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Abstract 19 

Functional magnetic resonance imaging (fMRI) of awake and unrestrained dogs 20 

(Canis familiaris) has been established as a novel opportunity for comparative 21 

neuroimaging, promising important insights into the evolutionary roots of human brain 22 

function and cognition. However, data processing and analysis pipelines are often 23 

derivatives of methodological standards developed for human neuroimaging, which 24 

may be problematic due to profound neurophysiological and anatomical differences 25 

between humans and dogs. Here, we explore whether dog fMRI studies would 26 

benefit from a tailored dog haemodynamic response function (HRF). In two 27 

independent experiments, dogs were presented with different visual stimuli. BOLD 28 

signal changes in the visual cortex during these experiments were used for (a) the 29 

identification and estimation of a tailored dog HRF, and (b) the independent 30 

validation of the resulting dog HRF estimate. Time course analyses revealed that the 31 

BOLD signal in the primary visual cortex peaks significantly earlier in dogs compared 32 

to humans, while being comparable in shape. Deriving a tailored dog HRF 33 

significantly improved the model fit in both experiments, compared to the canonical 34 

HRF used in human fMRI. Using the dog HRF yielded significantly increased 35 

activation during visual stimulation, extending from the occipital lobe, to the caudal 36 

parietal cortex, the bilateral temporal cortex, and into bilateral hippocampal and 37 

thalamic regions. In sum, our findings provide robust evidence for an earlier onset of 38 

the dog HRF in a visual stimulation paradigm, and suggest that using such an HRF 39 

will be important to increase fMRI detection power in canine neuroimaging. By 40 

providing the parameters of the tailored dog HRF and related code, we encourage 41 

and enable other researchers to validate whether our findings generalize to other 42 

sensory modalities and experimental paradigms. 43 

Keywords: dog, cognition, vision, fMRI, haemodynamic response function (HRF) 44 
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Highlights 45 

• Dog fMRI typically uses human HRF, but underlying neurophysiology might differ  46 

• V1 BOLD signal peaked earlier in dogs than predicted by the human HRF  47 

• Tailored dog HRF improved model fit when tested with independent data 48 

• Whole-brain comparisons confirmed increased detection power for tailored dog 49 

HRF 50 

• Dog fMRI will benefit from increased detection power of tailored HRF  51 
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1 Introduction 52 

Animal research involving domesticated dogs (Canis familiaris) yield important 53 

insights into non-invasive comparative neuroscience (Andics, Gácsi, Faragó, Kis, & 54 

Miklósi, 2014; Bunford, Andics, Kis, Miklósi, & Gácsi, 2017; Fitch, Huber, & Bugnyar, 55 

2010), and allows researchers to study the neural correlates of cognitive abilities, i.e., 56 

how dogs perceive or process their environment (e.g. Andics & Miklósi, 2018; 57 

Thompkins, Deshpande, Waggoner, & Katz, 2016 for review). For example, recent 58 

work has used functional magnetic resonance imaging (fMRI) to study the neural 59 

representations during auditory stimulation or lexical processing (Andics et al., 2016, 60 

2014; Prichard et al., 2019; Prichard, Cook, Spivak, Chhibber, & Berns, 2018), face 61 

perception (Cuaya, Hernández-Pérez, & Concha, 2016; Dilks et al., 2015; 62 

Hernández-Pérez, Concha, & Cuaya, 2018; Szabó et al., 2020), olfactory processing 63 

(Berns, Brooks, & Spivak, 2015; Jia et al., 2014), sense for numeracy (Aulet et al., 64 

2019), jealousy (Cook, Prichard, Spivak, & Berns, 2018) and reward processing 65 

(Berns, Brooks, & Spivak, 2012; Berns, Brooks, Spivak, & Levy, 2017; Berns, Brooks, 66 

& Spivak, 2013; Cook, Prichard, Spivak, & Berns, 2016; Cook, Spivak, & Berns, 67 

2014; Prichard, Chhibber, Athanassiades, Spivak, & Berns, 2018) in dogs. So far, 68 

dog fMRI studies have relied on methodological standards originally developed for 69 

human (f)MRI, but it has been proposed that hardware as well as data analysis 70 

approaches tailored to dogs might be more suitable (Huber & Lamm, 2017). Although 71 

the majority of fMRI pre-processing steps are readily transferable from humans to 72 

dogs (i.e., slice timing correction, realignment, smoothing), humans and dogs might 73 

differ in many aspects other than apparent differences in neuroanatomy (Hecht et al., 74 

2019; Horschler et al., 2019; Schoenebeck & Ostrander, 2013), such as differences 75 

in vascular and neuronal physiology. Here, we critically examined the state of the art 76 

in canine neuroimaging methodology and aimed at optimizing data processing and 77 

analysis pipelines to improve fMRI sensitivity and specificity. 78 

fMRI-based neuroimaging commonly uses a general linear model (GLM) to 79 

describe voxel-wise haemodynamic response time courses by convolving the 80 

regressors of the experimental conditions with a haemodynamic response function 81 

(referred to as “human HRF” throughout the text). This typically involves a double-82 

gamma function to account for the delayed peak at approx. 5 s after stimulus onset 83 

and the post-stimulus undershoot (Friston, Fletcher, et al., 1998; Friston et al., 1995; 84 

Friston, Jezzard, & Turner, 1994; Worsley & Friston, 1995). So far, canine 85 
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neuroimaging studies have used the standard human HRF (e.g., Andics et al., 2014; 86 

Cuaya, Hernández-Pérez, & Concha, 2016), a model of the human HRF based on a 87 

single gamma function (e.g., Cook et al., 2014; Dilks et al., 2015), or a Fourier basis 88 

set (Aguirre et al., 2007). However, assumptions about the (canonical) human HRF 89 

shape and its temporal dynamics might not apply in dogs. An accurate HRF model is 90 

crucial, as even minor deviations can lead to substantial loss of power (Handwerker, 91 

Ollinger, & D’Esposito, 2004), thus not only reducing the chance of detecting true 92 

effects but also increasing the likelihood for false-positive results (Lindquist, Meng 93 

Loh, Atlas, & Wager, 2009) and inflated effect sizes (e.g., Ioannidis, 2005; Simmons, 94 

Nelson, & Simonsohn, 2011). Additionally, fMRI studies with small sample sizes are 95 

often considered underpowered (Button et al., 2013; Cremers, Wager, & Yarkoni, 96 

2017; Poldrack et al., 2017; Simmons et al., 2011), which is a ubiquitous problem in 97 

canine research due to the complexity of the experiments (median of approx. 12.5 98 

dogs, although it is increasing). Under these circumstances, it is particularly crucial to 99 

test whether the BOLD response in dogs is adequately captured with the canonical 100 

human HRF, or some variations of it. 101 

The shape of the human HRF has been discussed extensively since its 102 

adoption in fMRI data analysis (Aguirre, Zarahn, & D’Esposito, 1998; Boynton, Engel, 103 

Glover, & Heeger, 1996; Glover, 1999). Numerous factors causing HRF variability 104 

have been identified, e.g., developmental changes (Arichi et al., 2012), and clinical 105 

conditions (Ford, Johnson, Whitfield, Faustman, & Mathalon, 2005). A frequent 106 

approach to account for potential HRF variability within a participant sample (used 107 

twice in a dog sample, Jia et al., 2014, 2016) is to add temporal and/or dispersion 108 

derivatives (TDD) along with the HRF regressor when applying the GLM, used to 109 

calculate a so-called informed basis set (Friston, Fletcher, et al., 1998; Friston, 110 

Josephs, Rees, & Turner, 1998; Henson, Price, Rugg, Turner, & Friston, 2002). 111 

Despite the increased flexibility in the model, the basis function depends on prior 112 

knowledge about the average shape of the underlying BOLD signal, which is 113 

currently not available in canine neuroscience research.  114 

Previous studies using invasive recordings indeed demonstrated that the HRF 115 

varies across mammalian species. In comparison to humans, the HRF was shown to 116 

peak earlier in rats (De Zwart et al., 2005; Lambers et al., 2020; Silva, Koretsky, & 117 

Duyn, 2007) and mice (Chen et al., 2020), while the HRF in macaque monkeys 118 

appears similar (Baumann et al., 2010; Goense & Logothetis, 2008; Koyama et al., 119 
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2004; Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001; Nakahara, Hayashi, 120 

Konishi, & Miyashita, 2002; Patel, Cohen, Baker, Snyder, & Corbetta, 2018). 121 

Deviations from the human HRF in terms of shape and temporal dynamics seem to 122 

decrease in species with closer common ancestry to humans (Upham, Esselstyn, & 123 

Jetz, 2019) and with increasing absolute brain size (e.g., Roth & Dicke, 2005 for 124 

review). Considering the variations across species and potential differences in 125 

underlying neurophysiology, it seems plausible that the human HRF might deviate 126 

from the average BOLD signal in dogs. However, precise conclusions are currently 127 

not possible, as systematic investigations of the BOLD signal have not yet been 128 

performed in dogs.  129 

Here, we aimed to close this gap and used non-invasive fMRI in awake dogs 130 

that were specifically trained for this approach. In two independent experiments, we 131 

used different visual stimulation experiments and a step-wise analysis approach to 132 

establish and validate our results, respectively. In the first experiment, dogs viewed a 133 

flickering checkerboard interspersed with a baseline condition (flickering 134 

checkerboard experiment, experiment 1). The experiment employed a block design, 135 

aimed at achieving a robust measure of the average BOLD signal in the primary 136 

visual cortex (V1). Based on the resulting V1 BOLD signal data, we identified and 137 

estimated a tailored dog HRF, compared its model fit to the one based on using the 138 

human HRF, and differences in whole-brain activation between the two HRFs. We 139 

also tested if adding time and dispersion derivatives to the human HRF could 140 

sufficiently account for potential deviations of the dog from the human HRF. Data 141 

from a second experiment, which had employed an event-related visual stimulation 142 

design (face processing experiment, experiment 2), were then used to validate the 143 

results from the flickering checkerboard experiment. We opted for visual stimulation 144 

as the V1 can be easily located (see e.g., Langley & Grünbaum, 1890; Marquis, 145 

1934; Uemura, 2015; Wing & Smith, 1942), thus ameliorating the problem of a 146 

common three-dimensional coordinate system in canines. Finally, to encourage 147 

reproducibility, we openly share our data and provide a detailed description of the 148 

processing and analysis pipeline (see also for similar challenges on reproducibility in 149 

human fMRI: Carp, 2012b, 2012a; Nichols et al., 2017; Poldrack et al., 2017, 2008). 150 

Together, our results provide a first investigation on whether the human HRF model 151 

appropriately fits the average BOLD signal in dogs and whether estimating a novel 152 

dog HRF can increase fMRI specificity and detection power.  153 
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2 Materials and methods 154 

2.1 Sample  155 

Seventeen pet dogs participated in the flickering checkerboard experiment 156 

(experiment 1; 10 females, age range = 3-11 years, mean = 7.24 years, SD = 2.33 157 

years); consisting of 12 border collies, 2 Australian shepherds, 1 border collie 158 

Australian shepherd mix, 1 Labrador retriever and 1 mixed-breed dog (weight range 159 

= 15-27 kg, mean = 19.67 kg, SD = 3.87). A subsample of fourteen dogs also 160 

participated in the face processing experiment (experiment 2; 8 females, age range = 161 

3-11 years, mean = 7.21 years, SD = 2.46 years) in the same or max. two months 162 

apart; consisting of 10 border collies, 1 Labrador retriever, 1 Australian shepherd, 1 163 

border collie Australian shepherd mix and 1 mixed-breed dog (weight range = 15-27 164 

kg, mean = 19.25 kg, SD = 4.03). 165 

All dogs passed an initial medical examination concerning eyesight and 166 

general health. The human caregivers gave written informed consent to their dogs’ 167 

participation and did not receive any monetary compensation. The dogs were fully 168 

awake and unrestrained, and were able to exit the MR scanner at any time. To 169 

achieve this, they received extensive training prior to the MRI sessions in order to 170 

habituate them to the MRI environment (see Karl, Boch, Virányi, Lamm, & Huber, 171 

2019 for a detailed description of the training procedure, and Berns & Cook, 2016; 172 

Strassberg, Waggoner, Deshpande, & Katz, 2019 for similar procedures). The study 173 

was approved by the institutional ethics and animal welfare commission in 174 

accordance with Good Scientific Practice (GSP) guidelines and national legislation at 175 

the University of Veterinary Medicine Vienna (ETK-06/06/2017), based on a pilot 176 

study conducted at the University of Vienna. The current study complies with the 177 

ARRIVE Guidelines (Kilkenny, Browne, Cuthill, Emerson, & Altman, 2010).  178 

2.2 Experimental setup 179 

Preparation. Together with the dog trainer, the dog entered the MR scanner 180 

room wearing earplugs and an additional head bandage to secure optimal earplug 181 

positioning and to enhance noise protection. The dog then accessed the scanner bed 182 

via a custom-made ramp and positioned the head inside the coil, seated in sphinx 183 

position (Figure 1A). The dog trainer then moved the dog into the scanner bore and 184 

visual tasks were presented using an MR-compatible computer screen placed at the 185 

end of the scanner bore (32 inch). Additionally, we used the camera of an eye-tracker 186 
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(Eyelink 1000 Plus, SR Research, Ontario, Canada) to ensure that the dogs stayed 187 

awake, did not close their eyes during stimulus onsets, and to monitor overall 188 

movement (N = 5 dogs in experiment 2 were not monitored due to later 189 

implementation of the camera). The dog trainer remained in the MR-scanner room 190 

throughout the entire scan session but left the dog’s visual field before task onset. 191 

The majority of the dogs first participated in the flickering checkerboard experiment 192 

followed by the face processing experiment in a subsequent MR-session (Figure 1B). 193 

Data acquisition was aborted if the dog moved extensively (as observed using eye-194 

tracking, see above) or if the dog exited the scanner bore during the task. Data 195 

collection was then repeated within the same or a subsequent session, depending on 196 

the dog’s motivation. Following the scan session, we evaluated the realignment 197 

parameters and re-invited the dog to repeat the experiment in a subsequent session 198 

if head motion exceeded a threshold of 3 mm (Figure 1C). On average, two scan 199 

sessions were necessary to complete the experiment below the motion threshold for 200 

both experiments; 12 out of 17 dogs and 9 out of 14 dogs succeeded in their first 201 

scan session for experiment 1 and experiment 2, respectively. After completing a run, 202 

the dog exited the MR scanner and received a food reward. 203 

Flickering checkerboard experiment (experiment 1). The task used in this 204 

experiment alternated between blocks of visual stimulation (flickering checkerboard 205 

covering the whole screen and green cross in the centre for 10 s) and a visual 206 

baseline with a green cross presented on a black screen for 10 s. The total task 207 

duration was 2.2 min, including six blocks of visual stimulation and 6 blocks of 208 

baseline in a fixed order, starting with the visual baseline condition (see Figure 1B). 209 

We chose this experiment for the dog HRF estimation based on the fact that a block 210 

design can be expected to be more robust and predictable, even if the human and 211 

dog HRFs and the actual BOLD signal time courses differ.  212 

Face processing experiment (experiment 2). The task for experiment 2 213 

alternated between short events of visual stimulation (3 s clips of varying conditions, 214 

showing smooth transitions between two facial expressions from different human 215 

models, all on white background; 500 × 500 pixels) and a visual baseline with a black 216 

cross on a white screen jittered between 5-7 s (see Figure 1B). Within the scope of 217 

the present methodological study, we focused on visual responses compared to 218 

baseline, irrespective of the different conditions (results of this will be reported 219 

elsewhere). The total task comprised 60 trials of visual stimulation split in two runs.  220 
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Each run took 5 min with a short break outside the MR scanner if both runs were 221 

acquired in the same session. 222 

 

Figure 1. Overview of experimental approach to explore the average BOLD signal in 
dogs and estimate a tailored dog haemodynamic response function (HRF). (A) All dogs were 
trained to position their head in a 15-channel human knee coil and to stay motionless during 
data acquisition. (B) We acquired data in two different visual stimulation experiments. In (1), 
we extracted the average primary visual cortex (V1) BOLD signal using data from a flickering 
checkerboard experiment, and estimated a tailored dog haemodynamic response function 
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(HRF). We compared this dog HRF to the canonical human HRF, and the human HRF with 
time and dispersion derivatives (TDD). Second, in (2), we validated the results using a face 
processing experiment, whose data served as an independent test data set. (C) Structural 
scans were acquired in a session prior to functional data acquisition of the visual stimulation 
experiments; functional tasks were acquired in separate sessions. Movement parameters 
were assessed after successful completion of a task. If motion exceeded 3 mm, we repeated 
the task in additional sessions. (D) We created individual tailor-made brain masks using itk-
SNAP (Yushkevich et al., 2006) to skull-strip the structural images and consequently improve 
co-registration and normalization of the canine neuroimaging data. 

 223 

2.3 MRI data acquisition 224 

Data were collected using a 3T Siemens Skyra MR-system using a 15-channel 225 

coil developed for structural imaging of the human knee. Functional imaging data for 226 

both tasks were obtained from 24 axial slices (interleaved acquisition; descending 227 

order, covering the whole brain) using a 2-fold multiband-accelerated echo planar 228 

imaging (EPI) sequence and a voxel size of 1.5 × 1.5 × 2 mm3 (TR/TE = 1000/38 ms, 229 

field of view (FoV) = 144 x 144 x 58 mm3, flip angle = 61°, 20% gap). The task from 230 

experiment 1 (flickering checkerboard experiment) consisted of a single run 231 

comprising 134 scans, and the task employed in experiment 2 (face processing 232 

experiment) comprised two runs of 270 scans each. The dogs had multiple attempts 233 

to complete the task in case of excessive head motion (see 2.2. experimental 234 

design). The structural image was obtained using a voxel size of 0.7 mm isotropic 235 

(TR/TE = 2100/3.13 ms, FoV = 230 × 230 × 165 mm3) and was acquired in a prior 236 

scan session, separated from the functional imaging sessions. 237 

2.4 Data processing and statistical analysis 238 

2.4.1 MRI data preprocessing  239 

All imaging data was analysed using SPM12 240 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) and Matlab 2014b (MathWorks) 241 

(see Figure 2 for an overview of the workflow). After slice timing correction 242 

(referenced to the middle slice, Sladky et al., 2011) and image realignment, the 243 

functional images were manually reoriented to match the orientation of the canine 244 

breed-averaged template (Nitzsche et al., 2017) with the rostral commissure as a 245 

visual reference using the SPM module “Reorient images / Set origin”. We then 246 

manually skull-stripped the structural image using an individual binary brain mask for 247 

each dog, created using itk-SNAP (Yushkevich et al., 2006). Based on preliminary 248 

analyses, skull-stripping canine imaging data proved to be essential for successful 249 

automatic co-registration. This way, the co-registration algorithm successfully detects 250 
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brain borders, not incorrectly relying on large muscles that surround the dog brain but 251 

have similar image intensity (see Figure 1D). The structural image, the individual 252 

binary brain mask, and the functional imaging data were then co-registered to the 253 

mean image of each run. Next, the structural image was segmented (“Old 254 

Segmentation” module of SPM12) into grey matter, white matter, and cerebrospinal 255 

fluid, using the tissue probability maps provided by the canine breed-averaged 256 

template (Nitzsche et al., 2019). We then normalized (using the “Old Normalization” 257 

module of SPM12) the functional and structural imaging data, along with the 258 

individual binary brain mask. Lastly, functional images were resliced (1.5 mm 259 

isotropic) and smoothed using a 3 mm Gaussian kernel (full-width-at-half-maximum, 260 

FWHM).  261 

To additionally account for head motion, we performed motion scrubbing by 262 

calculating the scan-to-scan motion for each dog, referring to the framewise 263 

displacement (FD) between the current scan t and its preceeding scan t-1. For each 264 

scan that exceeded the FD threshold of 0.5 mm, we entered an additional motion 265 

regressor to the first-level GLM design matrix (Power, Barnes, Snyder, Schlaggar, & 266 

Petersen, 2012; Power et al., 2014). For the checkerboard experiment (experiment 267 

1), on average 7.8% of the scans were removed (~10/134 scans, ranging from 0 to 268 

36 scans). For the face processing experiment (experiment 2), on average 3.5% (run 269 

1) and 5.5% (run 2) scans were removed (run 1: ~ 10/270 scans; run 2: ~ 15/270 270 

scans; ranging from 0 to 52 across runs).  271 

2.4.2 Template normalization 272 

We attempted to provide a unified coordinate system by combining two 273 

available templates, (1) based on a canine breed-average (Nitzsche et al., 2019) 274 

combined with (2) the normalized labels from another canine template based on a 275 

single male Golden Retriever (Czeibert, Andics, Petneházy, & Kubinyi, 2019). First, 276 

we segmented (“Old Segmentation”) the structural template (Czeibert et al., 2019) 277 

using the tissue probability maps provided by the breed-averaged template (Nitzsche 278 

et al., 2019). Then, we normalized (“Old Normalization”) both the structural template 279 

and the NIfTI-file containing the atlas labels. 280 

 281 
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Figure 2. Schematic description of the tailored data processing workflow for the 

canine neuroimaging data including (A) functional images and (B) the structural image. 
Exemplary structural and functional images as well as binary mask are from one dog in the 
sample; tissue probability maps (TPMs) are from the canine breed-averaged atlas (Nitzsche 
et al., 2019). Numbers, in bold, describe the sequence of processing steps. Est., estimate; 
Res., resliced, GLM, general linear model. 

2.5 fMRI data analysis 282 

We now provide an overview of the analysis approach followed by more 283 

details on each analysis step in the following section (see also Figure 3). For the 284 

exploratory investigation of the average BOLD signal and estimation of the tailored 285 

dog HRF, we first analysed activation changes in V1 during experiment 1 (contrast 286 

flickering checkerboard > visual baseline) in the following steps: (1) we extracted the 287 

average V1 time course of the BOLD signal employing a finite impulse response 288 

(FIR) model (exploration and estimation analysis step 1, extraction V1 BOLD signal); 289 

(2) we estimated a tailored dog HRF based on the FIR data above (exploration and 290 

estimation analysis step 2, dog HRF estimation); (3) we then compared the human 291 

HRF with the dog HRF using model fit analysis and Wilcoxon signed ranks tests 292 

(exploration and estimation analysis step 3, model fit comparison). Then, to expand 293 

comparisons to the whole-brain, (4) we performed first-level analysis using the 294 

human HRF, the human HRF with time and dispersion derivatives and the tailored 295 

dog HRF (exploration and estimation analysis step 4, first-level GLMs) and (5) 296 

analysed neuroimaging data on a group-level along with paired t-tests (exploration 297 

and estimation analysis steps 5, group-level activation comparisons) 298 

Next, to validate the results from experiment 1, which revealed an earlier peak 299 

of the V1 BOLD signal in dogs, we cross-validated them by analysing V1 activation 300 

changes during the face processing experiment (contrast faces > visual baseline), 301 

using a similar but modified approach: (1) we extracted the average time course of 302 
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the V1 BOLD signal during the face processing experiment using a FIR model 303 

(validation step 1, extraction V1 BOLD signal); (2) we compared the HRF models 304 

based on their model fit and using Wilcoxon signed ranks tests (validation step 2, 305 

model comparison); (3) we performed univariate activation analysis using the human 306 

HRF, the human HRF along with time and dispersion derivatives (TDD), and the dog 307 

HRF (validation step 3, first-level GLMs); lastly, (4) we performed group activation 308 

analyses along with paired t-tests (validation step 4, group-level activation 309 

comparisons). 310 

 

Figure 3. Overview on analyses underpinning exploration of the 
average V1 BOLD signal in dogs, estimation of the tailored dog 
haemodynamic response function (HRF), and validation of that HRF in a 
second independent data set. (A) Data from the flickering checkerboard 
experiment served for the exploratory and estimation analysis to (1) to 
extract the average V1 BOLD signal in dogs and visually compare it to the 
human HRF model using a finite impulse response (FIR) model, (2) estimate 
a tailored dog HRF based on the empirical data and (3) compare model fits 
of the human and dog HRF in the visual cortex. On the whole-brain level, 
(4) we then performed first-level analyses using the human HRF, the human 
HRF along with time and dispersion derivatives (TDD) and the tailored dog 
HRF to (5) perform whole-brain group comparisons using one sample and 
paired t-tests across HRF models. (B) Results from (A) where then validated 
using the data from the face processing experiment as an independent 
validation data set. All analysis steps were as above, except for dog HRF 
estimation. GLM, general linear model; BOLD, Blood Oxygenation Level 
Dependent 

2.5.1 Exploration and estimation analysis: Flickering checkerboard 311 

experiment (experiment 1) 312 

Step 1: Extraction average V1 BOLD signal. We used a finite impulse 313 

response (FIR) model to measure the average V1 time course of the BOLD signal in 314 

dogs. This flexible approach makes minimal assumptions about the shape of the 315 

BOLD signal and thus results in independent response estimates for a predetermined 316 
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number of time bins (in the present case, one time bin per TR). We estimated FIRs 317 

covering the visual stimulation blocks (starting at stimulus onset (0 s) until 10 s after 318 

stimulus offset), yielding a duration of 20 s that was divided in 20 time bins (TR = 1 319 

s). We then extract the average V1 time course, based on V1 coordinates obtained 320 

from the group-based comparison using the human HRF (exploratory and estimation 321 

analysis step 5; see also Table 1, section “human HRF”), using (a) a 4 mm sphere 322 

placed around the local maximum of the cluster that covered the occipital lobe 323 

(Figure 4A) and (b) expanding over V1 as determined by our atlas labels (Czeibert et 324 

al., 2019; Nitzsche et al., 2019). Finally, we extracted each dog’s average BOLD time 325 

series and calculated the time course of activation induced by the visual stimulation 326 

block across all dogs.  327 

Step 2: Estimation of the dog HRF. Based on the results from step 1, which 328 

upon visual inspection revealed the need for a tailored dog HRF with earlier onset, 329 

we estimated a new parametrization for SPM’s canonical HRF, yielding a tailored dog 330 

HRF model. The spm_hrf function uses seven optional parameters to specify the 331 

shape of the HRF: the delay of the response (relative to onset, p1 = 6 s), the delay of 332 

the undershoot (relative to onset, p2 = 16 s), the dispersion of the response (p3 = 1), 333 

the dispersion of undershoot (p4 = 1), the ratio of the response to the undershoot (p5 334 

= 6), the onset (p6 = 0 s), and the length of the kernel (p7 = 32 s). We used MATLAB’s 335 

fminsearch function, a multidimensional unconstrained nonlinear minimization 336 

method, to optimize the model fit of the regression analysis (R2-statistics of 337 

MATLAB’s regress function) by varying the values of p1, p2, p5, p6. The assumed 338 

plausible ranges for the haemodynamic parameters were: p1 = [1 10 s], p2 = [1 20 s], 339 

p5 = [1 10 s], p6 = [0 5 s], and the regression analysis was identical to a standard 340 

SPM first-level analysis (see above, step 1). We chose not to deviate from the well-341 

established default-values for response (p3) or undershoot dispersion (p4), or the 342 

overall kernel length (p7) to prevent overfitting. 343 

 Step 3: Model fit comparison. We then calculated the individual single-344 

subject R2-statistics of each GLM with the different HRF parameters and compared 345 

the model fit to the extracted V1 BOLD signal between human and dog HRF using a 346 

Wilcoxon signed ranks test. 347 

Step 4: Human HRF. Using the GLM approach implemented in SPM12, we 348 

estimated contrast images for each dog that reflected task-related activation (contrast 349 

checkerboard > baseline). The first-level design matrix of each dog contained a task 350 
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regressor modelling visual stimulation, time-locked to the onset of each block 351 

(duration 10 s) and convolved with the human (canonical) HRF. The six realignment 352 

parameters along with regressors modelling framewise displacement (see above) 353 

were added to the design matrix to account for head motion. Normalized, and 354 

individually created binary masks (see above and Figure 2) were used as explicit 355 

masks and a high-pass filter with a cut-off at 128 s was applied.  356 

Human HRF+TDD. Next, to account for variability (Friston, Fletcher, et al., 357 

1998; Friston, Josephs, et al., 1998; Henson et al., 2002), we added temporal and 358 

dispersion derivatives (TDD) to the human HRF. The visual stimulation regressor was 359 

thus convolved with the human HRF along with its TDD. This resulted in three 360 

regression parameter estimates consisting of: (1) the human canonical HRF (�̂�𝛽1), (2) 361 

the time derivative (�̂�𝛽2), and (3) the dispersion derivative (�̂�𝛽3). We then combined all 362 

three regressors to form one “derivative boost (H)”-regressor per dog (Calhoun, 363 

Stevens, Pearlson, & Kiehl, 2004; Lindquist et al., 2009): 𝐻𝐻 =364 

𝑠𝑠𝑠𝑠𝑠𝑠(�̂�𝛽1)��̂�𝛽12  + �̂�𝛽22 + �̂�𝛽32. 365 

Dog HRF. Next, we set up a first-level model (same settings as previously) 366 

including the data that was now estimated and convolved using the estimated dog 367 

HRF (step 3, human HRF). 368 

Step 5: Group-level activation comparison. To test for activation differences 369 

during visual stimulation on a group-level, we implemented one sample t-tests for 370 

each HRF model (steps 1, 2, 5; contrasting flickering checkerboard > baseline; H-371 

regressor for TDD model), as well as paired sample t-tests (checkerboard > 372 

baseline). Unless stated otherwise, significance was determined using cluster-level 373 

inference with a cluster-defining threshold p < 0.001 and a cluster probability of p < 374 

0.05 family-wise error (FWE) corrected for multiple comparisons. Cluster extent was 375 

calculated using the SPM extension “CorrClusTh.m” (by Thomas Nichols, University 376 

of Warwick, United Kingdom, and Marko Wilke, University of Tübingen, Germany; 377 

http://www2.warwick.ac.uk/fac/sci/statistics/staff/academicresearch/nichols/scripts/sp378 

m/). 379 

2.5.2 Validation analysis: Face processing experiment (experiment 2) 380 

Independent data obtained during the face processing experiment (experiment 381 

2) were then used to validate the exploratory results and to compare all three HRF 382 

models.  383 
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Step 1: Extraction average V1 BOLD signal. Similar to above (exploration 384 

and estimation analysis, step 1) we used a finite impulse response (FIR) model to 385 

extract the individual BOLD signal time courses, but defined 10 time bins starting at 386 

the stimulus onset (0 s) until 7 s after stimulus offset (each time bin had a duration of 387 

1 s = length of TR). We then placed a 4 mm sphere around the local maxima of the 388 

cluster encompassing the V1, and used the coordinates emerging from the human 389 

HRF+TDD model (validation analysis, step 5; Table 2 section “human HRF+TDD”) 390 

since the human HRF did not survive the significance threshold (Figure 4B).  391 

Step 2: Model fit comparison. This step was almost identical to above 392 

(exploration and estimation analysis, step 3) but was performed based on the FIR 393 

data from experiment 2 (validation analysis, step 1). 394 

Step 3: Human HRF. Analysis was identical to above (exploration and 395 

estimation analysis, step 4 human HRF), but visual stimulation was modelled with 396 

one task regressor time locked to the event onset (duration of 3 s), contrasted 397 

against visual baseline (contrast faces > baseline).  398 

Human HRF+TDD. Analysis was identical to above (exploration and 399 

estimation analysis, step 4 human HRF+TDD) using the task regressor from 400 

experiment 2 (validation analysis, step 3 human HRF) but resulted in two informed 401 

basis sets as this task contained two separate runs. We first calculated the mean of 402 

each parameter estimate across both runs (i.e. �̂�𝛽1_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  𝛽𝛽
�1_𝑟𝑟𝑟𝑟𝑟𝑟1+ 𝛽𝛽�1_𝑟𝑟𝑟𝑟𝑟𝑟2

2
 ) and then, as 403 

above, combined all three averaged regressors to one “derivative boost (H)”-404 

regressor per dog. 405 

Dog HRF. We defined the same first-level model as described above 406 

(validation analysis, step 3 human HRF) but the task regressor was convolved with 407 

the newly estimated dog HRF. 408 

Step 4: Group-level activation comparison. This step was performed based 409 

on the first-level results from experiment 2 but otherwise identical to above 410 

(exploration and estimation analysis, step 5). 411 

2.6 Data and code availability statement 412 

Unthresholded statistical maps from the exploratory and estimation analysis, 413 

the Matlab-based code to estimate the dog HRF and a spm_my_defaults.m-script 414 

containing the dog HRF parameters have been added as supplementary material 415 

and will be available along with the peer-reviewed version of the article.  416 
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3 Results 417 

3.1 Exploration and estimation analysis: Flickering checkerboard experiment 418 

(experiment 1) 419 

FIR model and dog HRF estimation. To investigate the time course of the 420 

BOLD response in dogs, we used a model-free analysis (FIR model, exploration and 421 

estimation analysis, step 1). Results suggested a temporal difference between the 422 

standard (canonical) human HRF and the average response in our canine sample. 423 

Visual inspection of the results revealed an earlier peak after visual stimulation onset 424 

compared to convolution using a human HRF and, consequently, an earlier decline 425 

and return to baseline (Figure 4A). Therefore, the estimation based on the FIR data 426 

(exploration and estimation analysis, step 2) resulted in the following parameter 427 

changes to the (canonical) human HRF: a shorter response delay (p1 = 4.3 s), a 428 

delay of the undershoot (p2 = 6.6 s), as well as a lower ratio of the response to the 429 

undershoot (p5 = 3). This newly estimated dog HRF peaked around 2-3 seconds 430 

earlier as compared to the human HRF (Figure 4A). 431 

Determining the HRF model fits. R2-statistics of both GLMs calculated 432 

individually (main analysis, step 6) revealed a better model fit of the average time 433 

course of activation when using the dog HRF, with a mean R2 of 0.64 (SD = 0.21), 434 

increasing the fit almost two times in comparison to the model using the human HRF 435 

(mean R2 = 0.35 (SD = 0.20). This substantial increase in explained variance was 436 

statistically significant (z = 142, p = 0.002). 437 
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Figure 4. Visual comparison reveals an earlier peak of the BOLD signal in dogs than 
modelled by the canonical human haemodynamic response function (HRF) for both 
independent data sets leading to estimation of tailored dog HRF. After calculating the finite 
impulse response (FIR) models, we extracted individual response estimates from the maximal 
response in primary visual cortex (V1) using (A) the standard human HRF for the flickering 
checkerboard experiment (exploration and estimation analysis, step 5; x = -1, y = -29, z = 16, 
4 mm) and (B) the standard human HRF along with time and dispersion derivatives for the 
face processing experiment (validation analysis, step 4;  x = -1, y = -29, z = 19, 4 mm). Based 
on the extracted data, we calculated the response to the visual stimulation across trials 
averaged for all dogs for both (A) the flickering checkerboard experiment and (B) the face 
processing experiment (both runs separately). The dog HRF was estimated based on the FIR 
results from the flickering checkerboard experiment (exploration and estimation analysis, step 
2), the face processing experiment served as an independent test data set to validate the 
results derived from the exploration and estimation analysis. For illustration purposes, the dog 
and human HRF's were scaled by the parameter estimates from the respective GLM's. 

 438 

Visual activation: Human HRF/human HRF+TDD. Expanding to whole-brain 439 

comparisons (exploration and estimation analysis, step 5), we performed standard 440 

whole-brain GLM analyses similar to other canine neuroimaging papers (e.g., Andics 441 

et al., 2016; Cuaya et al., 2016) and localized visual processing areas by convolving 442 

fMRI data with the human HRF (exploration and estimation analysis, step 3 human 443 

HRF). Results revealed increased activation within the occipital lobe (V1) and within 444 

the left hippocampal area (Table 1, section “human HRF”). When accounting for HRF 445 

variability (exploration and estimation analysis, step 3, human HRF+TDD), we found 446 

similar activation within V1 during visual stimulation (but only about half the size 447 

compared to the human HRF) as well as within the right dorsal temporal lobe (Table 448 

1, section “human HRF+TDD). Additionally, V1 clusters stemming from both analysis 449 

types expanded from the occipital lobe to portions of the parietal and right temporal 450 

lobe (Figure 5A). Thus, analyses based on the standard human HRF with and without 451 

accounting for its variability yielded comparable activation increases in V1 during 452 

visual stimulation. 453 
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Figure 5. Flickering checkerboard experiment: Comparison of brain activation across 
haemodynamic response functions (HRF) illustrates increased detection performance using a 
tailored dog HRF in both primary and higher order visual processing areas (exploratory and 
estimation analysis). Results are displayed at p < 0.05, FWE-corrected at cluster-level, and using 
a cluster-defining threshold of p < .001 (see Table 1) on the mean structural image. Coordinates 
refer to the canine breed-averaged atlas (Nitzsche et al., 2019). The first axial plane (A, first row, 
left) shows the anatomical locations caudal (C), rostral (R), and left hemisphere (LH); all axial 
planes displayed have the same orientation. The sagittal plane displays the cut coordinates and 
the anatomical locations dorsal (D), ventral (V). (A) Group-based activation for visual stimulation 
> baseline (one sample t-tests) indicate confirm that the analysis using the dog HRF shows the 
highest sensitivity for the canine neuroimaging data, with the analysis using the human HRF 
resulting in smaller and the one using the human HRF combined with time and dispersion 
derivatives even smaller activation clusters (B) Comparisons of visual stimulation > visual baseline 
contrasts between all three HRF models (paired t-tests) resulted in similar significant activation 
changes in the occipital lobe for the human HRF and time and dispersion (TDD) model in contrast 
to both the human and dog HRF). Comparing the human HRF and dog HRF revealed stronger 
activation in the primary visual cortex and temporal regions for the dog HRF compared to the dog 
HRF and activation in the insular cortex for the reverse contrast (not depicted, see Table 1 for 
details). 

 454 
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Visual activation: Dog HRF. We now report in more detail the brain areas revealing 455 

significant activation on a group-level using the tailored dog HRF, since it significantly 456 

improved the model fit in the V1 compared to the human HRF (exploration and 457 

estimation analysis, steps 2-3). We observed five clusters with stronger activation 458 

during visual stimulation compared to baseline (Table 1, section “dog HRF”, Figure 459 

5), which is more than double the amount of significant clusters, as well as cluster 460 

sizes, compared to the remaining models (main analysis, steps 1, 2; Table 1). The 461 

largest cluster expanded from the V1 to bilateral parietal and temporal lobe regions, 462 

followed by smaller clusters in the right temporal lobe (see Table 1 and Figure 6 for 463 

details). 464 

 
Figure 6. Increasing the detection power by using the tailored dog 

haemodynamic response function (HRF) in the flickering checkerboard experiment 
allows detailed description of primary and higher-order visual processing areas. (A) 
Visual stimulation against baseline elicited activation in a large region of the occipital 
lobe peaking at the rostral occipital lobe expanding to the caudal parietal lobe and 
bilateral dorsal portions of the temporal lobe. In addition, activation in bilateral 
hippocampal areas increased in response to visual stimulation compared to baseline. 
Results are displayed at p < 0.05, FWE-corrected at cluster-level, and using a cluster-
defining threshold of p < .001 (see Table 1, section “dog HRF”), plotted onto the mean 
structural image. Atlas maps, coordinates and the anatomical nomenclature refer to 
the canine breed-averaged atlas (Nitzsche et al., 2019) and additional normalized 
labels from a single-dog based template (Czeibert et al., 2019). Images are 
accompanied with anatomical locations caudal (C), rostral (R), dorsal (D), ventral (V), 
left hemisphere (LH) and right hemisphere (RH). (B) For easier interpretation of the 
anatomical structures activated, blue-shaded outlines of anatomical regions are 
displayed together with contours of activated clusters shown in Panel A. 

 465 

Activation differences during visual stimulation across HRF models. In 466 

order to test for whole-brain differences in activation, we compared the human HRF, 467 
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human HRF+TDD and dog HRF GLMs using paired sample t-tests (contrast 468 

checkerboard > visual baseline; exploration and estimation analysis, step 5). Results 469 

revealed significant clusters for all models. However, the analysis using the dog HRF 470 

was the only one that resulted in significant differences in activation both in the V1 471 

and bilateral temporal regions (dog HRF > human HRF); the human HRF+TDD 472 

increased activation only in a caudal V1 region (human HRF+TDD > human HRF; 473 

human HRF+TDD > dog HRF). In sum, the human HRF revealed to be the least 474 

sensitive model (see Figure 5B, Table 1 for details). 475 

 476 

 477 
Table 1. Flickering checkerboard experiment: Task-related activation during visual stimulation 

Contrast, brain region & HRF 

Coordinates 
(breed-averaged template) 

z-value cluster size x y z 

Human HRF: Flickering checkerboard > visual baseline (k = 14) 

L caudal splenial gyrus (O) -1 -29 16 5.71 610 

L hippocampus (T) -9 -18 1 4.47 15 

Human HRF+TDD: Flickering checkerboard > visual baseline (k = 10) 

L caudal splenial gyrus (O) 1 -26 19 6.05 246 

R medial suprasylvian gyrus (T) 13 -20 18 4.61 11 

Dog HRF: Flickering checkerboard > visual baseline (k = 15) 

R caudal splenial gyrus (O) 1 -27 18 6.23 823 

L medial suprasylvian gyrus (T) -16 -18 19 4.82 30 

L caudal suprasylvian gyrus (T) -19 -24 7 4.17 18 

L hippocampus (T) -9 -17 3 4.08 23 

R hippocampus (T) 8 -15 6 4.04 19 

Human HRF+TDD > human HRF: Flickering checkerboard > visual baseline (k = 10) 

L caudal splenial gyrus (O) -3 -30 16 5.58 175 

Human HRF > dog HRF: Flickering checkerboard > visual baseline (k = 14) 

L insular cortex (T) -18 -11 -2 4.58 14 
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Dog HRF > human HRF: Flickering checkerboard > visual baseline (k = 14) 

R caudal splenial gyrus (O) 1 -27 18 5.78 316 

R medial suprasylvian gyrus (T) 17 -18 21 4.71 54 

L medial suprasylvian gyrus (T) -16 -20 21 4.17 14 

Human HRF+TDD > dog HRF: Flickering checkerboard > visual baseline (k = 10) 

L caudal splenial gyrus (O) -3 -30 16 6.00 162 

Effects were tested for significance with a cluster-defining threshold of p < 0.001 and a cluster probability of p 
< 0.05 FWE-corrected for multiple comparisons. Critical cluster sizes (k) are reported along with the results for 
each one sample t-test, each haemodynamic response (HRF) model, and for the paired-sample t-tests between 
all HRF models. The first local maximum within each cluster is reported; coordinates represent the location of 
peak voxels and refer to the canine breed-averaged template (Nitzsche et al., 2019), the template along with 
another single dog template (Czeibert et al., 2019) served to determine anatomical nomenclature for all tables. 
TDD, time and dispersion derivatives; O, occipital lobe; T, temporal lobe; L, left; R, right. 

 478 

3.2 Validation: Face processing experiment (experiment 2) 479 

Next, we validated our novel results in an independent data set and compared 480 

all three HRF models.  481 

FIR model and comparison of HRF model fits. Visual inspection of the 482 

average activation time course based on the FIR model (validation analysis, step 4) 483 

confirmed the results of the exploratory and estimation analysis, as it again revealed 484 

an earlier BOLD signal peak (see Figure 4B). In line with the exploratory results, 485 

comparing the average HRF model fits for both runs separately (validation analysis, 486 

step 5) revealed that the dog HRF improved the fit by eight times for the first run 487 

(human HRF: mean 𝑅𝑅𝑟𝑟𝑟𝑟𝑚𝑚12  = 0.06, SD = 0.11; dog HRF: mean 𝑅𝑅𝑟𝑟𝑟𝑟𝑚𝑚12  = 0.5, SD = 0.31) 488 

and by almost three times for the second run (human HRF: mean 𝑅𝑅𝑟𝑟𝑟𝑟𝑚𝑚22  = 0.15, SD = 489 

0.22; dog HRF: mean 𝑅𝑅𝑟𝑟𝑟𝑟𝑚𝑚22  = 0.44, SD = 0.31). Again, the Wilcoxon signed ranks 490 

tests indicated that the dog HRF model fit was significantly higher than the human 491 

HRF in both runs (Run 1: z = 100, p = 0.001; Run 2: z = 67, p = 0.012), confirming 492 

the advantage of using the tailored dog HRF in a data set independent of the dog 493 

HRF estimation. 494 

Visual activation during visual stimulation across HRF models. In line 495 

with the results from the exploratory and estimation analysis, modelling the dog HRF 496 

resulted in the highest number of activated clusters with cluster sizes increasing 497 
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twelve times in comparison to the model including the human HRF+TDD. 498 

Furthermore, the dog HRF was the only model that detected activation beyond the 499 

V1 in bilateral temporal regions, while none of these withstood the cluster threshold 500 

correction when modelling the human HRF (see Table 2, Figure 7A for details; 501 

validation analysis, step 5). Performing paired sample t-tests between dog HRF, 502 

human HRF and human HRF+TDD (validation analysis, step 5) resulted in no 503 

significant differences with the initial strict threshold, but lowering the threshold to p = 504 

0.005 uncorrected indicated that using the dog HRF improved the sensitivity to detect 505 

visual processing areas (see Table 2, Figure 7B for details), thus confirming the 506 

exploratory results. 507 

 508 
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Figure 7. Face processing experiment: Comparison of brain activation in an independent 
data set confirms increased detection performance using a tailored dog haemodynamic response 
function (HRF) compared to other HRF models (validation analysis). For display purposes results 
are displayed at p < .005 (for results at p < 0.05, FWE-corrected at cluster-level, and a cluster-
defining threshold of p < .001 see Table 2) on the mean structural image. Coordinates refer to 
the canine breed-averaged atlas (Nitzsche et al., 2019). The first axial plane (A, first row, left) 
shows the anatomical locations caudal (C), rostral (R) and left hemisphere (LH); all axial planes 
displayed have the same orientation. The sagittal plane displays the cut coordinates and the 
anatomical locations dorsal (D), ventral (V). (A) Group-based activation for visual stimulation > 
baseline  (one sample t-tests) indicate that the human HRF results in almost no activation, the 
human HRF combined with time and dispersion derivatives (TDD) results in bigger activation 
clusters and again that the dog HRF shows the highest sensitivity for the canine neuroimaging 
data. (B) Group comparisons of visual stimulation > visual baseline contrasts between all three 
HRF models. Group-based activation (paired t-tests) resulted in trends of activation changes in 
temporal regions for the dog HRF in comparison to both the human HRF and human HRF + TDD 
model (see Table 2 for detailed results). 

 509 

 510 
Table 2. Face processing experiment: Task-related activation during visual stimulation 

Contrast, brain region & HRF 

Coordinates 
(breed-averaged template) 

z-value cluster size x y z 

Human HRF+TDD: Visual stimulation  > visual baseline (k = 21) 

R lateral olfactorial gyrus (T) 13 3 -4 4.65 21 

R caudal marginal gyrus (O) 1 -29 19 4.29 26 

Dog HRF: Visual stimulation > visual baseline (k = 14) 

R medial suprasylvian gyrus (T) 16 -23 19 4.88 255 

R rostral ectosylvian gyrus (T) 17 -8 10 4.54 53 

R caudal splenial gyrus (O) 2 -32 18 4.53 130 

L caudal composite gyrus (T) -22 -20 -4 4.49 204 

Dog HRF > human HRF: Visual stimulation > visual baseline (k* = 10) 

R medial suprasylvian gyrus (T) 17 -23 18 4.19 28 

L medial suprasylvian gyrus (T) -18 -24 15 3.70 24 

Dog HRF > human HRF+TDD:  Visual stimulation > visual baseline (k* = 10) 

R ectomarginal gyrus (P) 8 -18 19 4.04 22 
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Effects were tested for significance with a cluster-defining threshold of p < 0.001 and a cluster probability of 
p < 0.05 FWE-corrected for multiple comparisons. Critical cluster sizes (k) are reported along with the results 
for each one sample t-test per haemodynamic response function (HRF) model. For the one sample t-test 
based on the human HRF GLM, no cluster survived the threshold. None of the paired sample t-tests across 
HRF models survived the critical cluster threshold (k), therefore the significance level was lowered to p < 
0.005 with an arbitrary cluster threshold (k*) of 10 voxels. One paired sample t-test (human HRF vs. human 
HRF and time and dispersion derivatives (TDD)) did not survive the lowered threshold as well as the 
contrasts human > dog HRF, human HRF + TDD > dog HRF. The first local maximum within each cluster is 
reported; coordinates represent the location of peak voxels and refer to the canine breed-averaged template 
(Nitzsche et al., 2019), the template along with another single dog template (Czeibert et al., 2019) served to 
determine anatomical nomenclature for all tables. O, occipital lobe; T, temporal lobe; L, left; R, right. 

 511 

4 Discussion 512 

The aim of this study was to explore whether the typically used human 513 

haemodynamic response function (HRF) fits the average BOLD signal in dogs and 514 

whether detection power for canine neuroimaging data can be improved using a 515 

tailored dog HRF. Our results indicate that the human HRF does not fit the average 516 

BOLD signal in dogs. We provide initial evidence that the average time course of the 517 

V1 BOLD signal in dogs peaks 2-3 s earlier than the human HRF and that the model 518 

fit for the primary visual cortex (V1) can be significantly improved using a tailored dog 519 

HRF. Expanding to whole-brain activation, the dog HRF again resulted in increased 520 

detection power for the dog HRF. 521 

We used two independent visual experiments serving as exploration and 522 

estimation analysis (flickering checkerboard experiment, experiment 1) and 523 

independent validation sets (face processing experiment, experiment 2). We 524 

estimated a tailored dog HRF based on the empirical data from experiment 1, since 525 

V1 BOLD signal indicated an earlier peak compared to the human HRF. Following 526 

this, we were able to confirm the earlier peak when investigating the V1 BOLD signal 527 

in the independent experiment 2. Further, the model fit for the V1 significantly 528 

improved (and almost doubled) in experiment 1 and improved between eight (run 1) 529 

and almost three (run 2) times in experiment 2 when comparing to the human HRF. 530 

Expanding to whole-brain comparisons, our results provide evidence that the human 531 

HRF, compared to the tailored dog HRF, resulted in significantly less activation being 532 

detected. Fourth, adding time and dispersion derivatives (TDD) led to significantly 533 

increased activation in both experiments, but only within occipital areas. Overall, 534 

however, the human HRF+TDD was less sensitive in detecting secondary visual 535 

areas which resulted in fewer significant clusters during both experiments. These are 536 
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important findings when considering the small sample sizes in most canine 537 

neuroimaging studies. In contrast to human studies, it is more difficult to increase 538 

power by increasing the sample size, primarily due to limited availability of canine 539 

participants and extensive dog training prior to MR-scanning. Thus, increasing the 540 

model fit of the HRF to the average BOLD signal time course is an important 541 

alternative tool to further increase the power and therefore increase the 542 

reproducibility of future studies. 543 

Our findings are consistent with research in rodents, which suggested that 544 

using the human HRF degrades the model fit and, thus, the overall detection 545 

performance (Lambers et al., 2020). As in our sample, Lambers and colleagues 546 

(2020) observed an earlier peak of the average BOLD signal in rats, proposing 547 

differences in brain and vessel size and smaller distances within the brain as 548 

potential reasons for the observed patterns. Absolute brain sizes cannot sufficiently 549 

explain why the human HRF fits the average BOLD signal in dogs. Although dog 550 

brains have a smaller absolute size than human and, on average, macaque brains 551 

(e.g., DeFelipe, 2011; Yáñez et al., 2005), the dog breeds in our sample seem to 552 

have a similar size as rhesus macaques (Horschler et al., 2019). However, relative 553 

size (brain size/body weight) could potentially explain our findings, since the dog 554 

brains in our sample (just as rodent brains) seem to have a smaller relative brain size 555 

than humans and rhesus macaques (e.g. Baumann et al., 2010; Logothetis et al., 556 

2001 for average body weight in macaques; Roth & Dicke, 2005 for review). Although 557 

evolutionary relationship also seems to correlate with the human HRF across species 558 

underlying neurovascular mechanisms remain somewhat unclear. Additionally, skull 559 

shapes and sizes also vary within dog species (i.e., across different breeds), resulting 560 

in substantial variance in underlying neuroanatomy in dogs (Hecht et al., 2019; 561 

Horschler et al., 2019; Schoenebeck & Ostrander, 2013). Since our sample was 562 

rather homogenous (70% border collies; all mesocephalic skull shapes), we did not 563 

have enough variance to test for potential differences between breeds, skull shapes 564 

or sizes. Therefore, the average BOLD signal might deviate from the tailored dog 565 

HRF across breeds. This could be accounted for by adding time and dispersion 566 

derivatives to the dog HRF in future studies.  567 

Our results do not confirm earlier reports (Berns et al., 2012) of a similar time 568 

course of the average BOLD signal to the one in humans. Unlike Berns et al. (2012), 569 

who reported a comparable time course of activation in dogs, our results suggest that 570 
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the human HRF does not fit the average time course of the BOLD signal in dogs 571 

optimally. However, Berns et al. (2012) studied the subcortical caudate nucleus, 572 

while we focused on the cortical BOLD signal in dogs, extracting data from the V1. 573 

Previous research in other species, i.e. humans showed that the average BOLD 574 

signal time course differs between cortical and subcortical regions (Handwerker et 575 

al., 2004; Lewis, Setsompop, Rosen, & Polimeni, 2018). Thus, our findings do not 576 

necessarily contradict the results from Berns et al. (2012) but might be related to the 577 

different areas analysed, as well as their neural and vascular characteristics. 578 

Overall, our findings provide first evidence that the human HRF in the visual 579 

cortex does not optimally fit the HRF observed in dogs. Despite being based on two 580 

independent experiments allowing for cross-validation, this evidence should be 581 

treated as preliminary, awaiting independent validation in other samples, 582 

experimental paradigms, and brain regions. We hope that our approach will 583 

encourage future research to test the reproducibility and generalizability of our 584 

findings, and to explore whether this could help to increase model fit and detection 585 

power in their own canine fMRI datasets. For this reason, we adopted the established 586 

and recommended (Carp, 2012b; Nichols et al., 2017; Poldrack et al., 2008) 587 

standards from human neuroimaging analyses, provided a detailed description of our 588 

workflow and parameters, and made our imaging data and code openly available. 589 

Using a simple but salient sensory stimulation experiment also allowed quality 590 

assessment of our developed processing pipeline and helped us validate future 591 

changes in our pipeline, preventing potentially biased decisions. Additionally, a short 592 

(visual) localizer experiment can be used for dog training and getting dogs 593 

accustomed to the experimental setup.  594 

Transparent reporting also allows us to build on previous research and 595 

facilitates the comparison of results. Based on previous research (e.g., Aguirre et al., 596 

2007; Langley & Grünbaum, 1890; Marquis, 1934; Uemura, 2015; Willis, Quinn, 597 

McDonell, Gati, Parent, et al., 2001; Willis, Quinn, McDonell, Gati, Partlow, et al., 598 

2001; Wing & Smith, 1942) research, we are certain about the location of the V1, but 599 

less is known about other higher-order visual association areas. Similar to the human 600 

and rhesus macaque visual system (e.g., Orban, Van Essen, & Vanduffel, 2004; 601 

Tootell, Tsao, & Vanduffel, 2003 for comparative reviews), we found activation within 602 

the dorsal visual stream, extending from the occipital lobe to the caudal parietal lobe 603 

and the ventral stream, and including bilateral regions in the temporal lobes, bilateral 604 
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hippocampus and caudal thalamus. We did not find significant activation in the lateral 605 

geniculate body (LGB); (1) regarding the small size of the region, detection might 606 

require smaller voxel sizes or (2) differences in individual anatomy might have led to 607 

anatomical imprecision, atlases based on larger sample size (Nitzsche et al. 2019: 608 

based on N = 16 dogs) could help disentangle this question. Unfortunately, there is 609 

still no agreement on a shared template space; publicly available templates (Czeibert 610 

et al., 2019; Datta et al., 2012; Liu et al., 2020; Nitzsche et al., 2019) are not in the 611 

same space and vary in orientation and origin, thus coordinates from one template 612 

cannot be applied to the other. Taken together, these findings can be a next step to 613 

further investigate the visual system for dogs, hopefully aiding future investigations of 614 

the visual system in dogs or studies focusing on visual paradigms (e.g., face 615 

processing Cuaya et al., 2016; Dilks et al., 2015; Hernández-Pérez et al., 2018; 616 

Szabó et al., 2020; Thompkins et al., 2018).  617 

4.1 Conclusions 618 

We present first evidence that the average visual-cortical BOLD signal in dogs 619 

peaks earlier than the human HRF model. Consequently, the significantly lower 620 

model fit suggests that the analysis of canine neuroimaging data using the human 621 

HRF leads to loss of power that cannot be accounted for by adding time and 622 

dispersion derivatives. We provide a first estimate of the cortical dog HRF resulting in 623 

significant activation increase in comparison to the human HRF and validated our 624 

results using an independent task. We hope that our findings spark new research 625 

that might challenge or add to our results. To increase transparency, we applied 626 

open-science practices throughout, and hope this will motivate and facilitate future 627 

investigations by other labs, leading to a joint effort to improve detection power in 628 

canine neuroimaging research.  629 
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