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Abstract 20 

Characterising the distribution of fitness effects (DFE) for new mutations is central in evolutionary 21 

genetics. Analysis of molecular data under the McDonald-Kreitman test has suggested that 22 

adaptive substitutions make a substantial contribution to between-species divergence. Methods 23 

have been proposed to estimate the parameters of the distribution of fitness effects for positively 24 

selected mutations from the unfolded site frequency spectrum (uSFS). However, when beneficial 25 

mutations are strongly selected and rare, they may make little contribution to standing variation 26 

and will thus be difficult to detect from the uSFS. In this study, I analyse uSFS data from simulated 27 

populations subject to advantageous mutations with effects on fitness ranging from mildly to 28 

strongly beneficial. When advantageous mutations are strongly selected and rare, there are very 29 

few segregating in populations at any one time. Fitting the uSFS in such cases leads to 30 

underestimates of the strength of positive selection and may lead researchers to false conclusions 31 

regarding the relative contribution adaptive mutations make to molecular evolution. Fortunately, 32 

the parameters for the distribution of fitness effects for harmful mutations are estimated with 33 

high accuracy and precision. The results from this study suggest that the parameters of positively 34 

selected mutations obtained by analysis of the uSFS should be treated with caution and that 35 

variability at linked sites should be used in conjunction with standing variability to estimate 36 

parameters of the distribution of fitness effects in the future. 37 

 38 
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 3 

Introduction 44 

Characterising the distribution of fitness effects for beneficial mutations is central in evolutionary 45 

biology. The rate and fitness effects of advantageous mutations may determine important 46 

evolutionary processes such as how variation in quantitative traits is maintained (Hill, 2010), the 47 

evolution of sex and recombination (Otto, 2009) and the dynamics of evolutionary rescue in 48 

changing environments (Orr & Unckless, 2014). However, despite its central role in evolution, 49 

relatively little is known about the distribution of fitness effects (DFE) for advantageous mutations 50 

in natural populations. The DFE for advantageous mutations can be estimated from data obtained 51 

via targeted mutation or from mutation accumulation experiments (e.g. Bank, Hietpas, Wong, 52 

Bolon, & Jensen, 2014; Böndel et al., 2019; reviewed in Bailey & Bataillon, 2016), but such efforts 53 

may be limited to laboratory systems. Alternatively, estimates of the DFE can be obtained for 54 

natural systems using population genetic methods.  55 

 56 

When natural selection is effective, beneficial alleles are promoted to eventual fixation while 57 

deleterious variants are maintained at low frequencies. Migration, mutation, selection and genetic 58 

drift interact to shape the distribution of allele frequencies in a population (Wright, 1937). 59 

Parameters of the DFE for both advantageous and deleterious mutations can be estimated by 60 

modelling population genomic data, specifically the site frequency spectrum (SFS). The SFS is the 61 

distribution of allele frequencies present in a sample of individuals drawn from a population. By 62 

contrasting the SFS for a class of sites expected to be subject to selection with that of a neutral 63 

comparator, one can estimate the parameters of the DFE if selected mutations are segregating in 64 

the population of interest (reviewed in Eyre-Walker & Keightley, 2007). Typically, the DFE for 65 

nonsynonymous sites in protein coding genes is estimated using synonymous sites as the neutral 66 

comparator. Several methods have been proposed that estimate the DFE for deleterious 67 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 12, 2020. ; https://doi.org/10.1101/855411doi: bioRxiv preprint 

https://doi.org/10.1101/855411
http://creativecommons.org/licenses/by-nc/4.0/


 4 

mutations from the SFS under the assumption that beneficial mutations contribute little to 68 

standing genetic variation (e.g. Barton & Zeng, 2018; Boyko et al., 2008; Keightley & Eyre-Walker, 69 

2007; Tataru, Mollion, Glemin, & Bataillon, 2017). 70 

 71 

The DFE for deleterious mutations can be used when estimating α, the proportion of between-72 

species divergence attributable to adaptive evolution (Eyre-Walker & Keightley, 2009). α can be 73 

estimated by rearranging the terms of the McDonald-Kreitman test (MK-test), which assesses the 74 

extent of positive selection. Under strong purifying selection, the ratio of divergence at 75 

nonsynonymous sites (dN) to that of synonymous sites (dS) should be exactly equal to the ratio of 76 

nucleotide diversity at nonsynonymous (πN) and synonymous sites (πS)(McDonald & Kreitman, 77 

1991). Adaptive evolution of protein sequences may contribute to dN such that dN/dS > πN/πS. 78 

Charlesworth (1994) suggested rearranging the terms of the MK-test to estimate the excess dN due 79 

to positive selection (α) as  80 

α = 1 – dSπN/dNπS. 81 

Slightly deleterious alleles may contribute to both standing genetic variation and between-species 82 

divergence, estimates of α may therefore be refined by subtracting the contribution that 83 

deleterious alleles make to both polymorphism and divergence and this can be calculated using 84 

the DFE for harmful mutations (Eyre-Walker & Keightley, 2009). Application of such methods to 85 

natural populations suggest that α is of the order of 0.5 in a large variety of animal taxa (Galtier, 86 

2016). However, if adaptive evolution is as frequent as MK-test analyses suggest, the assumption 87 

that advantageous alleles contribute little to standing variation may be violated and ignoring them 88 

could lead to biased estimates of the DFE (Tataru et al., 2017).  89 

 90 

When advantageous alleles contribute to standing variation, parameters of the DFE for both 91 

deleterious and beneficial mutations can be estimated from the SFS (Schneider et al., 2011; Tataru 92 
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et al., 2017). When data from an outgroup species are available, variable sites within a focal 93 

species can be polarised as either ancestral or derived and the unfolded SFS (uSFS) can be 94 

obtained. Inference of ancestral/derived states is, however, potentially error-prone  (Keightley & 95 

Jackson, 2018). The uSFS is a vector of length 2n, where n is the number of haploid genome copies 96 

sampled. The ith entry of the uSFS is the count of derived alleles observed at a frequency i in the 97 

sample. Note that when outgroup data are not available, alleles cannot be polarised and the 98 

distribution of minor allele frequencies (known as the folded SFS) is analysed. There is limited 99 

power to detect positive selection from the SFS, so the DFE for beneficial mutations is often 100 

modelled as a discrete class of mutational effects, with one parameter specifying the fitness 101 

effects of beneficial mutations, 𝛾a = 2Nesa where Ne is the effective population size and sa is the 102 

positive selection coefficient in homozygotes, and another specifying the proportion of new 103 

mutations that are advantageous, pa. Estimates of 𝛾a and pa for nonsynonymous sites have only 104 

been obtained a handful of species, and these are summarised in Table 1. The positive selection 105 

parameter estimates that have been obtained for mice and Drosophila are fairly similar (Table 1). 106 

Note that the estimates for humans obtained by Castellano et al, (2019) did not provide a 107 

significantly greater fit to the observed data than did a model with no positive selection. 108 

Furthermore, Castellano et al, (2019) estimated the parameters for numerous great ape species, 109 

the parameters shown for humans are representative of the estimates for all taxa they analysed. 110 

 111 
Table 1 Estimates of the parameters of positive selection obtained from the uSFS for 112 
nonsynonymous sites.  113 

Common 
name Scientific name 𝛾a pa Reference Method used¶ 

House mouse Mus musculus castaneus 14.5 0.0030 Booker & Keightley, (2018) DFE-alpha 

Fruit fly Drosophila melanogaster 23.0 0.0045 Keightley et al, (2016) DFE-alpha 

Humans Homo sapiens 0.0064† 0.000025 Castellano et al, (2019) polyDFE 

¶ - DFE-alpha implements the analysis methods described by Schneider et al., (2011), polyDFE implements the 114 
methods described by Tataru et al., (2017) 115 
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† - Castellano et al., (2019) estimated the mean fitness effect for an exponential distribution of advantageous 116 
mutational effects. 117 
 118 

Depending on the rate and fitness effects of beneficial mutations, different aspects of population 119 

genomic data may be more or less informative for estimating the parameters of positive selection. 120 

As beneficial mutations spread through populations, they may carry linked neutral variants to high 121 

frequency, causing selective sweeps (Barton, 2000). On the other hand, if advantageous mutations 122 

have mild fitness effects, they may take a long time to reach fixation and make a substantial 123 

contribution to standing genetic variation. Because of this, uSFS data and polymorphism data at 124 

linked sites may both be informative for understanding the parameters of positive selection. For 125 

example, Campos et al., (2017) used a model of selective sweeps to analyse the negative 126 

correlation observed between dN and πS in Drosophila melanogaster and estimated 𝛾a = 250 and 127 

pa = 2.2 x 10-4, but this method assumes a constant population size.  An analysis of the uSFS from 128 

the same dataset that modelled of population size change yielded estimates of 𝛾a = 23 and pa = 129 

0.0045 for nonsynonymous sites (Keightley et al., 2016). The sharp contrast between the two 130 

studies’ estimates of the positive selection parameters may due to different assumptions but 131 

could potentially be explained if the DFE for advantageous mutations in D. melanogaster is 132 

bimodal. If this were so, the different methods (i.e. sweep models versus uSFS analysis) may be 133 

capturing distinct aspects of the DFE for advantageous mutations, or it could be that both models 134 

are highly unidentifiable. The handful of studies that have attempted to estimate 𝛾a and pa from 135 

the uSFS have yielded similar estimates of positive selection (Table 1), which may indicate 136 

commonalities in the DFE for beneficial mutations across taxa. On the other hand, uSFS analyses 137 

may have only found evidence for mildly beneficial mutations because the approach is only 138 

powered to detect weakly beneficial mutations. Indeed, verbal arguments have suggested that 139 

rare strongly selected advantageous mutations, which may contribute little to standing variation, 140 

will be undetectable by analysis of the uSFS (Booker & Keightley, 2018; Campos et al., 2017). 141 
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 142 

The studies describing the two most recently proposed methods for estimating the DFE for 143 

beneficial mutations from the uSFS (Schneider et al., 2011; Tataru et al., 2017) performed 144 

extensive simulations, but did not test cases of rare advantageous mutations with strong effects 145 

on fitness. Testing this case is important, as studies that have analysed patterns of putatively 146 

neutral genetic diversity across the genome have indicated that the DFE for advantageous 147 

mutations contains strongly beneficial mutations in a variety of taxa (Booker & Keightley, 2018; 148 

Campos et al., 2017; Elyashiv et al., 2016; Nam et al., 2017; Uricchio et al., 2019). Note that Tataru 149 

et al., (2017) did simulate a population subject to frequent strongly beneficial mutations (𝛾a = 800 150 

and pa = 0.02), but the parameter combination they tested may not be biologically relevant as the 151 

proportion of adaptive substitutions it yielded was far higher than is typically estimated from real 152 

data (α = 0.99). The limited parameter ranges tested in the simulations performed by Schneider et 153 

al., (2011) and Tataru et al., (2017) leave a critical gap in our knowledge as to how uSFS based 154 

methods perform when advantageous mutations are strongly selected and infrequent. 155 

 156 

In this study, I use simulated datasets to fill this gap and examine how uSFS-based analyses 157 

perform when beneficial mutations are strongly selected and rare. I simulate populations subject 158 

to a range of positive selection parameters, including cases similar to those modelled by Tataru et 159 

al., (2017) and cases where beneficial mutations are strongly selected but infrequent. It has been 160 

pointed out that estimating selection parameters by modelling within species polymorphism along 161 

with between-species divergence makes the assumption that the DFE has remained invariant since 162 

the ingroup and outgroup began to diverge (Tataru et al., 2017). By analysing only the 163 

polymorphism data, one can potentially avoid that problematic assumption. Using the state-of-164 

the-art package polyDFE v2.0 (Tataru & Bataillon, 2019), I analyse the uSFS data and estimate 165 

selection parameters for all simulated datasets with or without divergence.  The results from this 166 
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study suggest that, when beneficial mutations are strongly selected and rare, analysis of the uSFS 167 

results in spurious parameter estimates and the proportion of adaptive substitutions may be 168 

poorly estimated. 169 

Methods 170 

Population genomic simulations 171 

I tested the hypothesis that the parameters of infrequent, strongly beneficial mutations are 172 

difficult to estimate by analysis of the uSFS using simulated datasets. Wright-Fisher populations of 173 

Ne = 10,000 diploid individuals were simulated using the forward-in-time package SLiM (v3.2; 174 

Haller & Messer, 2019). Simulated chromosomes consisted of seven gene models, each separated 175 

by 8,100bp of neutrally evolving sequence. The gene models consisted of five 300bp exons 176 

separated by 100bp neutrally evolving introns. The gene models were based on those used by 177 

Campos & Charlesworth, (2019), but unlike that study, I did not model the untranslated regions of 178 

genes. Nonsynonymous sites were modelled by drawing the fitness effects for 2/3rds of mutations 179 

in exons from a distribution of fitness effects (DFE), while the remaining 1/3 were strictly neutral 180 

and used to model synonymous sites. The fitness effects of nonsynonymous mutations were 181 

beneficial with probability pa or deleterious with probability 1 – pa. Beneficial mutations had a 182 

fixed selection coefficient of 𝛾a = 2Nesa. The fitness effects of deleterious mutations were drawn 183 

from a gamma distribution with a mean of 𝛾d = 2Nesd = -2,000 and a shape parameter of ß = 0.3 (sd 184 

being the negative selection coefficient in homozygotes). The gamma distribution of deleterious 185 

mutational effects was used for all simulated datasets and was based on results for 186 

nonsynonymous sites in Drosophila melanogaster (Loewe & Charlesworth, 2006). Uniform rates of 187 

mutation (μ) and recombination (r) were set to 2.5 x 10-7 (giving 4Ner = 4Neµ = 0.01). Note that μ 188 

and r are far higher than is biologically realistic for most eukaryotes, I scaled up these rates to 189 
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model a population with a large Ne using simulations of 10,000 individuals.  Across simulations I 190 

varied the 𝛾a and pa parameters and performed 2,000 replicates for each combination of 191 

parameters. Thus, I simulated a dataset of 21Mbp of coding sequence for each combination of 𝛾a 192 

and pa tested. 193 

 194 

In this study, I assumed a discrete class of beneficial mutational effects rather than a continuous 195 

distribution, which is likely unrealistic for most organisms. Theoretical arguments have been 196 

proposed that the DFE for beneficial mutations that go to fixation should be exponential (Orr, 197 

2003). However, the studies that have estimated the DFE for beneficial mutations from population 198 

genetic data have often modelled discrete classes of effects (Campos et al., 2017; Elyashiv et al., 199 

2016; Keightley et al., 2016; Uricchio et al., 2019).  I chose to model discrete selection coefficients 200 

in the simulated datasets in order to better understand the limitations of the methods rather than 201 

to accurately model the DFE for beneficial mutations. 202 

 203 

To model the accumulation of nucleotide substitutions after the split of a focal population with an 204 

outgroup, I recorded all substitutions that occurred in the simulations. Campos & Charlesworth, 205 

(2019) analysed simulations very similar to those that I performed in this study and showed that 206 

populations subject to beneficial mutations with 𝛾a = 250 and pa = 0.0002 took 14Ne generations 207 

to reach mutation-selection-drift equilibrium. In this study I modelled a range of positive selection 208 

parameters, so to ensure that my simulations reached equilibrium I performed 85,000 (34Ne) 209 

generations of burn-in before substitutions were scored. The expected number of neutral 210 

nucleotide substitutions that accumulate per site in T generations is dNeutral  = Tµ. The point 211 

mutation rate in my simulations was set to µ = 2.5 x 10-7per site per generation, so I ran the 212 

simulations for 200,000 generations beyond the end of the burn-in phase to model a neutral 213 
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divergence of dNeutral = 0.05. All variants present in the population sampled at a frequency of 1.0 214 

were also scored as substitutions. 215 

 216 

Using the 2,000 simulated datasets, I constructed 100 bootstraps by sampling with replacement. 217 

From each bootstrap sample, I collated variants and constructed the uSFS for synonymous and 218 

nonsynonymous sites for 20 diploid individuals.  219 

 220 

Analysis of simulation data 221 

I calculated several summary statistics from the simulated datasets. Firstly, I calculated pairwise 222 

nucleotide diversity at synonymous sites (πs) and expressed it relative to the neutral expectation 223 

of π0 = 4Neµ = 0.01. Secondly, divergence at nonsynonymous sites for both advantageous (dNa) 224 

and deleterious mutations (dNd) was used to calculate the observed proportion of adaptive 225 

substitutions, αObs = dNa/(dNa + dNd). Finally, I recorded the total number of beneficial mutations 226 

segregating in simulated populations, SAdv. 227 

 228 

I estimated DFEs from simulated data by analysis of the uSFS using polyDFE (v2.0; Tataru & 229 

Bataillon, 2019). polyDFE fits an expression for the uSFS expected under a full DFE to data from 230 

putatively neutral and selected classes of sites and estimates parameters by maximum likelihood. 231 

For each set of positive selection parameters, simulated uSFS data were analysed under “Model B” 232 

in polyDFE (a gamma distribution of deleterious mutational effects plus a discrete class of 233 

advantageous mutations). Initial parameters for the maximisation were calculated from the data 234 

using the ‘-e’ option and the uSFS was analysed either with or without divergence using the “-w” 235 

option in polyDFE. Analysing the uSFS without divergence causes the selection parameters to be 236 

inferred from polymorphism data alone. For each replicate, I tested whether the inclusion of 237 
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beneficial mutations in the DFE improved model fit using likelihood ratio tests between the best-238 

fitting model and a model with pa set to 0.0. Setting pa = 0.0 means that positive selection does 239 

not influence the likelihood, so two fewer parameters are being estimated. Twice the difference in 240 

log-likelihood between the full DFE model and the model with pa = 0.0 was tested against a 𝜒2 241 

distribution with 2 degrees of freedom. Likelihood surfaces were estimated by running polyDFE 242 

using a grid of fixed values for DFE parameters.  243 

 244 

 245 
 246 
Data Availability 247 

All code and SLiM configuration files needed to reproduce the results shown in this study are 248 

available at https://github.com/TBooker/PositiveSelection_uSFS. 249 

 250 

Results 251 

Population genomic simulations 252 

I performed simulations that modelled genes subject to mutation-selection-drift balance with 253 

fitness effects drawn from a distribution that incorporated both deleterious and advantageous 254 

mutations. The DFE for harmful mutations was constant, but I varied the fraction (pa) and fitness 255 

effects (𝛾a) of beneficial mutations across simulated datasets (Table 2). For each set of 256 

advantageous mutation parameters, 21Mbp of coding sequences was simulated, of which 14Mbp 257 

were nonsynonymous and 7Mbp were synonymous sites. Variants present in the simulated 258 

populations were used to construct the uSFS for a sample of 20 diploid individuals (Figure S1), a 259 

sample size which is fairly typical of current population genomic datasets (e.g. Castellano et al., 260 

2019; Laenen et al., 2018; Williamson et al., 2014). 261 
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 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

Table 2 Parameters of positive selection assumed in simulations and the proportion of polyDFE 271 
runs for which modelling positive selection gave a significantly better fit to the data. 272 

𝛾a pa 𝛾a pa 

Proportion of likelihood 
ratio tests significant 

Proportion of analyses with 
gradient < 0.01 

With 
divergence 

Without 
divergence 

With 
divergence 

Without 
divergence 

10 

0.0001 

0.001 0.02 0.07 0.11 0.71 
50 0.005 0.98 0.86 0.10 0.77 

100 0.01 0.98 0.02 0.03 0.58 
500 0.05 1.00 0.39 0.00 0.99 

1,000 0.10 1.00 1.00 0.00 0.71 
10 

0.001 

0.01 0.99 0.96 0.15 0.71 
50 0.05 1.00 1.00 0.06 0.98 

100 0.10 1.00 1.00 0.00 0.97 
500 0.50 1.00 1.00 0.00 0.94 

1,000 1.00 1.00 1.00 0.00 0.71 
10 

0.01 

0.10 1.00 1.00 0.03 0.80 
50 0.50 1.00 1.00 0.02 0.99 

100 1.00 1.00 1.00 0.02 0.95 
500 5.00 1.00 1.00 0.00 0.72 

1,000 10.0 1.00 1.00 0.00 0.41 
 273 

Across simulations, the strength of selection acting on advantageous mutations ranged from 𝛾a = 274 

10 to 𝛾a = 1,000. For a given pa parameter, increasing the strength of selection increased the 275 

observed proportion of adaptive substitutions, αObs (Figure 1A). This is expected and is due to the 276 

monotonic increasing relationship between fixation probability and the strength of positive 277 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 12, 2020. ; https://doi.org/10.1101/855411doi: bioRxiv preprint 

https://doi.org/10.1101/855411
http://creativecommons.org/licenses/by-nc/4.0/


 13 

selection first described by Haldane (1927). Additionally, parameter combinations for which 𝛾apa 278 

were equal had similar proportions of adaptive substitutions, for example compare 𝛾a = 10 and pa 279 

= 0.01 to 𝛾a = 1,000 and pa = 0.0001 (Figure 1A). This was also expected because the rate of 280 

adaptive substitutions is proportional to 𝛾apa. In some datasets, particularly when pa = 0.01 and 281 

advantageous mutations were very strongly selected (i.e. 𝛾a ≥ 500), αObs exceeded 0.75, which is 282 

higher than is typically estimated from empirical data (Galtier, 2016), so these parameter 283 

combinations may not be biologically relevant.  284 

 285 

The effects of selection at linked sites varied across simulated datasets. The DFE for deleterious 286 

mutations was kept constant across simulations, so the extent of background selection should be 287 

fairly similar across all parameter sets and thus variation in πS/π0 reflects the effects of selective 288 

sweeps. Under neutrality πS/π0 had an expected value of 1.0 and I found that selection at linked 289 

sites reduced nucleotide diversity below that expectation in all simulations (Figure 1B). Increasing 290 

the fitness effects or frequency of advantageous mutations had a strong effect on genetic diversity 291 

at synonymous sites, as shown by πS/π0 in Figure 1B. The highlighted points in Figure 1 indicate 292 

parameter combinations for which 𝛾apa = 0.01. As expected, αObs for these three parameter sets 293 

was very similar (Figure 1A). Figure 1B shows that πS/π0 decreased across these three parameter 294 

combinations as the strength of positive selection increased. Finally, differences in pa explained 295 

most of the variation in the proportion of segregating advantageous mutations (SAdv./S) across 296 

simulated datasets, but SAdv./S. also increased with the strength of positive selection (Figure 1C). 297 

On the basis of these results, it is clear that there will be lower power to estimate positive 298 

selection on the basis of standing variation when advantageous mutations are rare (i.e. pa = 299 

0.0001) than when they are comparatively frequent (i.e. pa = 0.01). 300 
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 301 

Figure 1 Population genetic summary statistics collated across all simulated genes. αObs is the 302 
observed proportion of substitutions fixed by positive selection. πs/π0 is genetic diversity relative 303 
to neutral expectation (π0 = 0.01). SAdv./S is the proportion of segregating nonsynonymous sites 304 
that are advantageous in the simulated datasets. 305 
 306 

 307 

Analysis of the unfolded site frequency spectrum 308 

Figure 2 shows the observed (bars) and expected (lines) distribution of derived allele frequencies 309 

for beneficial mutations segregating in simulated populations. The three panels of Figure 2 310 

correspond to three parameter combinations for which 𝛾apa = 0.01 (𝛾a = 1,000 and pa = 0.0001, 𝛾a 311 

= 100 and pa = 0.001 and 𝛾a = 10 and pa = 0.01). The lines in each of the panels of Figure 2 show 312 

the analytical expectation for the uSFS of advantageous mutations calculated using Equation 2 313 

from Tataru et al., (2017). The analytical expectation closely matches the observed data for all 314 

three combinations (Figure 2). However, for a given value of pa, the analytical expectation for 315 

models with increasing fitness effects were very similar, which likely makes it difficult to 316 

distinguish them on the basis of polymorphism alone (Figure 2). For the three parameter sets 317 

shown in Figure 2, the overall contribution that advantageous alleles make to the uSFS for 318 

nonsynonymous sites is small relative to deleterious ones (Figure S1). Accurate estimation of 319 

positive selection parameters from the uSFS requires that the distribution of advantageous alleles 320 
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can be distinguished from deleterious variants, so when pa is small it seems likely that uSFS 321 

analyses will be unable to easily distinguish competing models.  322 

 323 

Figure 2 The uSFS for advantageous mutations under different combinations of positive selection 324 
parameters. The three bar charts show observed uSFS from simulations that model positive 325 
selection parameters that yield similar α. The lines in each panel show the expected frequency 326 
spectra for different strengths of beneficial mutations and were obtained using Equation 2 from 327 
Tataru et al., (2017).  328 
 329 

When analysing a particular uSFS dataset in polyDFE, I either modelled the full DFE (i.e. a gamma 330 

distribution of deleterious mutations and a discrete class of advantageous mutational effects), or 331 
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just a gamma DFE for harmful mutations (dDFE). I compared the two models using likelihood ratio 332 

tests, which tested the null hypothesis that the fit of the full DFE model is similar to that of a 333 

model containing only deleterious mutations. For each of the combinations of positive selection 334 

parameters shown in Table 2, I ran polyDFE on uSFS data from 100 bootstrap replicates. When 335 

modelling the full uSFS (i.e. with divergence), polyDFE identified models containing positive 336 

selection consistently for all but one (pa = 0.0001 and 𝛾a = 10) of the parameter combinations 337 

tested (Table 2). When the DFE was inferred from polymorphism data alone (i.e. without 338 

divergence), models containing positive selection were identified less often, particularly when 339 

beneficial mutations were rare (pa = 0.0001; Table 2). Table 2 also shows the proportion of analysis 340 

runs for which the gradient of the likelihood exceeded 0.1. The polyDFE manual (Tataru & 341 

Bataillon, 2019) suggests that gradients >0 indicate that the program has hailed to identify a 342 

unique likelihood maximum. When the full uSFS was modelled, the gradient of the likelihood was 343 

frequently >0, indicating that the model did not converge on a unique optimum. When modelling 344 

the uSFS without divergence, polyDFE reported gradients <0.01 for a large proportion of replicate 345 

analyses (Table 2).  346 

 347 
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 348 
Figure 3 Estimates of the parameters of advantageous mutations and the proportion of adaptive 349 
substitutions they imply from simulated datasets. A) 𝛾a is the inferred selective effect of a new 350 
advantageous mutation; B) pa is the proportion of new mutations that are beneficial, the 351 
horizontal dashed grey lines indicate the simulated values in each case; C) αDFE is the proportion of 352 
adaptive substitutions expected under the inferred DFE, the dashed lines indicate αObs, the 353 
proportion of adaptive substitutions observed in the simulated datasets. Error bars indicate the 354 
95% range of 100 bootstrap replicates. 355 
 356 
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Figures 3A and 3B show the parameters of positive selection estimated by analysis of uSFS from 357 

simulated datasets. I found that when simulated beneficial mutations were mildly advantageous 358 

(𝛾a = 10) but relatively frequent (pa = 0.01), both 𝛾a and pa were estimated accurately regardless of 359 

whether divergence was modelled or not (Figures 3A-B). This finding is consistent with both 360 

Schneider et al., (2011) and Tataru et al., (2017). When pa = 0.01 and 𝛾a > 10, the analysis of the 361 

uSFS with or without divergence yielded very similar parameter estimates, but in both cases, the 362 

strength of positive selection seemed to be positively correlated with the estimated pa (Figure 3). 363 

In all cases, when beneficial mutations had 𝛾a ≥ 50, neither 𝛾a nor pa were accurately estimated 364 

(Figure 3).  365 

 366 

Tataru et al., (2017) pointed out that, if one had an estimate of the full DFE (i.e. with divergence), 367 

the proportion of adaptive substitutions could be obtained by taking the ratio of the fixation 368 

probability for a new beneficial mutation over the fixation probability for a random mutation 369 

integrating over the full DFE (Equation 10; Tataru et al., 2017). The proportion of adaptive 370 

substitutions obtained in this way is denoted αDFE. When modelling the full uSFS, αDFE was 371 

estimated with high accuracy, but with a slight upward bias (Figure 3C). When the DFE was 372 

inferred without divergence αDFE was underestimated when beneficial mutations were strongly 373 

selected and rare (Figure 3).  374 

 375 

In the presence of infrequent, strongly beneficial mutations the parameters of the DFE for 376 

deleterious mutations estimated by polyDFE were very accurate (Figure S2). Estimates of the DFE 377 

for harmful mutations were less accurate when beneficial mutations occurred with pa ≥ 0.001 and 378 

𝛾a ≥ 100. This is presumably because in such cases recurrent selective sweeps eliminate a large 379 

amount of neutral diversity and distort the distribution of standing genetic variation at 380 
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nonsynonymous sites. However, as stated above, the parameter range where the DFE for harmful 381 

mutations was poorly estimated in this study may not be biologically relevant.  382 

 383 

Model Identifiability 384 

 385 

 386 
Figure 4 The likelihood surface for the 𝛾a and pa parameters for three simulated datasets. Hue 387 
indicates differences in log likelihood between a particular parameter combination and the best-388 
fitting model. Best fitting models are indicated by red points and the true parameters are given 389 
above the plots and indicated by the white plus signs on the likelihood surface. The relation 𝛾apa = 390 
0.1 is shown as a turquoise line and is constant across the three datasets shown. 391 
 392 

It is very difficult to tease apart the parameters of positive selection from the uSFS by maximum 393 

likelihood. Figure 4 shows the likelihood surface for the three sets of positive selection parameters 394 

that satisfy the condition 𝛾apa = 0.1. The proportion of adaptive substitutions is largely determined 395 

by the product 𝛾apa (Kimura & Ohta, 1971) and, as expected, the three parameter combinations 396 

shown in Figure 4 all exhibit a similar αObs (Figure 1A). However, the extent by which neutral 397 

genetic diversity is reduced and the number of segregating advantageous mutations differ 398 

substantially across the three parameter combinations (Figure 1). The top row of panels in Figure 4 399 
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shows that when modelling the full uSFS, the likelihood surface closely tracks the relation 𝛾apa = 400 

0.1. Focussing on the top panel in Figure 4A, the maximum likelihood estimates (MLEs) of the 401 

positive selection parameters (the red dot) are far from the true parameter values (indicated by 402 

the plus sign), but the MLEs obtained satisfy 𝛾apa = 0.1. The ridge in the likelihood surface 403 

observed when modelling the full uSFS was described by both Schneider et al., (2011) and Tataru 404 

et al., (2017). It comes about because between-species divergence carries information about α, 405 

and α is proportional to 𝛾apa.  406 

 407 

Inferring the parameters of the DFE from polymorphism alone avoids the assumption of an 408 

invariant DFE, but when doing so it may be difficult to distinguish competing models. Indeed, 409 

across the three parameter combinations shown, values close to the truth were only obtained 410 

from simulated data when 𝛾a = 10 and pa = 0.01 (bottom panel Figure 4C). In the case of	𝛾a = 1000 411 

and pa = 0.0001, the likelihood surface about the true parameters was very flat (Figure 4A). 412 

Increasing the pa parameter increased likelihood for all strengths of selection, so that the MLEs 413 

shown in Figure 4A are simply the values with the highest pa in the range tested (the vertical red 414 

line in Figure 4A). When 𝛾a = 100 and pa = 0.001, the likelihood surface about the estimates was 415 

steep, but the selection parameters identified by maximum likelihood were incorrect (Figure 4B).  416 

 417 

Discussion 418 

In this study, I analysed simulated datasets modelling a range of positive selection parameter 419 

combinations. I found that estimates of positive selection parameters obtained by analysis of the 420 

uSFS were only accurate when beneficial mutations had 𝛾a ≤ 50, under stronger selection the 421 

individual parameters of positive selection were not accurately estimated (Figure 3). This is not 422 

particularly surprising and is consistent with verbal arguments made in published studies (Booker 423 
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& Keightley, 2018; Campos et al., 2017). However, it is troubling that when beneficial mutations 424 

are strongly selected and rare, the uSFS may often indicate a significant signal of positive 425 

selection, but erroneous parameter estimates are obtained. If one were to analyse an empirical 426 

dataset and estimate parameters of positive selection of the order 𝛾a ~ 10 and pa ~ 0.01, it would 427 

be difficult to know whether those were reflective of the true underlying parameters or an 428 

artefact of strong selection.  429 

 430 

On the basis of this study, it seems that researchers should treat parameters of positive selection 431 

obtained by analysis of the uSFS with caution. The expected uSFS for advantageous mutations is 432 

very similar when DFE models share the same pa parameter, and in such cases differing models 433 

can only be distinguished by the density of high frequency derived variants (Figure 2). Polarization 434 

error when estimating the uSFS can generate an excess in the number of high frequency variants 435 

(Keightley & Jackson, 2018), so may generate a spurious signal of strong positive selection. 436 

Analysis methods have been proposed which attempt to estimate the rate of polarisation error 437 

when modelling the uSFS (Barton & Zeng, 2018; Tataru et al., 2017), but further study is required 438 

to determine whether such methods reduce the signal of positive selection in uSFS-based 439 

analyses. However, accounting for positive selection when analysing the uSFS yielded robust 440 

estimates of the DFE for harmful mutations across the simulated datasets (Figure S2), although I 441 

only examined a single DFE for harmful mutations in this study. Tataru et al., (2017) showed that 442 

polyDFE accurately recovered the parameters of a range of DFE models if positive selection is 443 

accounted for. 444 

 445 

Estimates of α based on analysis of the uSFS may be biased when beneficial mutations are strongly 446 

selected and infrequent. Calculating α using the rearranged MK-test makes the problematic 447 

assumption that the DFE has remained invariant in the time since the focal species began to 448 
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diverge from the outgroup (Tataru et al., 2017). However, Tataru et al., (2017) pointed out that 449 

one can avoid that assumption if αDFE is calculated from a DFE estimated without divergence data. 450 

In this study, estimates of αDFE obtained when the full uSFS was analysed were very precise, but 451 

with a slight upward bias (Figure 3). When simulated beneficial mutations were strongly selected 452 

and rare, the parameters inferred using polymorphism data alone (i.e. without divergence) yielded 453 

spurious estimates of αDFE (Figure 3). When analysing datasets from real populations, αDFE may not 454 

capture the contribution that strongly beneficial mutations make to molecular evolution. This may 455 

make it difficult to contrast αDFE between species with large differences in Ne, because the number 456 

of segregating advantageous mutations and thus ability to accurately estimate selection 457 

parameters will depend on the population size. 458 

 459 

The nature of the distribution of fitness effects for natural populations is largely unknown. In this 460 

study, I analysed the uSFS data under the exact DFE model that had been simulated (i.e. a gamma 461 

distribution of deleterious mutational effects plus a discrete class of beneficial effects). However, 462 

when analysing empirical data, researchers have to make assumptions about the probability 463 

distribution that best describes the DFE of the focal population. A gamma distribution is often 464 

assumed for deleterious mutations as it is flexible and is described by only two parameters (Eyre-465 

Walker & Keightley, 2007). However, when analysing real data, one may bias their analyses by 466 

strictly adhering to one particular family of probability distributions (Kousathanas & Keightley, 467 

2013). In practice, model averaging provides a way to estimate key features of the DFE while 468 

remaining agnostic to the exact shape that the distribution should take (Tataru & Bataillon, 2020). 469 

However, if there is bias in the parameter estimates that are obtained across the models that one 470 

tests, as is the case for strongly beneficial mutations, a biased average would result.  471 

 472 
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The simulations I performed in this study generated the ideal dataset for estimating parameters of 473 

selection from the uSFS. I simulated 21Mbp of coding sites in which genotypes and whether sites 474 

were selected or not was unambiguously known. When analysing real data this is not the case and 475 

researchers often have to filter a large proportion of sites out of their analyses or choose to 476 

analyse a subset of genes that have orthology with outgroups or other biological properties of 477 

interest. Even with perfect knowledge, strongly beneficial mutations only represented a small 478 

proportion of the standing genetic variation at nonsynonymous sites (Figure 1, S1). In addition, the 479 

populations I simulated were randomly mating and had constant sizes over time. The results I 480 

present in this study suggest that even with perfect knowledge of a population that adheres to the 481 

assumptions of a Wright-Fisher model, it is inherently difficult to infer the parameters of strongly 482 

beneficial mutations from the uSFS, particularly so when beneficial mutations occur infrequently.  483 

 484 

Estimating parameters of positive selection from the uSFS versus 485 

estimates from patterns of diversity 486 

As discussed above, studies based on analysis of the uSFS and those based on selective sweep 487 

models have yielded vastly different estimates of the parameters of positive selection. Patterns of 488 

neutral genetic diversity in both humans and wild mice cannot be explained by the effects of 489 

background selection alone, and in both species it has been suggested that strongly beneficial 490 

mutations are required to explain the observed patterns (Booker & Keightley, 2018; Nam et al., 491 

2017). In the case of wild house mice, positive selection parameters obtained by analysis of the 492 

uSFS do not explain dips in nucleotide diversity around functional elements (Booker & Keightley, 493 

2018). Recently, Castellano et al. (2019) analysed the uSFS for nonsynonymous sites in great ape 494 

species but did not find significant evidence for positive selection. In their dataset, Castellano et al. 495 

(2019) had at least 8 haploid genome sequences for each of great ape species they analysed, and 496 
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they argued that they were underpowered to detect positive selection on the basis of the uSFS. In 497 

this study, I analysed datasets of 20 diploid individuals and found that it was very difficult to 498 

accurately capture positive selection parameters. Increasing the number of sampled individuals 499 

even further may increase the power to estimate the strength of positive selection, but this study 500 

suggests that the increase in power will depend on the underlying DFE. When pa is small, the 501 

expected number of advantageous mutations present in the uSFS for 200 diploids is less than 10 502 

for most frequency classes when14Mbp of nonsynonymous sites have been used to construct the 503 

uSFS (Figure S3). Indeed, Figure S3 shows that even with very large sample sizes, the expected 504 

uSFS for beneficial mutations are very similar and may only be distinguished on the basis of a small 505 

number of high frequency derived alleles. Thus, it may be that the uSFS is inherently limited in the 506 

information it carries on the DFE for beneficial mutations so other sources of information may 507 

have to be used to accurately recover parameters.  508 

 509 

In this study, I modelled beneficial mutations using a discrete class of selection coefficients when, 510 

in reality, there is likely a continuous distribution of fitness effects. Indeed, studies in both humans 511 

and D. melanogaster have found evidence for a bimodal distribution containing both strongly and 512 

weakly beneficial mutations contributing to adaptive evolution using methods which incorporate 513 

linkage information but do not explicitly estimate selection parameters (Elyashiv et al., 2016; 514 

Uricchio et al., 2019). There are currently no methods that estimate the DFE using an analytical 515 

expression for the uSFS expected under the combined effects of BGS and sweeps. Rather, 516 

nuisance parameters or demographic models are used to correct for the contribution that 517 

selection at linked sites may make to the shape of the SFS (Eyre-Walker, Woolfit, & Phelps, 2006; 518 

Galtier, 2016; Tataru et al., 2017). However, as this study shows, the parameters of positive 519 

selection are not reliably estimated when analysing the uSFS alone. A way forward may be in using 520 

computational approaches to make use of all of the available data, while not necessitating an 521 
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expression for the uSFS expected under the combined effects of BGS, sweeps, population size 522 

change and direct selection. An advance in this direction has recently been made by Uricchio et al., 523 

(2019) who developed an ABC method for estimating α which makes use of the distortions to the 524 

uSFS generated by BGS and sweeps. By applying their method to data from humans, Uricchio et 525 

al., (2019) found that α = 0.13 for nonsynonymous sites, 72% of which was generated by mildly 526 

beneficial mutations and 28% by strongly beneficial mutations. However, the computational 527 

approach developed by Uricchio et al., (2019) could readily be extended to model an arbitrarily 528 

complex DFE for beneficial mutations. Their methods could be implemented in a machine-learning 529 

context, with training data generated by forward-simulations that capture confounding factors 530 

such as population structure and population size change as well as the effects of selection at 531 

linked sites. 532 
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Supplementary Material 641 

 642 
Figure S1 The observed uSFS for nonsynonymous sites for three sets of positive selection 643 
parameters. The distribution of deleterious mutations is shown in orange and the distribution of 644 
advantageous mutations is shown in blue. For the purposes of visualising the data on a log scale, 645 
the number of segregating sites is shown +1. 646 
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 647 
 648 
Figure S2 Parameter estimates for the DFE for deleterious mutations obtained from simulated 649 
datasets. A) the mean effect of a deleterious mutation and b) the shape parameter of the gamma 650 
distribution. Error bars indicate the 95% range of 100 bootstrap replicates. 651 
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 653 
Figure S3 The expected uSFS for beneficial alleles. Panel A shows the expected uSFS for a sample 654 
of 20 diploid individuals, and panel B shows the uSFS for 200 diploid individuals. 655 
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