations can be biased, and therefore their interpretability affected;              
confounding factors can be erroneously estimated, and hence regressing them out of the data can be                
ineffective [Westfall & Yarkoni, 2018]; finally, there can be instances of Berkson’s paradox, where a variable is                 
incorrectly treated as representing a causal confounding process. For further discussion on the importance of               
confounds in imaging research, see [​Smith and Nichols, 2018 ​]. 
 
The consideration of a variable as a confound depends heavily on the context; for example, age can be a                   
confounding factor in some studies, while being a variable of interest in others. Another example is sex, which                  
correlates with potential confounds (such as head size), and which can also influence variables of interest in                 
complex ways (e.g., trajectory of bone density with aging). Complicated confounds such as sex may force the                 
researcher to carry out separate association analyses for the different sexes (as opposed to simply regressing                
out the sex variable). Hence, this paper is not attempting to address issues raised where variables can contain                  
both signal of interest and confounding factors (given that the answer will depend on the context of the                  
biological question being asked); instead, here we focus on investigating the extent to which variance in the                 
UKB brain imaging data is explained by potential confounding factors, and also the effects of unconfounding on                 
correlations between Imaging Derived Phenotypes (IDPs) [Alfaro-Almagro, 2018] and non-imaging variables           
(non-IDPs or nIDPs). 
 
The question of how to deal with confounds after they have been identified has been investigated in previous                  
literature. Many studies ([Dukart, 2011], [Kostro, 2014], [Rao, 2017]) either regress out the confounds from the                
data, or use them as additional regressors in their (e.g., multiple regression) analyses. Alternative methods               
have been suggested, like restriction (i.e. limiting the study to subjects with a certain feature, as shown in                  
[Zarnani, 2019] with a cohort stud ​y centred ​on males with the same age and nationality), matching subjects for                  
a certain confound (e.g. sex and age [Rosenbaum and Rubin, 1983], which can be done either a priori, before                   
acquisition, or a posteriori, by selecting certain subjects for the analysis), stratification (i.e. dividing the data into                 
different hierarchical levels, according to the different features to unconfound), or representing the data in a                
way that is insensitive to confounding factors [Glastonbury, 2018]. Due to the large number of confounds that                 
we are dealing with in the UKB data, our general approach is to regress out the confounds from the data (and                     
model, where appropriate), although many of the results presented below should be relevant in the context of                 
other unconfounding strategies. For further discussion, see [Jager, 20080] and [Snoek 2019].  
 
In this work, we consider confounds related to the acquisition process and scanner configuration,              
subject-specific biometric variables, motion confounds, acquisition date/time confounds, and table position. We            
model these confounds in a number of ways and explore how the data of the first ~40,000 subjects is affected                    
by the modelling. We compare our set of confounds with a more “traditional” smaller set of confounds. Finally,                  
we outline a set of recommendations on how to use this information when running studies using UKB brain                  
imaging data. 
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2. Methods 

2.1. Data description 

This work used imaging and non-imaging data from UKB, accessed under data access application 8107. The 
majority of the work reported here was carried out using the 22,000 subject May 2019 data release, and then 
the final results were updated using the 40,000 subject January 2020 data release. 
 
The January 2020 data release includes 41,985 datasets from the first three UKB sites: 25,962 from Stockport                 
(Site 1), 10,560 from Newcastle (Site 2), and 5,463 from Reading (Site 3). Scanning at the fourth site in Bristol                    
began in early 2020. Additionally, 1,587 subjects (1,117 from Site 1 and 470 from Site 2) have been scanned a                    
second time (with a mean of 2 years difference between the two scans). Although this repeat-scan data has                  
been released, it was not used here, as study of the longitudinal data is outside the scope of the present work.  
 
After removing datasets that were deemed unusable by our QC procedure (for example, due to having                
incomplete brain coverage, or having very severe MRI artefacts) [Alfaro-Almagro, 2018], the number of              
subjects’ datasets that were analysed in this work is 39,694 (21,005 females). 
 

2.2. Overview of confound types 

Figure 1 shows how each group of confounds is related to each other group by the percentage of variance that                    
one explains in the other. Each row/column relates to a single confound group (e.g., imaging site); a given                  
confound “group” might be implemented in the unconfounding as multiple confound variables (e.g., a separate               
binary indicator variable for each imaging site). This matrix of % variance explained is fairly symmetric, but not                  
exactly (because different groups in general contain different numbers of variables). 
 
In order to help describe the confounds we have identified, we arranged the confound groups into 6 different                  
families​: general subject-specific features, scanner/acquisition protocol/processing parameters, head motion,         
scanner table position, non-linear and “crossed terms” (interactions between different confounds), and            
acquisition date and time.  
 
We now describe the first four confound families in more detail (noting that these four are also the “source                   
data” for the last two families).  
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Fig 1: Matrix showing the percentage of variance of each group of confounds explained by each other group. Each row and column                      
represents one group of confounds. These groups can be organised into families: 1: Subject-specific confounds; 2: Scanner /                  
acquisition protocol / processing parameters; 3: Head motion confounds; 4: Table-position-related confounds; 5: Non-linearities and               
crossed terms; 6: Date/time-related confounds. The site group was forced to be independent from the other confound groups as                   
described in Section 2.4.1. Non-linearities and cross terms are forced by definition to be orthogonal to linear terms. Independence from                    
all other confound groups was also forced for acquisition time and date, but there may be some random correlations with date because                      
of the smoothing described in Section 2.4.4. An interactive version of this figure showing the actual values in each element of the matrix                       
can be found in ​[LINK]​. 
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2.3. Description of basic confound variables (80 variables) 

2.3.1. Subject-specific confounds (4 variables) 

The basic confounds in this family are age, sex, the product of age and sex, and head size scaling. The first                     
two are taken from UKB non-imaging variables, while the latter was calculated with SIENAX [Smith, 2002] as                 
part of the UKB processing pipeline [Alfaro-Almagro, 2018]. It is defined as a ratio that shows the volumetric                  
scaling from the T1 head image to MNI standard atlas. This set of confounds is commonly used in many brain                    
imaging studies. A discussion about the type of studies for which these confounds may be useful can be read                   
in [Barnes, 2010]. 

2.3.2. Scanner / acquisition protocol / processing parameters (20 variables) 

Any differences in scanner hardware, configuration, acquisition protocol or processing parameters can affect             
the imaging data, and should therefore be modelled as confounds ([Focke, 2011], [Chen, 2014], [Keenan               
2019]). UKB is using identical scanner hardware and software in all sites (3T Siemens Skyra, 32-channel                
Siemens head RF coil, software VD13), but having the acquisition site as a confound (SITE) may be important,                  
as there might be subtle differences (for example, differences in different RF coils even of the same model).  
 
Scanner servicing and minor changes in acquisition parameters may also affect the data, and may therefore                
need to be considered in the confound modelling. Therefore, we investigated the CMRR multiband software               1

version (8 versions, with minor version changes between these), scanner Service Pack software version (2               
versions), and hardware/servicing events in the scanner. Previous studies show that such changes may bias               
IDPs ([Krueger, 2013], [Noble, 2017]). These hardware events are summarised in 4 different variables: 

1. B0 field ramp-down/up events (SCAN RAMP): Four events in Site 1. 
2. Head Coil replacements (SCAN HEAD COIL): Three events in Site 1 and one in Site 2. 
3. Cold Head replacement: (SCAN COLD HEAD): One event in Site 1, two events in Site 2. 
4. Miscellaneous events (SCAN MISC): Three events in Site 1, two events in Site 2. 

 
It has also recently become clear that there have been slowly-changing heating-related effects in the extent of                 
eddy currents in the diffusion MRI (dMRI) data. This effect is now regularly checked for, and the scanner                  
recalibrated when appropriate, but it was necessary for affected datasets to have a more robust version of                 
eddy current correction applied (primarily by increasing the search space for eddy currents when using the                
Eddy preprocessing tool). A new confound variable reflecting this effect has been created ​ (NEW EDDY). 
 
We also considered minor changes in the acquisition protocol that, in principle, should not affect the data (6                  
different phases described in section S2 of the Supplementary Material (SM)), and a temporary unintended               
protocol change in the SWI acquisition that affected 3,355 datasets (Variables PROTOCOL and FLIPPED              2

SWI).  
 
A few minor protocol parameter changes have been made in error at the imaging sites for a small subset of                    
subjects, in the process of distributing the protocol across sites (fMRI echo times of 42.4 vs 39ms, and overall                   
global intensity scaling of images). Therefore, we included 6 variables (SCALING), one per modality, as               
confounds, and also the echo times (TE) for resting state fMRI (rfMRI) and task fMRI (tfMRI). As seen below,                   
none of these has a large effect on derived IDPs. 

1 CMRR: Centre for Magnetic Resonance Research (​www.cmrr.umn.edu ​) 
2 A change in phase encoding direction - not a minor thing for some acquisitions, but quite minor for the SWI. 
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Finally, the processing of the ~40,000 subjects as described in [Alfaro-Almagro, 2018] was performed in six                
separate batches. Both the operating system and the processing pipeline software used were kept almost               
unchanged for each batch, but there were differences in the processing hardware used across batches, so we                 
wanted to make sure that these differences did not affect the data in any way (BATCH). 
 
Due to the absence of T2 FLAIR image in some subjects, FreeSurfer was not processed in the same way for                    
every dataset; 1,301 datasets were processed using just the T1w images, while the vast majority of datasets                 
(38,173) used both T1 and T2 FLAIR in the FreeSurfer processing. A confound variable (FS T2) describes                 
whether the T2 FLAIR was used. 
 
The numbers of subjects for all these parameters, as well as some more details, are listed in SM section S1. 

2.3.3. Head Motion (48 variables) 

Four confound groups capture subject head motion during acquisition, both in the 4D modalities (task fMRI,                
resting fMRI and dMRI) and structural modalities (e.g. T1w). The importance of head motion as a confound has                  
been known for a long time [Friston, 1996]. As noted in [Greve 2013], some studies measure and compensate                  
for motion prospectively (i.e. before the analysis), while many others estimate it in a post-acquisition phase,                
being a standard step in most MRI processing packages. Most studies use these motion estimates as                
covariates in a GLM analysis [Johnstone, 2006], as a criteria to remove certain volumes from 4D images                 
[Power, 2014] or to regress them out from the global signal [Murphy, 2017]. For interesting discussions on the                  
different methods of accounting for motion, see [Satterthwaite, 2013] and [Murphy, 2013]. 
 
In our study, one approach we took to modelling head motion was to estimate it from the structural images.                   
Estimations of motion-induced artefacts in structural images have been shown to be related to motion               
estimates in temporal modalities in complex ways [Savalia, 2017], but the existence of a strong relationship of                 
some of these estimates with valid non-artefactual structural measures of the brain (such as gray matter                
volume) is a problem [Gilmore, 2019]. 
 
We estimated the structural motion by fitting a cross-validated linear regression where the dependent variable               
was a manually evaluated QC measure of motion in 871 T1w images and the independent variables were a set                   
of features that are related to structural motion and QC (e.g. smoothness estimates in X, Y, and Z [Flitney and                    
Jenkinson, 2000], average Euler number of the FreeSurfer surfaces [Rosen, 2017], Qoala-T quality metric of               
FreeSurfer output [​Klapwijk, 2019 ​], etc.). This resulted in one variable (STRUCT MOTION) summarising the              
motion in the structural acquisition, to be included as a confound. More details about how this metric was                  
calculated can be found in section S3 of the SM; in terms of automatically predicting the expert-judged motion                  
QC score (on a scale of 1-4), the trained predictor had a MSE of 0.14 in the left-out set.  
 
Many studies of head motion focus on “temporal” imaging modalities (fMRI, dMRI, etc.). Hence, we obtained                
the motion estimates from FSL’s FEAT [Woolrich, 2001] and Eddy [Andersson, 2016 & 2017], and estimated                
the mean, median and 90th percentile over time of the absolute and relative motion (averaged across space) in                  
the task fMRI, resting fMRI, and dMRI. We also included (as a confound) the number of slices that Eddy                   
estimated to be outliers in the dMRI data (because of significant signal dropout which is largely due to motion).                   
This resulted in 19 confound variables (HEAD MOTION). A second approach has been to calculate the same                 
quantile summaries (mean, median and 90th percentile) of the motion over space and time calculated from                
FSL’s FEAT motion estimation matrices from resting fMRI in a similar way as described in [Satterthwaite, 2013]                 
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(HEAD MOTION ST, 10 variables). These might capture additional useful motion-related confound information             
given that the amount of motion varies across both space and time in general. 
 
Finally, we calculated the mean, median and 90th percentile over time of S-var and D-var normalised by A-var                  
(variants of DVARS [Afyouni, 2018]) from both the original resting fMRI, and the resting fMRI after removal of                  
noise components using FIX (see [Griffanti, 2014], [Griffanti, 2017]) (DVARS, 18 variables). 

2.3.4. Table position (8 variables) 

Early in the project, we detected that the head position and the scanner-table position (meaning, in effect, the                  
position of the RF head coil ​within the scanner, relative to isocenter​) were correlated with several QC metrics                       
and IDPs. It is clear that the most important factor is the location of the coil/head in the scanner in the direction                      
that the scanner table moves in and out, although the precise cause of this effect has not been established.                   
Therefore, we included these parameters as possible confounds.  
 
The first set of confounds relates to positions of the head and RF coil relative to the scanner (i.e., relative to the                      
isocentre of the scanner). This set consists of the Z-position of the coil (more specifically, the scanner table on                   
which the coil is positioned) within the scanner, as read from the DICOM headers; the X and Z coordinates of                    
the Centre Of Gravity of the T1w brain mask; and the Y position of the most posterior part of the same brain                      
mask (TABLEPOS, 4 variables). 
 
We also noted how measures from QUAD (a recent QC tool for dMRI QC [Bastiani, 2019]) were highly                  
non-linearly correlated with the table position (See Figure S4 in the SM). For this reason, 4 metrics from QUAD                   
were included as confounds (EDDY QC, 4 variables): 

1. Standard deviation of X, Y, and Z volume-wise components of the estimated eddy currents’              
linear field (columns 7, 8, and 9 from the eddy parameters output file); these should primarily                
reflect eddy currents 

2. Standard deviation of Y volume-wise component of the translations due to subject’s head             
motion (column 2 from the eddy parameters output file). 

2.4. Processing of confound regressors (602 variables) 
Table S23 in the SM contains a list of all confound groups, the number of variables in each group, the number                     
of variables after expanding / processing those confounds and an indication of the group being either                
qualitative or quantitative. 

2.4.1. Basic confounds (80 variables, expanded to 240) 

The 80 basic confounds were partially processed to account for interactions between site and other confounds,                
due to site potentially being one of the most important confounds in any multi-site study . For example, we                  3

might expect head size to act as a confound slightly differently in different sites, so we create separate head                   
size confounds for the different sites. This processing ends up expanding the initial set of confounds to a total                   
of 240 confounds . The processing steps are as follows: 4

 

3 All processing code used in this study is available online at ​https://www.fmrib.ox.ac.uk/ukbiobank/confounds/ 
4 Non-confound IDPs are used in this work both as part of generating confounds (see time and date drift confounds below)                     
and in judging the effects of unconfounding on IDPs. ​To reduce the effect of potential outliers ​and improve the accuracy                           
of associations, we applied rank-based inverse Gaussian transformation (Quantile Normalization, or QN) on all IDPs to                
impose Gaussianity [Bolstad, 2003], before using them in any work described here. 
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1. Separation by site, demedianing and outlier removal of quantitative confounds: ​All variables            
belonging to a given confound group (e.g. X, Y, Z brain centre of gravity + table position) are                  
demedianed and normalised (using the median absolute deviation) globally (i.e. across all            
sites). Then, each variable is replicated as many times as sites we are dealing with, but each                 
copy only retains values for subjects which were scanned at the corresponding site. The              
variable value for all other subjects is replaced with 0s. Then, all outliers and all missing values                 5

in each copy are replaced with the median value for the site. Finally, each copy is normalised                 
separately to have zero mean and unit standard deviation.  
 
Pseudo-code describing this step is included in the SM, section S6.1.  
 

2. Separation by site, binarisation and normalisation of qualitative confounds: For each categorical            
confound (such as CMRR version or Service Pack), site-independence is enforced by first             
binarising and expanding the original confound (a confound with n possible categorical values             
will be replaced by n-1 binary indicator variables) and duplicating the resulting set by site,               
provided the site has more than 1 different value for the confound. Finally, and as in the                 
previous case, each resulting variable is de-medianed by site. 

 
Pseudo-code describing this step is included in the SM, section S6.2.  

2.4.2. Non-linear transformations (158 variables) 

The existence of non-linear effects in confounding variables has been discussed in previous studies. For               
example, [Barnes 2010] ​shows that ratio-based or ​linear unconfounding for head size is not sufficient for many                 
studies, and [Smith and Nichols, 2018] suggest that ‘adding transformed versions of confounding variables will               
allow more than just linear effects of confounds to be captured’. 
 
We decided to perform three different non-linear transformations to all quantitative confound variables to              
capture possible non-linear effects. These transformations would be: 

1. Squaring the centred confound. 
2. Quantile Normalisation (QN) of the confound, forcing it to have a Gaussian distribution [Bolstad, 2003]. 
3. Squaring the Quantile Normalisation. 

 
These transformations were applied to the 183 quantitative confound variables, resulting in a new confound               
group of 549 non-linear confounds. Nevertheless, not all these confounds are equally important, and              
increasing the number of confounding variables is both inconvenient in computational terms but can also               
unnecessarily remove too many degrees-of-freedom from the data (confounds that are just random noise              
explain a certain amount of variance of the IDPs, as described in section 2.5). We estimated the amount of                   
unique variance explained (in the IDPs) in order to decide which non-linear confounds to keep, and ended up                  
retaining 158 confounds (NON LINEAR). The criteria that we used (described in detail in the SM, section S7.1)                  
is that each non-linear confound must pass at least one of two tests, to be included in the confound list:  

1. Average (across IDPs) of the %VE (percent variance explained) by the non-linear confound must be                
higher than the 95 ​th​ percentile of all average %VEs (across IDPs).  

5 For any given confound, ​we define outliers thus: First we subtract the median value from all subjects’ values. We                                  
then compute the median-absolute-deviation (across all subjects) and multiply this MAD by 1.48 (so that it is equal                                   
to the standard deviation if the data had been Gaussian). We then normalise all values by dividing them by this                                       
scaled MAD. Finally, we define values as outliers if their magnitude is greater than 8. 
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2. Maximum (across IDPs) %VE by the confound must be higher than the maximum of 0.75 % VE and                   
the 99.9th percentile of all VEs (across IDPs). 

 
The thresholds used here and in the next section are by necessity empirically “expert” determined (and                
arguably arbitrary), but can of course be changed if researchers use our unconfounding code and wish to                 
make unconfounding more or less aggressively conservative. 

2.4.3. ​Crossed terms (Confound interaction: A * B) (84 variables) 
The confounds may interact with each other in a non-additive way. Thus, products of pairs of confounds should                  
be considered. Pairwise products of the 398 confound variables (240 + 158) would produce new              ( )2

398   
confound variables (79,003). Combinations of confounds from different sites will be useless (the product of               
those will be 0), so we end up evaluating 26,674 crossed-terms. As previously mentioned, not all these                 
confounds are useful, so we used a similar criteria as for non-linear confounds to only keep the most important                   
crossed-term confounds (CROSSED TERMS, 84 confounds). The criteria that we used (described in detail in               
the SM, section S7.2) is that each non-linear confound must pass at least one of two tests, to be included in                     
the confound list:  

1. Average (across IDPs) of the %VE by the non-linear confound must be higher than the 99.9 ​th                 
percentile of all average %VEs (across confounds).  

2. Maximum (across IDPs) %VE by the confound must be higher than the maximum of 1 % VE and the                    
99.999th percentile of all VEs. 

2.4.4. Date/time-related confounds (120 variables) 

Both the acquisition date and time of day could be directly used as confounds, but time or date might represent                    
a confound where the effect on IDPs is highly non-linear and non-monotonic (as a function of date or time),                   
and we are primarily interested in the effect that these variables may have on the IDPs. Therefore, to identify                   
time/date confounds that are rich and flexible but representing average effects in the data, we extracted a set                  
of temporal confounds from the IDP data by: sorting the data temporally; smoothing temporally; and performing                
a Principal Component Analysis (PCA) across smoothed IDPs. This process was performed separately for the               
acquisition date and for the time of day. We now describe this process in a little more detail. 
 
All previously calculated confounds (487) are first regressed out of each IDP to ensure that we are focusing on                   
time/date effects not already covered by the known above confounds. After regressing out all the previously                
mentioned confounds, there may still be some variance explained by the acquisition date or its time of day                  
[Karch, 2019]. This kind of information may be useful for some studies (e.g. drowsiness correlated with time of                  
day), but we would consider it to be a confounding factor in this study. 
 
Next, each IDP is sorted subject-wise according to the corresponding time criteria (either time of day or date),                  
and the IDP values are smoothed using Gaussian-kernel smoothing, with ​𝜎 ​= 0.1, where the units are years for                   
the date smoothing, and work-days (i.e., 13 hours, 7am-8pm) for time smoothing. We then apply PCA on the                  
sorted and smoothed IDPs of the subjects of each site. We retain the number of components that explain 99%                   
of the total variance. The IDP sorting, smoothing and PCA reduction is applied separately for each scanning                 
site. 
 
This produced 61 components representing the acquisition time, and 59 components representing acquisition             
date. The only difference between the generation of the acquisition date and time variables is that the                 
generated acquisition time confounds were also regressed out of the IDPs before generating the date               
confounds. 
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2.5. Null evaluations (Random Gaussian confounds)  
A certain amount of variance in a variable of interest will always be explained by a random variable (i.e., the                    
null scenario). The more variables we have, the more variance would be explained in our variables of interest                  
even by random chance. 
 
Below, (section 3.3), we evaluate how important a confound group is. One way to do this is to calculate how                    
much variance the confound group explains in the IDPs, and also how much ​unique variance they explain                 
relative to other confound groups . We also check whether our confound groups perform better than the same                 6

number of random null variables, as a means to show where our confound groups are useful. These                 
comparisons can be seen in the violin plots in section 3.3. 

2.6. Correlations between IDPs and non-IDPs variables 
In order to assess how unconfounding affects the correlations between IDPs and non-IDPs, we focused on a                 
set of Body variables (224) and Cognitive variables (909) . We extracted this information from the UK Biobank                 7

raw data files using FUNPACK . The listing of the variables in each of these 2 categories as well as the                    8

normalization, parsing and cleaning configuration for FUNPACK can be found online . We chose these two               9

categories of non-imaging variables as being highly contrasting representative groups: many body variables             
have strong associations with imaging, and the influence of confounding factors could also be complex and                
strong; in contrast, associations of IDPs with cognitive variables are much less strong, might easily be                
problematically dominated by confounding effects, and are likely to be of high interest to researchers using the                 
brain imaging data. 
 
We compared how each group of confounds affects the correlations between IDPs and non-IDP variables               
(both Body and Cognitive) by finding the P values of the correlations between each pair of IDP and non-IDP in                    
two settings: 

1. Regressing out all confounds, other than the confound group in question, from IDPs and non-IDPs. 
2. Regressing out all confounds from both IDPs and non-IDPs. 

 
We can then compare (Section 3.4) the P values obtained in each setting: if the P value of the correlation for                     
an IDP - non-IDP pair is higher when a confound group is not used than when it is used, we can be more                       
certain about the importance of that confound group in avoiding spurious correlations. 

2.7​. Additive vs non-additive confound effects 
So far, we have only focused on additive confounding effects, but it may be the case that, in addition to linear                     
and non-linear components in a confound, we may have non-additive effects, for example as shown in the final                  
term in the equation: 

                                                              (1)   cJ = I + a * A + b * A
2 +  * A * I

  
 

Where: 
I ​ is the true IDP (and our estimation of the true IDP) 
J​ is the measured IDP 
A​ is the confound 

6 We calculate the Unique Variance Explained (UVE), in the IDPs, by a group of confounds X, by subtracting from the total                      
variance explained by all confounds (602 variables) the variance explained by all confound groups other than X.  
7 For a discussion on the validity and reliability of UK Biobank cognitive tests, see ​[Fawns-Ritchie, 2019]. 
8 FUNPACK v1.4.1 [McCarthy, 2019] can be obtained from: ​https://git.fmrib.ox.ac.uk/fsl/funpack/  
9 ​[LINK to generate non-IDPs] 
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a, b, c ​ are scalar factors determining the size of the different confound effects relating to confound ​A . 10

 
Up to this point, we have only considered the first part of this equation: . If all terms are                I + a * A + b * A

2      
orthogonal, then setting and assuming we have correctly estimated ​E​, we can estimate ​c​,    E = a * A + b * A

2             
that is, we can estimate whether non-additive effects are important for our confounds. If we perform iterative                 
estimation of ​a​, ​b and ​c, where ​c would be calculated from the residual of performing a linear regression, ​cAI                    
would provide an approximation of how much variance of the IDPs would be explained by the non-additive                 
term. A description of this iterative estimation process can be found in the SM, section S8.1. 
 
Results of these analyses on confounds of interest (high % UVE - percent unique variance explained - of IDPs)                   
can be seen in section 3.5. The confounds selected for these analysis were Age, Head Size, and Table                  
Position (4) for subjects in Site 1, because these are in general the most important confounds and hence most                   
likely to result in non-negligible interactions with IDPs. We also show results from two motion-related               
confounds that are examples of smaller amounts of VE and more modest non-additive effects. 

2.8. Comparisons with other confound configurations (“conventional simple” confounds)  
As described above, we have generated a relatively large set of confounds (602 separate variables), which                
may seem excessive or even impossible to use in small imaging studies. We wanted to compare our proposed                  
set of confounds with a more conventional set of confounds used in typical imaging studies (similar sets of                  
confounds have been used and described in UK Biobank and Enigma Projects [Miller 2016, Stein 2012]). Such                 
conventional set of confounds could be: 

1. Age (1 per site) 
2. Age squared (1 per site) 
3. Sex (1 per site) 
4. Age * Sex (1 per site) 
5. Head size (1 per site) 
6. Site (2 variables) 
7. Head motion (mean relative motion as calculated by FEAT) in resting fMRI (1 per site) 
8. Head motion (mean relative motion as calculated by FEAT) in task fMRI (1 per site) 
9. Date (number of days when the acquisition happened since the acquisitions started) (1 per site). 
10. Date squared (1 per site). 

 
We compared this “simple” set of confounds with the same number (29) of random confounds, as described in                  
the previous section. Also, to make a fair comparison with our proposed set of confounds (in the sense that                   
602 confounds will inherently explain much more variance than 29), we compared the simple set with the first                  
29 Principal Components of our proposed confound set. Finally, we also compared the simple set of confounds                 
with the PCs explaining 90% and 99% of the variance of the proposed set of confounds (170 and 322 PCs). 
 
For this comparison, we calculated all possible univariate correlations between IDPs and non-IDPs (3,913              
IDPs x 7,247 non-IDPs = 28,357,511 pairs) after unconfounding both of them using the different sets of                 
confounds: full set of 602 confounds (ALL), 29 “simple” confounds (SIMPLE), 29 PCs from ALL (PCA-MIN),                

10 So far, we have assumed that confound variable A was estimated perfectly, but as discussed in [Westfall, 2014], this                    
may not be absolutely true. Nevertheless, their proposed solution, Structural Equation Models / Factor Analysis, requires                
having multiple measurements of the given confound, but that is not the case in UK Biobank, as several measures of the                     
same metrics were not calculated in general. Therefore, the fact that A is a noisy measure of the true "A" means that a, b,                        
& c may be underestimated (i.e., regression dilution). 

11 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.11.987693doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.11.987693
http://creativecommons.org/licenses/by-nd/4.0/


 

170 PCs that explain 90% of the variance of the full set of confounds (PCA-90%), and 322 PCs that explain                    
99% of the variance of the full set of confounds (PCA-99%).  
 
We evaluated how much variance in the IDPs is explained by each set of confounds. We also kept the                   
P-values of those correlations and plotted them in different Manhattan plots similar to [Miller, 2016]. Finally, we                 
show with two Bland-Altman plots: 

1. How the P-values of the correlations between nIDPs and IDPs are reduced when using the full                
set of confounds (ALL) vs. without unconfounding (NONE). 

2. The difference in the P-values between unconfounding with ALL and the 29 “simple” confounds              
(SIMPLE).  
 

Results can be seen in section 3.6. 
 

3. Results 
3.1. Non-linear confounds selection 

For each of the 3,913 IDPs we calculated the %UVE by each of the 549 non-linear confounds described in                   
section 2.4.2. Here, the variance is referred to as unique relative to the previous 240 basic confounds (section                  
2.4.1) that were regressed out of the IDPs (and not meaning unique with respect to all other non-linear                  
confounds). As can be seen in Fig. 2, the %UVE by non-linear confounds is rather small on average (the                   
largest average %UVE across IDPs being 0.14%), but the maxima can be significantly larger for some                
combinations of non-linear confound and IDP, e.g. non-linear transformations of age (2.25%), table position              
(4.44%), or head motion (3.3%). It is also interesting to note that T1w, dMRI and rfMRI Amplitude IDPs were                   
more strongly affected in general by non-linear transformations, compared with other classes of IDPs . 
 
An evaluation of appropriate thresholds for these plots resulted in a subset of 158 non-linear confounds from                 
the original 549.  
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Fig. 2. Top) Distribution of the mean (across IDPs) % UVE for each non-linear confound. Centre) Distribution of the max (across IDPs)                      
% UVE for each non-linear confound. Bottom) Manhattan plot of the % UVE of each IDP by each non-linear confound, grouped by IDP                       
modality. Calculation of thresholds (red lines in each plot) is described in SM, section S7.1. Interactive versions of these plots, with                     
details of individual results, can be seen at: ​[Top] ​[Centre] ​[Bottom]​. For Top and Centre plots, the full list of non-linear confounds                      
considered can be seen in ​[LINK] 
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3.2. Crossed terms selection 
As in the previous section, for each of the 3,913 IDPs we calculated the % UVE (again, unique with respect to                     
the original confounds) by each of the 79,003 crossed-term confounds described in section 2.4.3. Only 26,674                
crossed-terms were considered, as the crossing of terms from different sites produces empty confounds.              
Again, the average (across IDPs) % UVE by crossed-term confounds is small, but can be important in some                  
cases, where % UVE goes above 2%. It is also interesting to note that T1w, dMRI, rfMRI Amplitude, and rfMRI                    
Connectivity IDPs have a higher % UVE for crossed-term confounds. An evaluation of appropriate thresholds               
for these plots ended up with a subset of 84 crossed-terms from the original 79,003. 
 

 
Fig. 3. Top) Distribution of the mean (across IDPs) % UVE for each crossed-term confound. Centre) Distribution of the max (across                     
IDPs) % UVE for each crossed-term confound. Bottom) Manhattan plot of the % UVE of each IDP by each crossed-term confound,                     
grouped by IDP modality. Calculation of thresholds (red lines in each plot) is described in SM, section S7.1. ​[Top] ​[Centre] ​[Bottom]​. For                      
Top and Centre plots, the whole list of non-linear confounds considered can be seen in ​[LINK]​. 
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3.3. ​Variance of IDPs explained by confound groups 
The percentage of variance explained (%VE) and unique variance explained (%UVE) of the 3,913 IDPs by                
each group of confounds can be a good indication of the importance of these groups. Fig. 4 shows UVE for                    
each group (top) or family (i.e., super-group, bottom), and also (in grey) UVE with same-sized sets of random                  
variables. The y axis is Log10 of %UVE, and hence “1” means 10% variance of an IDP explained; the                   
(violin-plot) vertical histograms show the distributions across IDPs. VE and UVE for groups/families relate to               
the variance explained by the relevant set of individual variables considered as a whole together (i.e. are not                  
generated by combining across individual variables’ VE/UVE). 

 
Fig 4: Top) Violin plots with % UVE of IDPs by each group of confounds described in Fig 1 ​[UVE Top]​. For a similar figure showing the                           
VE instead of the UVE: ​[VE Top]​. Bottom) Violin plots with the % UVE of the IDPs by each family of confounds described in Fig 1 ​[UVE                           
Bottom]​. For a similar figure showing the VE instead of the UVE: ​[VE Bottom]​. SM (section S11) shows the same data detailing the                       
variables by IDP modality. Light grey violin plots show the % VE or % UVE explained by the same number of random variables (each                        
set of matched-size random null variables is generated uniquely, hence the small variations between same-sized RAND groups). An                  
interactive version of all these violin plots where the reader can verify the exact VE and UVE of each IDP explained by each confound                        
group or family, in total or by IDP modality, is available at ​[​LINK ​] 
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In addition to the expected importance of age, head size and head motion, table position is also notable.                  
Non-linear and crossed-terms are important for some IDPs, as are date and time. Because much of the                 
sex-related confound effects are due to head size, the unique (remaining) effect of sex is smaller than more                  
major confounds like age, head size and head motion, and site effects are on average smaller still. The % UVE                    
of the whole set of 602 confounds is included. For a detailed comparison of the 6 unconfounding schemes                  
described in Section 2.9, see S10 or ​[GLOBAL]​. 
 
Finally, we also evaluated the %VE and %UVE of between-imaging-site effects in a slightly different way to the                  
above tests (by attempting to adjust for known site effects). This did not give highly different results; the tests                   
and results are given in Section 9 of the Supplementary Material.  

3.4. Effect of unconfounding on IDP-nIDP correlations 
For each confound group, we compared how the P values of the correlations between IDPs and Cognitive and                  
Body variables change when unconfounding both IDPs and non-IDPs with all confounds, versus             
unconfounding them with all confounds except for the confound group of interest. By doing this, we can see                  
how each confound group “uniquely” affects the correlations.  
 
All Bland-Altman (BA) plots are shown in SM; below we include a few exemplar BA plots. AGE affects almost                   
all correlations, as expected; the same is true of HEADSIZE. Unconfounding TABLEPOS does not strongly               
affect the correlations between Cognitive and IDPs, but has a stronger effect on correlations between Body                
variables and IDPs. As mentioned above, unconfounding CROSSED TERMS does not strongly affect the              
correlations, although there is a small systematic (overall trend) effect. There is almost no effect of SERVICE                 
PACK, as one would hope, as this refers to what should be very minor Siemens software upgrades. Finally, we                   
can see an example of Berkson’s Paradox (discussed further below) on how unconfounding for DVARS               
confounds increases the significance of the correlations between Body variables and IDPs.  
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Fig, 6: We show here a subset of all the Bland-Altman (BA) plots produced, which illustrate how correlations of IDPs with Body and                       
Cognitive variables are affected very differently by the unconfounding. In these plots, a situation where a confound group does not                    
strongly affect the correlations would appear as a horizontal cloud of points around y=0 (meaning no substantial difference between A                    
and B). Where the cloud of points leans heavily towards negative y, this means that using that confound group reduces the significance                      
of correlations (implying that the correlations were spurious). If the cloud of points leans heavily towards positive y, this implies a case                      
of Berkson’s Paradox, particularly where values in A are close to zero. The remaining BA plots can be found in the SM (section S12).                        
Interactive versions of all BA plots, where the reader can verify the exact change in P values and the IDP / non-IDP pair that each point                          
represents can be found in ​[​LINK ​]​. 
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3.5. Importance of non-additive terms 
We evaluated the importance of non-additive terms as defined according to equation (1). The results in Figure                 
6 show how the non-additive component of the 8 studied confounds have low importance to explain the                 
variance of some IDPs in terms of non-additive confound effects (all distributions are across IDPs). For each                 
confound, we can see correlation between the measured IDP and the estimated IDP (left), % VE for the linear,                   
quadratic and non-additive terms. We also compare with the % VE of a random variable (null). The                 
non-additive term is generally smaller than the quadratic term, but not by a large amount, and it is generally                   
larger than the null scenario (variance explained by a random regressor). 
 

 
Fig. 6: Effect of modelling non-additive terms. Each panel shows for a different confound: (Left) Correlation for the measured IDP (J in equation (1)) with                         
the estimation of the true IDP (I in equation (1)). The boxplot distributions are across IDPs. (Right) Histograms (distributions across IDPs) of the %                        
Variance explained for IDPs by the Linear term, the quadratic term, the non-additive term and a random variable for null comparison.  
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3.6. Effects of unconfounding with different sets of confounds 
We found that different sets of confounds (except for PCA-MIN) explained more variance of IDPs overall than                 
the SIMPLE set of confounds (Figure 7). We also show the general reduction in P-values of the correlations for                   
IDPs vs. non-IDPs when unconfounding with the full set of confounds (ALL) and the reduced set of confounds                  
(SIMPLE) with two Manhattan plots (Figure 8). Finally, we compared those two unconfounding settings directly               
via a Bland-Altman plot (Figure 9a); this suggests that for the majority of cases, more “complete”                
deconfounding improves sensitivity for finding significant associations. 

 
Fig. 7: Top) Violin plot with the amount of variance of all IDPs explained by different sets of confounds: ALL (the full set of 602 confounds that we have                             
developed in this work), SIMPLE (a more common set of confounds used in most studied and described in Section 2.6), PCA-MIN, PCA-90% and                       
PCA-99%: Three sets of Principal Components described in Section 2.9) obtained from ALL. The first has as many components as confounds in                      
SIMPLE (29), the second has the number of components that explain 90% of the variance of ALL (170), and the third has the number of components                          
that explain 99% of the variance of ALL (322). Each of these sets of confounds is compared with a set of random confounds of the same size. An                            
interactive plot (where the reader can check how much variance is explained by each confound in each set) can be seen in ​[GLOBAL_ALL]​. Bottom)                        
Violin plots showing the distributions of paired-differences in VE of all IDPs, comparing the SIMPLE set of confounds and the other sets of confounds. 
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Fig. 8. Top) Manhattan plot showing how the correlations between IDPs and non-IDPs are affected by unconfounding with the whole set of confounds                       
[​Top​]​. Bottom) Manhattan plot showing results after unconfounding with the SIMPLE set of confounds ​[Bottom]​. Similarly: ​[No unconfounding] ​[PCA-MIN]                   
[PCA-90%]​ ​[PCA-99%]​. 
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Fig. 9: Top) BA plot to show the difference in P-values for the correlations between IDPs (3,913) and non-IDPs (7,247) when using 2 different                        
unconfounding settings: full set of 602 confounds (ALL) and “common” set of 25 confounds (SIMPLE). Bottom) BA plot to show the difference in                       
P-values for the correlations for IDPs and non-IDPs when unconfounding with the full set of 602 confounds (ALL) and without any unconfounding. The                       
diagonal line (bottom-right) is due to some correlations without any unconfounding (A) having a smaller P-value than the numerical precision limit. 
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4. Discussion 

4.1. General considerations 
In this this study we have confirmed the importance of known confounds such as age, sex, head size and head                    
motion, while also showing that in the UK Biobank imaging data, the position of the scanner table, as well as                    
many other acquisition parameters and configurations, have a non-trivial influence on the data. Although UK               
Biobank brain imaging data is of high overall quality and homogeneity, the extremely high subject numbers                
means that even small confounding effects can cause statistical problems (in particular, raising the danger of                
finding false positive associations). 
 
In developing this set of confounds, we considered including different quality metrics, such as the “Entropy” of                 
the T1; however, we chose to omit these here because they could be closely entangled with related IDPs such                   
as WMH volume (and other valid “signal” effects). Similarly, we initially included a binary variable called                
“Repeated T1”, indicating whether the acquisition of the T1 image was repeated more than once. We initially                 
speculated that this could be used as a proxy for structural head motion, but we instead decided to represent                   
structural motion more thoroughly in the STRUCTMOTION variable, explained in Section S3 of the SM. 
 
Some considerations may need to be made regarding the basic confounds that we studied. For example, we                 
considered whether it would be more appropriate to use brain size instead of head size as a possible                  
confound. This is a complex question that may deserve exploration in the future. It may also be interesting to                   
include FreeSurfer-head/brain size scaling in this analysis, as these are calculated in a different way than we                 
have done here.  
 
It is also important to note that most IDPs have not been normalised for head size prior to deconfounding. In                    
general, it is only sensible to scale IDPs by a head size scaling factor when the IDP in question is a raw                      
volumetric measure. For other types of IDPs, normalising (scaling) by non-demeaned head size is likely to                
induce head size confounds in the data (this is similar to the general danger of inducing confound effects when                   
regressing out confounds that have not been demeaned). In general, the safer way to approach unconfounding                
is to regress out demeaned confound regressors. 
 
The generation and processing of non-linear confounds and crossed terms shown in this work is not                
necessarily intended to be the exact rigid recommendation for future studies. Some of the %VE thresholds                
described in Section S5, though driven by inspecting data distributions, are somewhat arbitrary. It may be that                 
cross-validation (or other methods for model-order selection) should be used to obtain more objective selection               
of confounds to keep, but the presence of complicated patterns of shared variance between different               
confounds would complicate efficient application of such methods, given the large number of potential              
confounds. Our main intention here was to show how these terms may be important, and illustrate their effect                  
on downstream analyses. In the same way, we have shown that non-additive terms may also play a non-trivial                  
role, but finding the optimal way to identify and deal with these will depend on the research question being                   
asked, and the level of deconfounding conservativeness desired. 
 
Finally, some of the results presented here may have been affected by the fact that we have only included                   
subjects that passed the QC process described in [Alfaro-Almagro, 2018] (i.e., subjects with a T1 deemed                
“unusable” were already excluded). Confounds such as STRUCT MOTION and HEAD MOTION may have              
been found to be significantly more important to the deconfounding process, had those subjects not been left                 
out. 
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4.2. Confounds and non-IDP variables 
The rich relationships (in terms of VE and UVE) of the confounds with non-IDPs is beyond the scope of this                    
study, although we have illustrated in many Bland-Altman plots how the confounds affect associations between               
IDPs and non-IDPs. For example, the importance of head motion as a confound cannot be understated for                 
most studies, but this confound may also be correlated with important effects of interest. Correlations between                
motion-related confounds and health-related variables are to be expected, even in healthy subjects - for               
example, [​Bijsterbosch, 2017 ​] identified a relationship between head motion and sleep quality. Our results              
show that DVARS metrics are correlated with ECG load during exercise bike activity, and also with resting                 
state fMRI node amplitude. In fact, all resting state node amplitudes correlate somewhat similarly with DVARS ,                 
but sensory motor nodes correlate more strongly than cognitive nodes (consistent with [​Bijsterbosch, 2017 ​]).              
Hence, there is possibly an underlying physiological factor which is manifesting itself in health-related              
variables, and in resting state connectivity and fMRI motion. Therefore, while in this study we are using DVARS                  
metrics as confounds, they could potentially find use as health biomarkers. 
 
Some non-IDPs, such as blood pressure, bone density, height and weight, can be strongly associated with                
IDPs [Miller 2016, Smith 2019], and might be considered for use as confound variables. These are likely to                  
correlate with confounding processes in the imaging (for example, weight correlates with head motion), but are                
also likely to partially reflect physiological processes of interest. Subject age is a complicated example of this,                 
mediating large amounts of between-subject variance that could be considered signal, noise or both. Here we                
focused primarily on confounds that we could derive from the imaging data (although some of our                
imaging-derived confounds are obvious proxies for non-imaging measures e.g. head size is a proxy for height). 

4.3. Number of confounds 
The motivation of this paper is to explore approaches to controlling for confounds in large scale prospective                 
brain imaging studies; we have aimed to provide recommendations for the types of confounds that should be                 
used in such studies. For simple focussed correlation studies, researchers may want to use simpler or more                 
specific versions of the confounds we have proposed; this raises the question of how we can reduce the                  
number of confounds a researcher should use. 
 
As was shown in section 3.6, using a small number of confounds may suffice, especially if those confounds are                   
specific enough. For example the SIMPLE confound set explains more variance in IDPs the PCA-MIN               
confound set. This is due to the SIMPLE set being more specific. On the whole, the SIMPLE confounds do not                    
explain (on average) as much variance as the ALL, PCA-90%, or PCA-99% sets (Fig. 7). 
 
Although investigation of the effects of deconfounding on associations between IDPs and nIDPs can be               
informative (for example, this can help eliminate confounds that make no difference), it can be hard to judge                  
whether changes in IDP-nIDP association P-values are beneficial or detrimental, as there is in general no                
ground truth available. For example, ​"good" deconfounding might reduce P (increase significance) by correctly                      
removing noise that is not shared between an IDP and an nIDP, or could increase P by correctly removing noise                                       
that is shared. On the other hand, "bad" deconfounding might increase P by over-aggressively removing good                               
signal, or might incorrectly decrease P by virtue of Berkson’s paradox (i.e., regressing out an inappropriate                               
confound - see below).  

4.4. Berkson's paradox 
One problem that may arise when applying deconfounding is known as the Berkson’s paradox [Pearl 2009,                
Zhang 2008]. This effect occurs when we adjust two independent variables for a potential confound that was                 
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actually a consequence of the independent variables. In this case, a spurious association between the               
independent variables can be incorrectly induced. 
 
Even without this known mathematical problem, such deconfounding does not make sense to apply, if the                
“confound” factor was actually caused by (and not a causal factor feeding into) the two variables being tested                  
for an association. Examples of largely safe confounds are age, sex, and genetics, as these are “causal”                 
factors unlikely to be “caused by” other imaging and non-imaging variables of interest. 
 
A possible illustrative example of Berksons’s paradox in our results could be when considering the association                
between the fMRI task activation (which involves visual cortex stimulation and button pushing) and the body                
variable of waist size. With deconfounding that excluded head motion confounds, the association was very               
weak (-log10 P = 0.55), while after also deconfounding for head motion, the association was stronger (-log10 P                  
= 2.84). It seems quite plausible that both variables have some “input into” head motion, and hence the                  
deconfounding increases the IDP-nIDP association from being close to zero to being significant . 11

4.5. Sex-split unconfounding 
As mentioned in section 2.3 and detailed in section 2.4.1, all confounds were modelled to be independent of                  
site (i.e, a site-specific version of each confound was created). There may be other cases where confounds                 
need to be split; for example, if a confound affects males and females differently (with different strengths of                  
confounding effect), sex-split confounds might be necessary.  
 
There may be additional reasons why such splitting is necessary. For example, in cases where the raw data                  
(e.g. some disease outcomes) is all-zeroes for one sex (either because one sex has all zeros "by definition" -                   
like for testicle-related disease in females, or because the subset of subjects being processed happens to be                 
all zeroes for one sex), then statistical problems can arise. If a confound is not sex-separated, it is likely that                    
the all-zeroed-values (i.e., for one sex) will get the confound induced in them (i.e. are no longer all zeros). Note                    
those induced values are of course a perfect copy of the confound. This becomes a problem if the study then                    
tries to correlate the unconfounded variable with something else which has confounds in it (or if sex-split                 
associations are tested for). The problem is avoided by the use of split confounds. 

4.6. Date and time confounds 
Section S10 of the SM shows the generated Acquisition Date and Acquisition Time confounds. Interpretation of                
the meaning of these data-driven confounds may be complicated, but in some cases possible. One clear                
example is the first temporal component (See Fig 10.A). This component was highly correlated (Fig 10.B) with                 
one of the resting fMRI Node Amplitude IDPs (Fig 10.D) which are known to correlate with drowsiness                 
([Stoffers, 2015] and [​Bijsterbosch ​, 2017]). The periodicity (6 events per day) can be analyzed in light of the                  
number of subjects per day that are scanned in each site (roughly, 18 per day, being Site 1 the most                    
consistent). This periodicity may be related to how much the subjects have rested and how this is only                  
noticeable after the heavy smoothing applied prior to PCA (Fig 10.D: The periodicity is hard to see in                  
pre-smoothed IDP data).  
 
According to the UKB imaging centre workflow, participants circulate around the imaging centre in triplets, and                
in each triplet the three subjects perform different activities in different orders (e.g. subject 1 is being scanned                  
in the brain MRI while subject 2 is performing physical exercise and subject 3 is being scanned in the                   
cardiac/abdomen MRI). Therefore, one subject out of three will have their brains scanned immediately after               
doing exercise, while another will be scanned after “resting” in the cardiac scanner;  this may affect the results. 

11 The significance after deconfounding is not corrected for multiple comparisons across all pairs of IDPs and nIDPS, but 
this is just intended as an illustrative example. 
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Fig.10: (A) First Principal Component (PC) for the Acquisition Time confounds for Site 1, along with the histogram (in red) of the acquisition times of all                          
Site 1 subjects, where the main peaks (of “dominant” imaging start times) can be easily identified. The PCA component is the strongest time-drift effect                        
(across all IDPs) that is not already removed by other known confounds. (B) Plot of all the correlations between this first PC and each IDP. The two most                            
strongly correlated sets of IDPs are rfMRI node amplitudes, and T1 intensity contrast across the white-grey cortical boundary; IDP rfMRI Amplitude (ICA                      
100 node 32) is the most correlated. (C) Smoothed (moving average with span of 1000) of just this IDP over time, which is clearly tending towards the                           
first PC. (D) The same IDP, without temporal smoothing (one point per subject).  

5. Conclusions 
In this work, we have developed a set of brain imaging confounds and have tested their importance in the                   
context of their effect on IDPs and on association studies between imaging and non imaging variables, through                 
investigation of the Variance Explained and the Unique Variance Explained, as well as the way in which each                  
group of confounds affects the data. We have generated a large number of interactive plots that can be                  
explored in order to get a fine-grained idea about how each group of confounds are related to each other,                   
affect the IDPs, or affect the relationship between IDPs and non-IDPs. We have shown how to study the                  
importance of a possible confound, what confounds may be useful, and possible ways of reducing their                
number. We have identified one recommended set of confounds to use in the context of UK Biobank brain                  
imaging data (which covers 6 structural and functional modalities, and already has 40,000 participants’ data               
released). A centralised description of these imaging confounds (including code for generating the confounds              
from the subject-level data disseminated by UKB, and code for applying the confounds) is available at                
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https://www.fmrib.ox.ac.uk/ukbiobank/confounds/ and this will be updated as more subjects’ data are released            
(and further confounds are identified) in an ongoing way. 
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